This file was created by the TYPO3 extension bib --- Timezone: CEST Creation date: 2024-04-25 Creation time: 19-15-26 --- Number of references 10 article 2019-kunze-ccwild-tnsm Congestion Control in the Wild - Investigating Content Provider Fairness IEEE Transactions on Network and Service Management 2019 12 27 17 2 1224 - 1238 https://www.comsys.rwth-aachen.de/fileadmin/papers/2019/2019-kunze-ccwild-tnsm.pdf 1932-4537 10.1109/TNSM.2019.2962607 1 IkeKunze JanRüth OliverHohlfeld inproceedings 2019-krude-online-reprogramming Online Reprogrammable Multi Tenant Switches 2019 12 9 maki https://www.comsys.rwth-aachen.de/fileadmin/papers/2019/2019-krude-online-reprogramming.pdf ACM 1st ACM CoNEXT Workshop on Emerging in-Network Computing Paradigms (ENCP '19) 978-1-4503-7000-4/19/12 10.1145/3359993.3366643 1 JohannesKrude JacoHofmann MatthiasEichholz KlausWehrle AndreasKoch MiraMezini inproceedings 2019-glebke-in-network-cv Towards Executing Computer Vision Functionality on Programmable Network Devices 2019 12 9 reflexes,maki,internet-of-production https://www.comsys.rwth-aachen.de/fileadmin/papers/2019/2019-glebke-in-network-cv.pdf Online ACM 1st ACM CoNEXT Workshop on Emerging in-Network Computing Paradigms (ENCP '19) en 978-1-4503-7000-4/19/12 10.1145/3359993.3366646 1 RenéGlebke JohannesKrude IkeKunze JanRüth FelixSenger KlausWehrle inproceedings 2019-hiller-aeit-regaining Regaining Insight and Control on SMGW-based Secure Communication in Smart Grids 2019 9 Smart Grids require extensive communication to enable safe and stable energy supply in the age of decentralized and dynamic energy production and consumption. To protect the communication in this critical infrastructure, public authorities mandate smart meter gateways (SMGWs) to intercept all inbound and outbound communication of premises such as a factory or smart home, and forward the communication data on secure channels established by the SMGW itself to be in control of the communication security. However, using the SMGW as proxy, local devices can neither review the security of these remote connections established by the SMGW nor enforce higher security guarantees than established by the all in one configuration of the SMGW which does not allow for use case-specific security settings. We present mechanisms that enable local devices to regain this insight and control over the full connection, i.e., up to the final receiver, while retaining the SMGW's ability to ensure a suitable security level. Our evaluation shows modest computation and transmission overheads for this increased security in the critical smart grid infrastructure. ECSEL; European Union (EU); Horizon 2020; CONNECT Innovative smart components, modules and appliances for a truly connected, efficient and secure smart grid; Grant Agreement No 737434 connect https://www.comsys.rwth-aachen.de/fileadmin/papers/2019/2019-hiller-aeit-regaining.pdf IEEE Proceedings of the 2019 AEIT International Annual Conference, September 18-20, 2019, Firenze, Italy Firenze, Italy AEIT International Annual Conference September 18-20, 2019 978-8-8872-3745-0 10.23919/AEIT.2019.8893406 1 JensHiller KarstenKomanns MarkusDahlmanns KlausWehrle inproceedings 2019-krude-chain-opt Optimizing Data Plane Programs for the Network 2019 8 23 With the move of Software-defined networking from fixed to programmable data planes, network functions are written with P4 or eBPF for targets such as programmable switches, CPU based flow processors and commodity CPUs. These data plane programs are, however, limited in per-packet time budget (e.g., 67.2 ns at 10GbE) and program size, making program optimization imperative. Existing approaches focus on optimizing the distribution of flow rules in fixed data planes or they are limited to a single switch. We see great potential in integrating the network topology into program optimization. maki https://www.comsys.rwth-aachen.de/fileadmin/papers/2019/2019-krude-chain-opt.pdf ACM NetPL '19: ACM SIGCOMM Workshop on Networking and Programming Languages Beijing, China 978-1-4503-6877-3/19/08 10.1145/3341561.3349590 1 JohannesKrude MatthiasEichholz MaximilianWinck KlausWehrle MiraMezini inproceedings 2019-hohlfeld-bpfperf Demystifying the Performance of XDP BPF 2019 6 25 maki,reflexes https://www.comsys.rwth-aachen.de/fileadmin/papers/2019/2019-hohlfeld-bpfperf.pdf IEEE IEEE International Conference on Network Softwarization (NetSoft) IEEE International Conference on Network Softwarization 10.1109/NETSOFT.2019.8806651 1 OliverHohlfeld JohannesKrude Jens HelgeReelfs JanRüth KlausWehrle inproceedings 2019-rueth-ccfness An Empirical View on Content Provider Fairness 2019 6 19 maki https://www.comsys.rwth-aachen.de/fileadmin/papers/2019/2019-rueth-ccfness.pdf https://arxiv.org/abs/1905.07152 IFIP/IEEE In Proceedings of the Network Traffic Measurement and Analysis Conference (TMA '19) Paris, France Network Traffic Measurement and Analysis Conference 19.06.2019 - 21.06.2019 10.23919/TMA.2019.8784684 1 JanRüth IkeKunze OliverHohlfeld inproceedings 2019_pennekamp_infrastructure Towards an Infrastructure Enabling the Internet of Production 2019 5 8 31-37 New levels of cross-domain collaboration between manufacturing companies throughout the supply chain are anticipated to bring benefits to both suppliers and consumers of products. Enabling a fine-grained sharing and analysis of data among different stakeholders in an automated manner, such a vision of an Internet of Production (IoP) introduces demanding challenges to the communication, storage, and computation infrastructure in production environments. In this work, we present three example cases that would benefit from an IoP (a fine blanking line, a high pressure die casting process, and a connected job shop) and derive requirements that cannot be met by today’s infrastructure. In particular, we identify three orthogonal research objectives: (i) real-time control of tightly integrated production processes to offer seamless low-latency analysis and execution, (ii) storing and processing heterogeneous production data to support scalable data stream processing and storage, and (iii) secure privacy-aware collaboration in production to provide a basis for secure industrial collaboration. Based on a discussion of state-of-the-art approaches for these three objectives, we create a blueprint for an infrastructure acting as an enabler for an IoP. Internet of Production; Cyber-Physical Systems; Data Processing; Low Latency; Secure Industrial Collaboration internet-of-production https://www.comsys.rwth-aachen.de/fileadmin/papers/2019/2019-pennekamp-iop-infrastructure.pdf IEEE Proceedings of the 2nd IEEE International Conference on Industrial Cyber-Physical Systems (ICPS '19), May 6-9, 2019, Taipei, TW Taipei, TW May 6-9, 2019 978-1-5386-8500-6/19 10.1109/ICPHYS.2019.8780276 1 JanPennekamp RenéGlebke MartinHenze TobiasMeisen ChristophQuix RihanHai LarsGleim PhilippNiemietz MaximilianRudack SimonKnape AlexanderEpple DanielTrauth UweVroomen ThomasBergs ChristianBrecher AndreasBührig-Polaczek MatthiasJarke KlausWehrle article rueth:iw:TNSM19 TCP’s Initial Window – Deployment in the Wild and its Impact on Performance IEEE Transactions on Network and Service Management 2019 1 30 16 2 389--402 maki http://www.comsys.rwth-aachen.de/fileadmin/papers/2019/2019-rueth-iwtnsm.pdf 1932-4537 10.1109/TNSM.2019.2896335 1 JanRüth IkeKunze OliverHohlfeld article 2019_wehrle_dagstuhl_beginners The Dagstuhl Beginners Guide to Reproducibility for Experimental Networking Research ACM SIGCOMM Computer Communication Review 2019 1 49 1 24-30 Reproducibility is one of the key characteristics of good science, but hard to achieve for experimental disciplines like Internet measurements and networked systems. This guide provides advice to researchers, particularly those new to the field, on designing experiments so that their work is more likely to be reproducible and to serve as a foundation for follow-on work by others. 0146-4833 10.1145/3314212.3314217 VaibhavBajpai AnnaBrunstrom AnjaFeldmann WolfgangKellerer AikoPras HenningSchulzrinne GeorgiosSmaragdakis MatthiasWählisch KlausWehrle