This file was created by the TYPO3 extension
bib
--- Timezone: UTC
Creation date: 2024-10-06
Creation time: 15-35-50
--- Number of references
9
inproceedings
2019-krude-online-reprogramming
Online Reprogrammable Multi Tenant Switches
2019
12
9
maki
https://www.comsys.rwth-aachen.de/fileadmin/papers/2019/2019-krude-online-reprogramming.pdf
ACM
1st ACM CoNEXT Workshop on Emerging in-Network Computing Paradigms (ENCP '19)
978-1-4503-7000-4/19/12
10.1145/3359993.3366643
1
JohannesKrude
JacoHofmann
MatthiasEichholz
KlausWehrle
AndreasKoch
MiraMezini
inproceedings
2019_delacadena_countermeasure
POSTER: Traffic Splitting to Counter Website Fingerprinting
2019
11
12
2533-2535
Website fingerprinting (WFP) is a special type of traffic analysis, which aims to infer the websites visited by a user. Recent studies have shown that WFP targeting Tor users is notably more effective than previously expected. Concurrently, state-of-the-art defenses have been proven to be less effective. In response, we present a novel WFP defense that splits traffic over multiple entry nodes to limit the data a single malicious entry can use. Here, we explore several traffic-splitting strategies to distribute user traffic. We establish that our weighted random strategy dramatically reduces the accuracy from nearly 95% to less than 35% for four state-of-the-art WFP attacks without adding any artificial delays or dummy traffic.
https://www.comsys.rwth-aachen.de/fileadmin/papers/2019/2019-delacadena-splitting-defense.pdf
ACM
Proceedings of the 26th ACM SIGSAC Conference on Computer and Communications Security (CCS '19), November 11-15, 2019, London, United Kingdom
London, United Kingdom
November 11-15, 2019
978-1-4503-6747-9/19/11
10.1145/3319535.3363249
1
WladimirDe la Cadena
AsyaMitseva
JanPennekamp
JensHiller
FabianLanze
ThomasEngel
KlausWehrle
AndriyPanchenko
inproceedings
2019-dahlmanns-icnp-knowledgeSystem
Privacy-Preserving Remote Knowledge System
2019
10
7
More and more traditional services, such as malware detectors or collaboration services in industrial scenarios, move to the cloud. However, this behavior poses a risk for the privacy of clients since these services are able to generate profiles containing very sensitive information, e.g., vulnerability information or collaboration partners. Hence, a rising need for protocols that enable clients to obtain knowledge without revealing their requests exists. To address this issue, we propose a protocol that enables clients (i) to query large cloud-based knowledge systems in a privacy-preserving manner using Private Set Intersection and (ii) to subsequently obtain individual knowledge items without leaking the client’s requests via few Oblivious Transfers. With our preliminary design, we allow clients to save a significant amount of time in comparison to performing Oblivious Transfers only.
Poster Session
private query protocol; knowledge system; remote knowledge; private set intersection; oblivious transfer
kimusin; internet-of-production
https://www.comsys.rwth-aachen.de/fileadmin/papers/2019/2019-dahlmanns-knowledge-system.pdf
IEEE
Proceedings of the 27th IEEE International Conference on Network Protocols (ICNP '19), October 7-10, 2019, Chicago, IL, USA
Chicago, IL, USA
27th IEEE International Conference on Network Protocols (ICNP 2019)
7-10. Oct. 2019
978-1-7281-2700-2
2643-3303
10.1109/ICNP.2019.8888121
1
MarkusDahlmanns
ChrisDax
RomanMatzutt
JanPennekamp
JensHiller
KlausWehrle
inproceedings
2019_pennekamp_multipath
Multipathing Traffic to Reduce Entry Node Exposure in Onion Routing
2019
10
7
Users of an onion routing network, such as Tor, depend on its anonymity properties. However, especially malicious entry nodes, which know the client’s identity, can also observe the whole communication on their link to the client and, thus, conduct several de-anonymization attacks. To limit this exposure and to impede corresponding attacks, we propose to multipath traffic between the client and the middle node to reduce the information an attacker can obtain at a single vantage point. To facilitate the deployment, only clients and selected middle nodes need to implement our approach, which works transparently for the remaining legacy nodes. Furthermore, we let clients control the splitting strategy to prevent any external manipulation.
Poster Session
https://www.comsys.rwth-aachen.de/fileadmin/papers/2019/2019-pennekamp-multipathing.pdf
IEEE
Proceedings of the 27th IEEE International Conference on Network Protocols (ICNP '19), October 7-10, 2019, Chicago, IL, USA
Chicago, IL, USA
27th IEEE International Conference on Network Protocols (ICNP 2019)
7-10. Oct. 2019
978-1-7281-2700-2
2643-3303
10.1109/ICNP.2019.8888029
1
JanPennekamp
JensHiller
SebastianReuter
WladimirDe la Cadena
AsyaMitseva
MartinHenze
ThomasEngel
KlausWehrle
AndriyPanchenko
inproceedings
2019-krude-chain-opt
Optimizing Data Plane Programs for the Network
2019
8
23
With the move of Software-defined networking from fixed to programmable data planes, network functions are written with P4 or eBPF for targets such as programmable switches, CPU based flow processors and commodity CPUs.
These data plane programs are, however, limited in per-packet time budget (e.g., 67.2 ns at 10GbE) and program size, making program optimization imperative.
Existing approaches focus on optimizing the distribution of flow rules in fixed data planes or they are limited to a single switch.
We see great potential in integrating the network topology into program optimization.
maki
https://www.comsys.rwth-aachen.de/fileadmin/papers/2019/2019-krude-chain-opt.pdf
ACM
NetPL '19: ACM SIGCOMM Workshop on Networking and Programming Languages
Beijing, China
978-1-4503-6877-3/19/08
10.1145/3341561.3349590
1
JohannesKrude
MatthiasEichholz
MaximilianWinck
KlausWehrle
MiraMezini
inproceedings
ReelfsMHH2019
Hashtag Usage in a Geographically-Local Microblogging App
2019
5
13
919-927
Anonymous Messaging; Location Based Messaging; User Behavior and Engagement; Information Diffusion; Hashtag
comtex
https://www.comsys.rwth-aachen.de/fileadmin/papers/2019/2019-reelfs-jodel-hashtags.pdf
ACM
Companion Proceedings of the 2019 World Wide Web Conference (WWW '19 Companion), 9th International Workshop on Location and the Web (LocWeb '19), May 13–17, 2019, San Francisco, CA, USA
San Francisco, California, USA
International Workshop on Location and the Web
May 13–17, 2019
978-1-4503-6675-5/19/05
10.1145/3308560.3316537
1
HelgeReelfs
TimonMohaupt
OliverHohlfeld
NiklasHenckell
inproceedings
2019_pennekamp_infrastructure
Towards an Infrastructure Enabling the Internet of Production
2019
5
8
31-37
New levels of cross-domain collaboration between manufacturing companies throughout the supply chain are anticipated to bring benefits to both suppliers and consumers of products. Enabling a fine-grained sharing and analysis of data among different stakeholders in an automated manner, such a vision of an Internet of Production (IoP) introduces demanding challenges to the communication, storage, and computation infrastructure in production environments. In this work, we present three example cases that would benefit from an IoP (a fine blanking line, a high pressure die casting process, and a connected job shop) and derive requirements that cannot be met by today’s infrastructure. In particular, we identify three orthogonal research objectives: (i) real-time control of tightly integrated production processes to offer seamless low-latency analysis and execution, (ii) storing and processing heterogeneous production data to support scalable data stream processing and storage, and (iii) secure privacy-aware collaboration in production to provide a basis for secure industrial collaboration. Based on a discussion of state-of-the-art approaches for these three objectives, we create a blueprint for an infrastructure acting as an enabler for an IoP.
Internet of Production; Cyber-Physical Systems; Data Processing; Low Latency; Secure Industrial Collaboration
internet-of-production
https://www.comsys.rwth-aachen.de/fileadmin/papers/2019/2019-pennekamp-iop-infrastructure.pdf
IEEE
Proceedings of the 2nd IEEE International Conference on Industrial Cyber-Physical Systems (ICPS '19), May 6-9, 2019, Taipei, TW
Taipei, TW
May 6-9, 2019
978-1-5386-8500-6/19
10.1109/ICPHYS.2019.8780276
1
JanPennekamp
RenéGlebke
MartinHenze
TobiasMeisen
ChristophQuix
RihanHai
LarsGleim
PhilippNiemietz
MaximilianRudack
SimonKnape
AlexanderEpple
DanielTrauth
UweVroomen
ThomasBergs
ChristianBrecher
AndreasBührig-Polaczek
MatthiasJarke
KlausWehrle
inproceedings
2019_wagner_dispute_resolution
Dispute Resolution for Smart Contract-based Two Party Protocols
2019
5
Blockchain systems promise to mediate interactions of mutually distrusting parties without a trusted third party. However, protocols with full smart contract-based security are either limited in functionality or complex, with high costs for secured interactions. This observation leads to the development of protocol-specific schemes to avoid costly dispute resolution in case all participants remain honest. In this paper, we introduce SmartJudge, an extensible generalization of this trend for smart contract-based two-party protocols. SmartJudge relies on a protocol-independent mediator smart contract that moderates two-party interactions and only consults protocol-specific verifier smart contracts in case of a dispute. This way, SmartJudge avoids verification costs in absence of disputes and sustains interaction confidentiality among honest parties. We implement verifier smart contracts for cross-blockchain trades and exchanging digital goods and show that SmartJudge can reduce costs by 46-50% and 22% over current state of the art, respectively.
Ethereum,Bitcoin,smart contracts,two-party protocols,dispute resolution,cross-blockchain trades
mynedata, impact-digital, rfc
https://www.comsys.rwth-aachen.de/fileadmin/papers/2019/2019-wagner-dispute.pdf
IEEE
IEEE International Conference on Blockchain and Cryptocurrency 2019 (ICBC 2019)
Seoul, South Korea
IEEE International Conference on Blockchain and Cryptocurrency 2019
English
10.1109/BLOC.2019.8751312
1
EricWagner
AchimVölker
FrederikFuhrmann
RomanMatzutt
KlausWehrle
inproceedings
2019-glebke-hicss-integrated
A Case for Integrated Data Processing in Large-Scale Cyber-Physical Systems
2019
1
8
7252-7261
internet-of-production,reflexes
https://www.comsys.rwth-aachen.de/fileadmin/papers/2019/2019-glebke-integrated.pdf
Online
University of Hawai'i at Manoa / AIS
Proceedings of the 52nd Hawaii International Conference on System Sciences (HICSS), Wailea, HI, USA
en
978-0-9981331-2-6
10.24251/HICSS.2019.871
1
RenéGlebke
MartinHenze
KlausWehrle
PhilippNiemietz
DanielTrauth
PatrickMattfeld
ThomasBergs