This file was created by the TYPO3 extension bib --- Timezone: CEST Creation date: 2023-09-30 Creation time: 22-18-01 --- Number of references 22 inproceedings 2023_lohmoeller_transparency Poster: Bridging Trust Gaps: Data Usage Transparency in Federated Data Ecosystems 2023 11 27 data usage control; data ecosystems; transparency logs https://www.comsys.rwth-aachen.de/fileadmin/papers/2023/2023-lohmoeller-transparency.pdf ACM Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security (CCS ’23), November 26-30, 2023, Copenhagen, Denmark Copenhagen, Denmark November 26-30, 2023 accepted 979-8-4007-0050-7/23/11 doi.org/10.1145/3576915.3624371 1 JohannesLohmöller EduardVlad MarkusDahlmanns KlausWehrle inproceedings 2023_matzutt_street_problems Poster: Accountable Processing of Reported Street Problems 2023 11 27 Municipalities increasingly depend on citizens to file digital reports about issues such as potholes or illegal trash dumps to improve their response time. However, the responsible authorities may be incentivized to ignore certain reports, e.g., when addressing them inflicts high costs. In this work, we explore the applicability of blockchain technology to hold authorities accountable regarding filed reports. Our initial assessment indicates that our approach can be extended to benefit citizens and authorities in the future. street problems; accountability; consortium blockchain; privacy https://www.comsys.rwth-aachen.de/fileadmin/papers/2023/2023-matzutt-street-problems.pdf ACM Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security (CCS ’23), November 26-30, 2023, Copenhagen, Denmark Copenhagen, Denmark November 26-30, 2023 accepted 979-8-4007-0050-7/23/11 10.1145/3576915.3624367 1 RomanMatzutt JanPennekamp KlausWehrle inproceedings 2023_sloun_accessibility Poster: Vulcan - Repurposing Accessibility Features for Behavior-based Intrusion Detection Dataset Generation 2023 11 27 Intrusion Detection, Dataset Generation, Accessibility Features ACM Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security (CCS '23), November 26-30, 2023, Copenhagen, Denmark Copenhagen, Denmark November 26-30, 2023 accepted 979-8-4007-0050-7/23/11 10.1145/3576915.3624404 1 Christianvan Sloun KlausWehrle inproceedings 2023-wagner-lcn-repel Retrofitting Integrity Protection into Unused Header Fields of Legacy Industrial Protocols 2023 10 https://www.comsys.rwth-aachen.de/fileadmin/papers/2023/2023-wagner-repel.pdf IEEE 48th IEEE Conference on Local Computer Networks (LCN), Daytona Beach, Florida, US Daytona Beach, Florida, US IEEE Conference on Local Computer Networks (LCN) Oktober 1-5, 2023 accepted en 1 EricWagner NilsRothaug KonradWolsing LennartBader KlausWehrle MartinHenze inproceedings 2023-wolsing-xluuvlab XLab-UUV – A Virtual Testbed for Extra-Large Uncrewed Underwater Vehicles 2023 10 Roughly two-thirds of our planet is covered with water, and so far, the oceans have predominantly been used at their surface for the global transport of our goods and commodities. Today, there is a rising trend toward subsea infrastructures such as pipelines, telecommunication cables, or wind farms which demands potent vehicles for underwater work. To this end, a new generation of vehicles, large and Extra-Large Unmanned Underwater Vehicles (XLUUVs), is currently being engineered that allow for long-range, remotely controlled, and semi-autonomous missions in the deep sea. However, although these vehicles are already heavily developed and demand state-of-the-art communi- cation technologies to realize their autonomy, no dedicated test and development environments exist for research, e.g., to assess the implications on cybersecurity. Therefore, in this paper, we present XLab-UUV, a virtual testbed for XLUUVs that allows researchers to identify novel challenges, possible bottlenecks, or vulnerabilities, as well as to develop effective technologies, protocols, and procedures. Maritime Simulation Environment, XLUUV, Cyber Range, Autonomous Shipping, Operational Technology https://www.comsys.rwth-aachen.de/fileadmin/papers/2023/2023-wolsing-xluuvlab.pdf IEEE 1st IEEE LCN Workshop on Maritime Communication and Security (MarCaS) Daytona Beach, Florida, USA 1st IEEE LCN Workshop on Maritime Communication and Security (MarCaS) Oktober 1-5, 2023 accepted en 1 KonradWolsing AntoineSaillard ElmarPadilla JanBauer inproceedings 2023-redefine-mpc-cosimulation Delay-aware Model Predictive Control for Fast Frequency Control Proceedings of the 14th IEEE International Conference on Smart Grid Communications (SmartGridComm 2023) 2023 10 redefine IEEE Proceedings of the 14th IEEE International Conference on Smart Grid Communications (SmartGridComm 2023) accepted 1 TobiasHeins RenéGlebke MirkoStoffers SriramGurumurthy JanHeesemann MartinaJosevski AntonelloMonti KlausWehrle inproceedings 2023-kunze-spin-bit-in-the-wild Does It Spin? On the Adoption and Use of QUIC’s Spin Bit 2023 10 https://www.comsys.rwth-aachen.de/fileadmin/papers/2023/2023-kunze-spin-bit-in-the-wild.pdf ACM Proceedings of the Internet Measurement Conference (IMC '23) Internet Measurement Conference 2023 accepted 1 IkeKunze ConstantinSander KlausWehrle inproceedings 2023-sander-quic-ecn ECN with QUIC: Challenges in the Wild 2023 10 legato https://www.comsys.rwth-aachen.de/fileadmin/papers/2023/2023-sander-quic-ecn.pdf https://arxiv.org/abs/2309.14273 ACM Proceedings of the Internet Measurement Conference (IMC '23) Internet Measurement Conference 2023 accepted 979-8-4007-0382-9/23/10 10.1145/3618257.3624821 1 ConstantinSander IkeKunze LeoBlöcher MikeKosek KlausWehrle inproceedings 2023-bader-metrics METRICS: A Methodology for Evaluating and Testing the Resilience of Industrial Control Systems to Cyberattacks 2023 9 28 https://www.comsys.rwth-aachen.de/fileadmin/papers/2023/2023-bader-metrics.pdf Proceedings of the 9th Workshop on the Security of Industrial Control Systems & of Cyber-Physical Systems (CyberICPS '23), co-located with the the 28th European Symposium on Research in Computer Security (ESORICS '23) The Hague, The Netherlands 9th Workshop on the Security of Industrial Control Systems & of Cyber-Physical Systems (CyberICPS '23) September 28, 2023 accepted 1 LennartBader EricWagner MartinHenze MartinSerror inproceedings 2023_wolsing_ensemble One IDS is not Enough! Exploring Ensemble Learning for Industrial Intrusion Detection 2023 9 25 Industrial Intrusion Detection Systems (IIDSs) play a critical role in safeguarding Industrial Control Systems (ICSs) against targeted cyberattacks. Unsupervised anomaly detectors, capable of learning the expected behavior of physical processes, have proven effective in detecting even novel cyberattacks. While offering decent attack detection, these systems, however, still suffer from too many False-Positive Alarms (FPAs) that operators need to investigate, eventually leading to alarm fatigue. To address this issue, in this paper, we challenge the notion of relying on a single IIDS and explore the benefits of combining multiple IIDSs. To this end, we examine the concept of ensemble learning, where a collection of classifiers (IIDSs in our case) are combined to optimize attack detection and reduce FPAs. While training ensembles for supervised classifiers is relatively straightforward, retaining the unsupervised nature of IIDSs proves challenging. In that regard, novel time-aware ensemble methods that incorporate temporal correlations between alerts and transfer-learning to best utilize the scarce training data constitute viable solutions. By combining diverse IIDSs, the detection performance can be improved beyond the individual approaches with close to no FPAs, resulting in a promising path for strengthening ICS cybersecurity. Intrusion Detection; Ensemble Learning; ICS internet-of-production https://jpennekamp.de/wp-content/papercite-data/pdf/wkw+23.pdf Springer Proceedings of the 28th European Symposium on Research in Computer Security (ESORICS '23), September 25-29, 2023, The Hague, The Netherlands The Hague, The Netherlands September 25-29, 2023 accepted 1 KonradWolsing DominikKus EricWagner JanPennekamp KlausWehrle MartinHenze inproceedings 2023_bodenbenner_fairsensor FAIR Sensor Ecosystem: Long-Term (Re-)Usability of FAIR Sensor Data through Contextualization 2023 7 20 The long-term utility and reusability of measurement data from production processes depend on the appropriate contextualization of the measured values. These requirements further mandate that modifications to the context need to be recorded. To be (re-)used at all, the data must be easily findable in the first place, which requires arbitrary filtering and searching routines. Following the FAIR guiding principles, fostering findable, accessible, interoperable and reusable (FAIR) data, in this paper, the FAIR Sensor Ecosystem is proposed, which provides a contextualization middleware based on a unified data metamodel. All information and relations which might change over time are versioned and associated with temporal validity intervals to enable full reconstruction of a system's state at any point in time. A technical validation demonstrates the correctness of the FAIR Sensor Ecosystem, including its contextualization model and filtering techniques. State-of-the-art FAIRness assessment frameworks rate the proposed FAIR Sensor Ecosystem with an average FAIRness of 71%. The obtained rating can be considered remarkable, as deductions mainly result from the lack of fully appropriate FAIRness metrics and the absence of relevant community standards for the domain of the manufacturing industry. FAIR Data; Cyber-Physical Systems; Data Management; Data Contextualization; Internet of Production internet-of-production https://www.comsys.rwth-aachen.de/fileadmin/papers/2023/2023-bodenbenner-fair-ecosystem.pdf IEEE Proceedings of the 21th IEEE International Conference on Industrial Informatics (INDIN '23), July 17-20, 2023, Lemgo, Germany Lemgo, Germany July 17-20, 2023 978-1-6654-9313-0 2378-363X 10.1109/INDIN51400.2023.10218149 1 MatthiasBodenbenner JanPennekamp BenjaminMontavon KlausWehrle Robert H.Schmitt inproceedings 2023-schemmel-kdalloc-tool KDAlloc: The KLEE Deterministic Allocator: Deterministic Memory Allocation during Symbolic Execution and Test Case Replay 2023 7 13 https://dl.acm.org/doi/pdf/10.1145/3597926.3604921 ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2023) 10.1145/3597926.3604921 1 DanielSchemmel JulianBüning FrankBusse MartinNowack CristianCadar inproceedings 2023-dahlmanns-docker Secrets Revealed in Container Images: An Internet-wide Study on Occurrence and Impact 2023 7 10 797-811 Containerization allows bundling applications and their dependencies into a single image. The containerization framework Docker eases the use of this concept and enables sharing images publicly, gaining high momentum. However, it can lead to users creating and sharing images that include private keys or API secrets—either by mistake or out of negligence. This leakage impairs the creator's security and that of everyone using the image. Yet, the extent of this practice and how to counteract it remains unclear. In this paper, we analyze 337,171 images from Docker Hub and 8,076 other private registries unveiling that 8.5% of images indeed include secrets. Specifically, we find 52,107 private keys and 3,158 leaked API secrets, both opening a large attack surface, i.e., putting authentication and confidentiality of privacy-sensitive data at stake and even allow active attacks. We further document that those leaked keys are used in the wild: While we discovered 1,060 certificates relying on compromised keys being issued by public certificate authorities, based on further active Internet measurements, we find 275,269 TLS and SSH hosts using leaked private keys for authentication. To counteract this issue, we discuss how our methodology can be used to prevent secret leakage and reuse. network security; security configuration; secret leakage; container ven2us, internet-of-production, https://www.comsys.rwth-aachen.de/fileadmin/papers/2023/2023-dahlmanns-asiaccs.pdf ACM Proceedings of the 2023 ACM Asia Conference on Computer and Communications Security Melbourne, VIC, Australia ASIA CCS '23 July 10-14, 2023 979-8-4007-0098-9/23/07 10.1145/3579856.3590329 1 MarkusDahlmanns ConstantinSander RobinDecker KlausWehrle inproceedings 2023_pennekamp_benchmarking_comparison Designing Secure and Privacy-Preserving Information Systems for Industry Benchmarking 2023 6 15 489-505 Benchmarking is an essential tool for industrial organizations to identify potentials that allows them to improve their competitive position through operational and strategic means. However, the handling of sensitive information, in terms of (i) internal company data and (ii) the underlying algorithm to compute the benchmark, demands strict (technical) confidentiality guarantees—an aspect that existing approaches fail to address adequately. Still, advances in private computing provide us with building blocks to reliably secure even complex computations and their inputs, as present in industry benchmarks. In this paper, we thus compare two promising and fundamentally different concepts (hardware- and software-based) to realize privacy-preserving benchmarks. Thereby, we provide detailed insights into the concept-specific benefits. Our evaluation of two real-world use cases from different industries underlines that realizing and deploying secure information systems for industry benchmarking is possible with today's building blocks from private computing. Lecture Notes in Computer Science (LNCS), Volume 13901 real-world computing; trusted execution environments; homomorphic encryption; key performance indicators; benchmarking internet-of-production https://jpennekamp.de/wp-content/papercite-data/pdf/plv+23.pdf Springer Proceedings of the 35th International Conference on Advanced Information Systems Engineering (CAiSE '23), June 12-16, 2023, Zaragoza, Spain Zaragoza, Spain 35th International Conference on Advanced Information Systems Engineering (CAiSE '23) June 12-16, 2023 978-3-031-34559-3 0302-9743 10.1007/978-3-031-34560-9_29 1 JanPennekamp JohannesLohmöller EduardVlad JoschaLoos NiklasRodemann PatrickSapel Ina BereniceFink SethSchmitz ChristianHopmann MatthiasJarke GüntherSchuh KlausWehrle MartinHenze inproceedings 2023-grote-mvca-fairness Instant Messaging Meets Video Conferencing: Studying the Performance of IM Video Calls 2023 6 https://www.comsys.rwth-aachen.de/fileadmin/papers/2023/2023-grote-mvca-fairness.pdf IFIP/IEEE Proceedings of the Network Traffic Measurement and Analysis Conference (TMA '23) 978-3-903176-58-4 10.23919/TMA58422.2023.10199019 1 LaurenzGrote IkeKunze ConstantinSander KlausWehrle article 2023-circres-wu-comp-ecosystem Use of Computation Ecosystems to Analyze the Kidney-Heart Crosstalk Circulation research 2023 4 14 132 8 1084-1100 Online en 10.1161/CIRCRESAHA.123.321765 1 ZhuojunWu JohannesLohmöller ChristianeKuhl KlausWehrle JoachimJankowski incollection 2023_pennekamp_crd-a.i Evolving the Digital Industrial Infrastructure for Production: Steps Taken and the Road Ahead 2023 2 8 The Internet of Production (IoP) leverages concepts such as digital shadows, data lakes, and a World Wide Lab (WWL) to advance today’s production. Consequently, it requires a technical infrastructure that can support the agile deployment of these concepts and corresponding high-level applications, which, e.g., demand the processing of massive data in motion and at rest. As such, key research aspects are the support for low-latency control loops, concepts on scalable data stream processing, deployable information security, and semantically rich and efficient long-term storage. In particular, such an infrastructure cannot continue to be limited to machines and sensors, but additionally needs to encompass networked environments: production cells, edge computing, and location-independent cloud infrastructures. Finally, in light of the envisioned WWL, i.e., the interconnection of production sites, the technical infrastructure must be advanced to support secure and privacy-preserving industrial collaboration. To evolve today’s production sites and lay the infrastructural foundation for the IoP, we identify five broad streams of research: (1) adapting data and stream processing to heterogeneous data from distributed sources, (2) ensuring data interoperability between systems and production sites, (3) exchanging and sharing data with different stakeholders, (4) network security approaches addressing the risks of increasing interconnectivity, and (5) security architectures to enable secure and privacy-preserving industrial collaboration. With our research, we evolve the underlying infrastructure from isolated, sparsely networked production sites toward an architecture that supports high-level applications and sophisticated digital shadows while facilitating the transition toward a WWL. Cyber-physical production systems; Data streams; Industrial data processing; Industrial network security; Industrial data security; Secure industrial collaboration internet-of-production https://www.comsys.rwth-aachen.de/fileadmin/papers/2023/2023-pennekamp-iop-a.i.pdf Springer Internet of Production: Fundamentals, Applications and Proceedings 978-3-030-98062-7 10.1007/978-3-030-98062-7_2-1 1 JanPennekamp AnastasiiaBelova ThomasBergs MatthiasBodenbenner AndreasBührig-Polaczek MarkusDahlmanns IkeKunze MoritzKröger SandraGeisler MartinHenze DanielLütticke BenjaminMontavon PhilippNiemietz LuciaOrtjohann MaximilianRudack Robert H.Schmitt UweVroomen KlausWehrle MichaelZeng incollection 2023_rueppel_crd-b2.ii Model-Based Controlling Approaches for Manufacturing Processes 2023 2 8 The main objectives in production technology are quality assurance, cost reduction, and guaranteed process safety and stability. Digital shadows enable a more comprehensive understanding and monitoring of processes on shop floor level. Thus, process information becomes available between decision levels, and the aforementioned criteria regarding quality, cost, or safety can be included in control decisions for production processes. The contextual data for digital shadows typically arises from heterogeneous sources. At shop floor level, the proximity to the process requires usage of available data as well as domain knowledge. Data sources need to be selected, synchronized, and processed. Especially high-frequency data requires algorithms for intelligent distribution and efficient filtering of the main information using real-time devices and in-network computing. Real-time data is enriched by simulations, metadata from product planning, and information across the whole process chain. Well-established analytical and empirical models serve as the base for new hybrid, gray box approaches. These models are then applied to optimize production process control by maximizing the productivity under given quality and safety constraints. To store and reuse the developed models, ontologies are developed and a data lake infrastructure is utilized and constantly enlarged laying the basis for a World Wide Lab (WWL). Finally, closing the control loop requires efficient quality assessment, immediately after the process and directly on the machine. This chapter addresses works in a connected job shop to acquire data, identify and optimize models, and automate systems and their deployment in the Internet of Production (IoP). Process control; Model-based control; Data aggregation; Model identification; Model optimization internet-of-production https://www.comsys.rwth-aachen.de/fileadmin/papers/2023/2023-rueppel-iop-b2.i.pdf Springer Internet of Production: Fundamentals, Applications and Proceedings 978-3-030-98062-7 10.1007/978-3-030-98062-7_7-1 1 Adrian KarlRüppel MuzafferAy BenediktBiernat IkeKunze MarkusLandwehr SamuelMann JanPennekamp PascalRabe Mark P.Sanders DominikScheurenberg SvenSchiller TiandongXi DirkAbel ThomasBergs ChristianBrecher UweReisgen Robert H.Schmitt KlausWehrle incollection 2023_klugewilkes_crd-b2.iv Modular Control and Services to Operate Line-less Mobile Assembly Systems 2023 2 8 The increasing product variability and lack of skilled workers demand for autonomous, flexible production. Since assembly is considered a main cost driver and accounts for a major part of production time, research focuses on new technologies in assembly. The paradigm of Line-less Mobile Assembly Systems (LMAS) provides a solution for the future of assembly by mobilizing all resources. Thus, dynamic product routes through spatiotemporally configured assembly stations on a shop floor free of fixed obstacles are enabled. In this chapter, we present research focal points on different levels of LMAS, starting with the macroscopic level of formation planning, followed by the mesoscopic level of mobile robot control and multipurpose input devices and the microscopic level of services, such as interpreting autonomous decisions and in-network computing. We provide cross-level data and knowledge transfer through a novel ontology-based knowledge management. Overall, our work contributes to future safe and predictable human-robot collaboration in dynamic LMAS stations based on accurate online formation and motion planning of mobile robots, novel human-machine interfaces and networking technologies, as well as trustworthy AI-based decisions. Lineless mobile assembly systems (LMAS); Formation planning; Online motion planning; In-network computing; Interpretable AI; Human-machine collaboration; Ontology-based knowledge management internet-of-production https://www.comsys.rwth-aachen.de/fileadmin/papers/2023/2023-klugewilkes-iop-b2.iv.pdf Springer Internet of Production: Fundamentals, Applications and Proceedings 978-3-030-98062-7 10.1007/978-3-030-98062-7_13-1 1 AlineKluge-Wilkes RalphBaier DanielGossen IkeKunze AleksandraMüller AmirShahidi DominikWolfschläger ChristianBrecher BurkhardCorves MathiasHüsing VerenaNitsch Robert H.Schmitt KlausWehrle article 2023_pennekamp_purchase_inquiries Offering Two-Way Privacy for Evolved Purchase Inquiries ACM Transactions on Internet Technology 2023 Dynamic and flexible business relationships are expected to become more important in the future to accommodate specialized change requests or small-batch production. Today, buyers and sellers must disclose sensitive information on products upfront before the actual manufacturing. However, without a trust relation, this situation is precarious for the involved companies as they fear for their competitiveness. Related work overlooks this issue so far: Existing approaches only protect the information of a single party only, hindering dynamic and on-demand business relationships. To account for the corresponding research gap of inadequately privacy-protected information and to deal with companies without an established trust relation, we pursue the direction of innovative privacy-preserving purchase inquiries that seamlessly integrate into today's established supplier management and procurement processes. Utilizing well-established building blocks from private computing, such as private set intersection and homomorphic encryption, we propose two designs with slightly different privacy and performance implications to securely realize purchase inquiries over the Internet. In particular, we allow buyers to consider more potential sellers without sharing sensitive information and relieve sellers of the burden of repeatedly preparing elaborate yet discarded offers. We demonstrate our approaches' scalability using two real-world use cases from the domain of production technology. Overall, we present deployable designs that offer two-way privacy for purchase inquiries and, in turn, fill a gap that currently hinders establishing dynamic and flexible business relationships. In the future, we expect significantly increasing research activity in this overlooked area to address the needs of an evolving production landscape. bootstrapping procurement; secure industrial collaboration; private set intersection; homomorphic encryption; Internet of Production internet-of-production https://www.comsys.rwth-aachen.de/fileadmin/papers/2023/2023-pennekamp-purchase-inquiries.pdf ACM accepted 1533-5399 10.1145/3599968 1 JanPennekamp MarkusDahlmanns FrederikFuhrmann TimoHeutmann AlexanderKreppein DennisGrunert ChristophLange Robert H.Schmitt KlausWehrle article 2023_hauser_technical-documentation Tool: Automatically Extracting Hardware Descriptions from PDF Technical Documentation Journal of Systems Research 2023 The ever-increasing variety of microcontrollers aggravates the challenge of porting embedded software to new devices through much manual work, whereas code generators can be used only in special cases. Moreover, only little technical documentation for these devices is available in machine-readable formats that could facilitate automating porting efforts. Instead, the bulk of documentation comes as print-oriented PDFs. We hence identify a strong need for a processor to access the PDFs and extract their data with a high quality to improve the code generation for embedded software. In this paper, we design and implement a modular processor for extracting detailed datasets from PDF files containing technical documentation using deterministic table processing for thousands of microcontrollers. Namely, we systematically extract device identifiers, interrupt tables, package and pinouts, pin functions, and register maps. In our evaluation, we compare the documentation from STMicro against existing machine-readable sources. Our results show that our processor matches 96.5 % of almost 6 million reference data points, and we further discuss identified issues in both sources. Hence, our tool yields very accurate data with only limited manual effort and can enable and enhance a significant amount of existing and new code generation use cases in the embedded software domain that are currently limited by a lack of machine-readable data sources. eScholarship Publishing accepted 2770-5501 1 NiklasHauser JanPennekamp inproceedings 2023-lorz-cired Interconnected Grid Protection Systems - Reference Grid For Testing An Adaptive Protection Scheme 2023 ven2us Proceedings of the International Conference & Exhibition on Electricity Distribution (CIRED) 2023 Rome International Conference & Exhibition on Electricity Distribution (CIRED) 12-15 June 2023 1 TobiasLorz JohannJaeger AntigonaSelimaj ImmanuelHacker AndreasUlbig Jan-PeterHeckel ChristianBecker MarkusDahlmanns Ina BereniceFink KlausWehrle GerritErichsen MichaelSchindler RainerLuxenburger GuosongLin