% % This file was created by the TYPO3 extension % bib % --- Timezone: CEST % Creation date: 2024-04-24 % Creation time: 13-59-45 % --- Number of references % 6 % @Article { Jakobs_2023_3, title = {Preserving the Royalty-Free Standards Ecosystem}, journal = {European Intellectual Property Review}, year = {2023}, month = {7}, volume = {45}, number = {7}, pages = {371-375}, abstract = {It has long been recognized in Europe and elsewhere that standards-development organizations (SDOs) may adopt policies that require their participants to license patents essential to the SDO’s standards (standards-essential patents or SEPs) to manufacturers of standardized products (“implementers”) on a royalty-free (RF) basis. This requirement contrasts with SDO policies that permit SEP holders to charge implementers monetary patent royalties, sometimes on terms that are specified as “fair, reasonable and nondiscriminatory” (FRAND). As demonstrated by two decades of intensive litigation around the world, FRAND royalties have given rise to intractable disputes regarding the manner in which such royalties should be calculated and adjudicated. In contrast, standards distributed on an RF basis are comparatively free from litigation and the attendant transaction costs. Accordingly, numerous SDOs around the world have adopted RF licensing policies and many widely adopted standards, including Bluetooth, USB, IPv6, HTTP, HTML and XML, are distributed on an RF basis. This note briefly discusses the commercial considerations surrounding RF standards, the relationship between RF standards and open source software (OSS) and the SDO policy mechanisms – including “universal reciprocity” -- that enable RF licensing to succeed in the marketplace.}, ISSN = {0142-0461}, DOI = {10.2139/ssrn.4235647}, reviewed = {1}, author = {Contreras, Jorge and Bekkers, Rudi and Biddle, Brad and Bonadio, Enrico and Carrier, Michael A. and Chao, Bernard and Duan, Charles and Gilbert, Richard and Henkel, Joachim and Hovenkamp, Erik and Husovec, Martin and Jakobs, Kai and Kim, Dong-hyu and Lemley, Mark A. and Love, Brian J. and McDonagh, Luke and Scott Morton, Fiona M. and Schultz, Jason and Simcoe, Timothy and Urban, Jennifer M. and Xiang, Joy Y} } @Inproceedings { 2023-lorz-cired, title = {Interconnected grid protection systems - reference grid for testing an adaptive protection scheme}, year = {2023}, pages = {3286-3290}, tags = {ven2us}, booktitle = {27th International Conference on Electricity Distribution (CIRED 2023), Rome, Italy, June 12-15, 2023}, event_place = {Rome, Italy}, event_name = {International Conference \& Exhibition on Electricity Distribution (CIRED)}, event_date = {June 12-15, 2023}, DOI = {10.1049/icp.2023.0864}, reviewed = {1}, author = {Lorz, Tobias and Jaeger, Johann and Selimaj, Antigona and Hacker, Immanuel and Ulbig, Andreas and Heckel, Jan-Peter and Becker, Christian and Dahlmanns, Markus and Fink, Ina Berenice and Wehrle, Klaus and Erichsen, Gerrit and Schindler, Michael and Luxenburger, Rainer and Lin, Guosong} } @Inproceedings { lorenz-ven2us-2022, title = {Interconnected network protection systems - the basis for the reliable and safe operation of distribution grids with a high penetration of renewable energies and electric vehicle}, year = {2022}, abstract = {Power grids are increasingly faced with the introduction of decentralized, highly volatile power supplies from renewable energies and high loads occurring from e-mobility. However, today’s static grid protection cannot manage all upcoming conditions while providing a high level of dependability and security. It forms a bottleneck of a future decarbonizing grid development. In our research project, we develop and verify an adaptive grid protection algorithm. It calculates situation dependent protection parameters for the event of power flow shifts and topology changes caused by volatile power supplies due to the increase of renewable generation and the rapid expansion of e-mobility. As a result the distribution grid can be operated with the optimally adapted protection parameters and functions for changing operating states. To safely adjust the values on protection hardware in the field, i.e., safe from hardware failures and cyberattacks, we research resilient and secure communication concepts for the adaptive and interconnected grid protection system. Finally, we validate our concept and system by demonstrations in the laboratory and field tests.}, tags = {ven2us}, booktitle = {Proceedings of the CIRED workshop on E-mobility and power distribution systems 2022, June 2-3, 2022, Porto, Portugal}, event_place = {Porto}, event_name = {CIRED workshop on E-mobility and power distribution systems 2022}, event_date = {June 2-3, 2022}, DOI = {10.1049/icp.2022.0768}, reviewed = {1}, author = {Lorenz, Matthias and Pletzer, Tobias Markus and Schuhmacher, Malte and Sowa, Torsten and Dahms, Michael and Stock, Simon and Babazadeh, Davood and Becker, Christian and Jaeger, Johann and Lorz, Tobias and Dahlmanns, Markus and Fink, Ina Berenice and Wehrle, Klaus and Ulbig, Andreas and Linnartz, Philipp and Selimaj, Antigona and Offergeld, Thomas} } @Article { 2020_mann_welding_layers, title = {Connected, digitalized welding production — Secure, ubiquitous utilization of data across process layers}, journal = {Advanced Structured Materials}, year = {2020}, month = {4}, day = {1}, volume = {125}, pages = {101-118}, abstract = {A connected, digitalized welding production unlocks vast and dynamic potentials: from improving state of the art welding to new business models in production. For this reason, offering frameworks, which are capable of addressing multiple layers of applications on the one hand and providing means of data security and privacy for ubiquitous dataflows on the other hand, is an important step to enable the envisioned advances. In this context, welding production has been introduced from the perspective of interlaced process layers connecting information sources across various entities. Each layer has its own distinct challenges from both a process view and a data perspective. Besides, investigating each layer promises to reveal insight into (currently unknown) process interconnections. This approach has been substantiated by methods for data security and privacy to draw a line between secure handling of data and the need of trustworthy dealing with sensitive data among different parties and therefore partners. In conclusion, the welding production has to develop itself from an accumulation of local and isolated data sources towards a secure industrial collaboration in an Internet of Production.}, note = {Proceedings of the 1st International Conference on Advanced Joining Processes (AJP '19)}, keywords = {Welding Production; Industrie 4.0; Internet of Production; Data Security; Data Privacy}, tags = {Internet-of-Production}, url = {https://www.comsys.rwth-aachen.de/fileadmin/papers/2020/2020-mann-welding-layers.pdf}, publisher = {Springer}, event_place = {Ponta Delgada, Azores, Portugal}, event_date = {October 24-25, 2019}, ISBN = {978-981-15-2956-6}, ISSN = {1869-8433}, DOI = {10.1007/978-981-15-2957-3_8}, reviewed = {1}, author = {Mann, Samuel and Pennekamp, Jan and Brockhoff, Tobias and Farhang, Anahita and Pourbafrani, Mahsa and Oster, Lukas and Uysal, Merih Seran and Sharma, Rahul and Reisgen, Uwe and Wehrle, Klaus and van der Aalst, Wil} } @Article { 2019-unterberg-matclass, title = {In-situ material classification in sheet-metal blanking using deep convolutional neural networks}, journal = {Production Engineering}, year = {2019}, month = {11}, day = {13}, volume = {13}, number = {6}, pages = {743-749}, keywords = {internet-of-production}, DOI = {10.1007/s11740-019-00928-w}, reviewed = {1}, author = {Unterberg, Martin and Niemietz, Phillip and Trauth, Daniel and Wehrle, Klaus and Bergs, Thomas} } @Inproceedings { 2018-rueth-reflexdemo, title = {Demo: Towards In-Network Processing for Low-Latency Industrial Control}, year = {2018}, month = {4}, day = {15}, tags = {reflexes}, url = {https://www.comsys.rwth-aachen.de/fileadmin/papers/2018/2018-rueth-reflexdemo.pdf}, publisher = {IEEE Computer Society}, booktitle = {In Proceedings of IEEE INFOCOM 2018 - IEEE Conference on Computer Communications}, event_place = {Honolulu, HI, USA}, event_name = {International Conference on Computer Communications (INFOCOM)}, event_date = {15.04.2018 - 19.04.2018}, language = {en}, DOI = {10.1109/INFCOMW.2018.8406844}, reviewed = {1}, author = {R{\"u}th, Jan and Glebke, Ren{\'e} and Ulmen, Tanja and Wehrle, Klaus} }