This file was created by the TYPO3 extension bib --- Timezone: CEST Creation date: 2024-04-18 Creation time: 16-51-58 --- Number of references 10 inproceedings 2020_pennekamp_benchmarking Revisiting the Privacy Needs of Real-World Applicable Company Benchmarking 2020 12 15 31-44 Benchmarking the performance of companies is essential to identify improvement potentials in various industries. Due to a competitive environment, this process imposes strong privacy needs, as leaked business secrets can have devastating effects on participating companies. Consequently, related work proposes to protect sensitive input data of companies using secure multi-party computation or homomorphic encryption. However, related work so far does not consider that also the benchmarking algorithm, used in today's applied real-world scenarios to compute all relevant statistics, itself contains significant intellectual property, and thus needs to be protected. Addressing this issue, we present PCB — a practical design for Privacy-preserving Company Benchmarking that utilizes homomorphic encryption and a privacy proxy — which is specifically tailored for realistic real-world applications in which we protect companies' sensitive input data and the valuable algorithms used to compute underlying key performance indicators. We evaluate PCB's performance using synthetic measurements and showcase its applicability alongside an actual company benchmarking performed in the domain of injection molding, covering 48 distinct key performance indicators calculated out of hundreds of different input values. By protecting the privacy of all participants, we enable them to fully profit from the benefits of company benchmarking. practical encrypted computing; homomorphic encryption; algorithm confidentiality; benchmarking; key performance indicators; industrial application; Internet of Production internet-of-production https://www.comsys.rwth-aachen.de/fileadmin/papers/2020/2020-pennekamp-company-benchmarking.pdf https://eprint.iacr.org/2020/1512 HomomorphicEncryption.org Proceedings of the 8th Workshop on Encrypted Computing & Applied Homomorphic Cryptography (WAHC '20), December 15, 2020, Virtual Event Virtual Event December 15, 2020 978-3-00-067798-4 10.25835/0072999 1 JanPennekamp PatrickSapel Ina BereniceFink SimonWagner SebastianReuter ChristianHopmann KlausWehrle MartinHenze inproceedings 2020_delacadena_trafficsliver TrafficSliver: Fighting Website Fingerprinting Attacks with Traffic Splitting 2020 11 12 1971-1985 Website fingerprinting (WFP) aims to infer information about the content of encrypted and anonymized connections by observing patterns of data flows based on the size and direction of packets. By collecting traffic traces at a malicious Tor entry node — one of the weakest adversaries in the attacker model of Tor — a passive eavesdropper can leverage the captured meta-data to reveal the websites visited by a Tor user. As recently shown, WFP is significantly more effective and realistic than assumed. Concurrently, former WFP defenses are either infeasible for deployment in real-world settings or defend against specific WFP attacks only. To limit the exposure of Tor users to WFP, we propose novel lightweight WFP defenses, TrafficSliver, which successfully counter today’s WFP classifiers with reasonable bandwidth and latency overheads and, thus, make them attractive candidates for adoption in Tor. Through user-controlled splitting of traffic over multiple Tor entry nodes, TrafficSliver limits the data a single entry node can observe and distorts repeatable traffic patterns exploited by WFP attacks. We first propose a network-layer defense, in which we apply the concept of multipathing entirely within the Tor network. We show that our network-layer defense reduces the accuracy from more than 98% to less than 16% for all state-of-the-art WFP attacks without adding any artificial delays or dummy traffic. We further suggest an elegant client-side application-layer defense, which is independent of the underlying anonymization network. By sending single HTTP requests for different web objects over distinct Tor entry nodes, our application-layer defense reduces the detection rate of WFP classifiers by almost 50 percentage points. Although it offers lower protection than our network-layer defense, it provides a security boost at the cost of a very low implementation overhead and is fully compatible with today’s Tor network. Traffic Analysis; Website Fingerprinting; Privacy; Anonymous Communication; Onion Routing; Web Privacy https://www.comsys.rwth-aachen.de/fileadmin/papers/2020/2020-delacadena-trafficsliver.pdf https://github.com/TrafficSliver ACM Proceedings of the 27th ACM SIGSAC Conference on Computer and Communications Security (CCS '20), November 9-13, 2020, Orlando, FL, USA Virtual Event, USA November 9-13, 2020 978-1-4503-7089-9/20/11 10.1145/3372297.3423351 1 WladimirDe la Cadena AsyaMitseva JensHiller JanPennekamp SebastianReuter JulianFilter KlausWehrle ThomasEngel AndriyPanchenko phdthesis 2020-rueth-phd-thesis Measuring the Evolution of the Internet in the Age of Giants 2020 11 https://www.shaker.de/de/content/catalogue/index.asp?ISBN=978-3-8440-7660-8 Shaker Verlag
Shaker Verlag, Düren, Germany
Reports on Communications and Distributed Systems 20 RWTH Aachen University Ph.D. Thesis 978-3-8440-7660-8 JanRüth
article 2020-holz-ccr-tls13 Tracking the deployment of TLS 1.3 on the Web: A story of experimentation and centralization ACM SIGCOMM Computer Communications Review (CCR) 2020 7 50 3 3-15 Selected for the 'Best of CCR' session at SIGCOMM 2021. https://ccronline.sigcomm.org/wp-content/uploads/2020/08/sigcomm-ccr-paper430-with-open-review.pdf Association for Computing Machinery
New York, NY, USA
10.1145/3411740.3411742 1 RalphHolz JensHiller JohannaAmann AbbasRazaghpanah ThomasJost NarseoVallina-Rodriguez OliverHohlfeld
inproceedings 2020-schemmel-porse Symbolic Partial-Order Execution for Testing Multi-Threaded Programs 2020 7 symbiosys https://arxiv.org/pdf/2005.06688.pdf https://arxiv.org/abs/2005.06688 Computer Aided Verification (CAV 2020) 32nd International Conference on Computer Aided Verification 10.1007/978-3-030-53288-8_18 1 DanielSchemmel JulianBüning CésarRodríguez DavidLaprell KlausWehrle inproceedings 2020-mann-ur-weldseamstudy Study on weld seam geometry control for connected gas metal arc welding systems 2020 6 https://www.comsys.rwth-aachen.de/fileadmin/papers/2020/2020-mann-weld-seam-geometry-control.pdf Proceedings of the 2020 Internal Conference on Ubiquitous Robots Internal Conference on Ubiquitous Robots June 22-26, 2020 10.1109/UR49135.2020.9144839 1 SamuelMann RenéGlebke IkeKunze DominikScheurenberg RahulSharma UweReisgen KlausWehrle DirkAbel inproceedings 2020_roepert_opcua Assessing the Security of OPC UA Deployments 2020 4 2 To address the increasing security demands of industrial deployments, OPC UA is one of the first industrial protocols explicitly designed with security in mind. However, deploying it securely requires a thorough configuration of a wide range of options. Thus, assessing the security of OPC UA deployments and their configuration is necessary to ensure secure operation, most importantly confidentiality and integrity of industrial processes. In this work, we present extensions to the popular Metasploit Framework to ease network-based security assessments of OPC UA deployments. To this end, we discuss methods to discover OPC UA servers, test their authentication, obtain their configuration, and check for vulnerabilities. Ultimately, our work enables operators to verify the (security) configuration of their systems and identify potential attack vectors. internet-of-production, rfc https://www.comsys.rwth-aachen.de/fileadmin/papers/2020/2020-roepert-opcua-security.pdf en University of Tübingen Proceedings of the 1st ITG Workshop on IT Security (ITSec '20), April 2-3, 2020, Tübingen, Germany Tübingen, Germany April 2-3, 2020 10.15496/publikation-41813 1 LinusRoepert MarkusDahlmanns Ina BereniceFink JanPennekamp MartinHenze article 2020_mann_welding_layers Connected, digitalized welding production — Secure, ubiquitous utilization of data across process layers Advanced Structured Materials 2020 4 1 125 101-118 A connected, digitalized welding production unlocks vast and dynamic potentials: from improving state of the art welding to new business models in production. For this reason, offering frameworks, which are capable of addressing multiple layers of applications on the one hand and providing means of data security and privacy for ubiquitous dataflows on the other hand, is an important step to enable the envisioned advances. In this context, welding production has been introduced from the perspective of interlaced process layers connecting information sources across various entities. Each layer has its own distinct challenges from both a process view and a data perspective. Besides, investigating each layer promises to reveal insight into (currently unknown) process interconnections. This approach has been substantiated by methods for data security and privacy to draw a line between secure handling of data and the need of trustworthy dealing with sensitive data among different parties and therefore partners. In conclusion, the welding production has to develop itself from an accumulation of local and isolated data sources towards a secure industrial collaboration in an Internet of Production. Proceedings of the 1st International Conference on Advanced Joining Processes (AJP '19) Welding Production; Industrie 4.0; Internet of Production; Data Security; Data Privacy Internet-of-Production https://www.comsys.rwth-aachen.de/fileadmin/papers/2020/2020-mann-welding-layers.pdf Springer Ponta Delgada, Azores, Portugal October 24-25, 2019 978-981-15-2956-6 1869-8433 10.1007/978-981-15-2957-3_8 1 SamuelMann JanPennekamp TobiasBrockhoff AnahitaFarhang MahsaPourbafrani LukasOster Merih SeranUysal RahulSharma UweReisgen KlausWehrle Wilvan der Aalst inproceedings 2020-kosek-tcp-conformance MUST, SHOULD, DON'T CARE: TCP Conformance in the Wild 2020 3 30 maki https://www.comsys.rwth-aachen.de/fileadmin/papers/2020/2020-kosek-tcp-conformance-v2.pdf https://arxiv.org/abs/2002.05400 Springer Proceedings of the Passive and Active Measurement Conference (PAM '20) Eugene, Oregon, USA Passive and Active Measurement Conference (PAM 2020) 30.03.2020 - 31.03.2020 en https://doi.org/10.1007/978-3-030-44081-7_8 1 MikeKosek LeoBlöcher JanRüth TorstenZimmermann OliverHohlfeld article 2020-wehrle-digitalshadows Mit "Digitalen Schatten" Daten verdichten und darstellen : Der Exzellenzcluster "Internet der Produktion" forscht über die Produktionstechnik hinaus Der Profilbereich "Information & Communication Technology" 2020 0179-079X 10.18154/RWTH-2021-02496 MatthiasJarke Wilvan der Aalst ChristianBrecher MatthiasBrockmann IstvánKoren GerhardLakemeyer BernhardRumpe GüntherSchuh KlausWehrle MartinaZiefle