This file was created by the TYPO3 extension
bib
--- Timezone: CEST
Creation date: 2024-09-07
Creation time: 23-19-34
--- Number of references
1
inproceedings
2010-kunz-mascots-horizon
Expanding the Event Horizon in Parallelized Network Simulations
2010
8
18
172-181
The simulation models of wireless networks rapidly increase in complexity to accurately model wireless channel characteristics and the properties of advanced transmission technologies. Such detailed models typically lead to a high computational load per simulation event that accumulates to extensive simulation runtimes. Reducing runtimes through parallelization is challenging since it depends on detecting causally independent events that can execute concurrently. Most existing approaches base this detection on lookaheads derived from channel propagation latency or protocol characteristics. In wireless networks, these lookaheads are typically short, causing the potential for parallelization and the achievable speedup to remain small. This paper presents Horizon, which unlocks a substantial portion of a simulation model's workload for parallelization by going beyond the traditional lookahead. We show how to augment discrete events with durations to identify a much larger horizon of independent simulation events and efficiently schedule them on multi-core systems. Our evaluation shows that this approach can significantly cut down the runtime of simulations, in particular for complex and accurate models of wireless networks.
horizon
fileadmin/papers/2010/2010-kunz-mascots-horizon.pdf
Online
IEEE Computer Society
Los Alamitos, CA, USA
Proceedings of the 18th Annual Meeting of the IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS'10), Miami, FL, USA
Miami, FL, USA
18th Annual Meeting of the IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS'10)
August 17-19, 2010
en
978-0-7695-4197-6
1526-7539
10.1109/MASCOTS.2010.26
1
GeorgKunz
OlafLandsiedel
JamesGross
StefanGötz
FarshadNaghibi
KlausWehrle