This file was created by the TYPO3 extension
bib
--- Timezone: CEST
Creation date: 2024-09-08
Creation time: 01-47-08
--- Number of references
7
conference
2017-fink-brainlab-gmds
BrainLab - Ein Framework für mobile neurologische Untersuchungen
2017
8
29
Best Abstract Award
https://www.egms.de/static/en/meetings/gmds2017/17gmds137.shtml
06.09.19
German Medical Science GMS Publishing House (2017)
62. Jahrestagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie e.V. (GMDS).
Oldenburg
GMDS 2017
17-21 September 2017
10.3205/17gmds137
1
Ina BereniceFink
BerndHankammer
ThomasStopinski
YannicTitgemeyer
RoannRamos
EkaterinaKutafina
Jó AgilaBitsch
Stephan MichaelJonas
proceedings
2017-SymPerfPoster
SymPerf: Predicting Network Function Performance
2017
8
21
spp,erc,symbiosys,reflexes
https://www.comsys.rwth-aachen.de/fileadmin/papers/2017/2017-rath-sym-perf-poster.pdf
ACM
Los Angeles, USA
ACM SIGCOMM 2017 Poster
21.8.2017 - 25.8.2017
en
978-1-4503-5057-0/17/08
10.1145/3123878.3131977
1
FelixRath
JohannesKrude
JanRüth
DanielSchemmel
OliverHohlfeld
Jó AgilaBitsch Link
KlausWehrle
article
2017-ziegeldorf-bmcmedgenomics-bloom
BLOOM: BLoom filter based Oblivious Outsourced Matchings
BMC Medical Genomics
2017
7
26
10
Suppl 2
29-42
Whole genome sequencing has become fast, accurate, and cheap, paving the way towards the large-scale collection and processing of human genome data. Unfortunately, this dawning genome era does not only promise tremendous advances in biomedical research but also causes unprecedented privacy risks for the many. Handling storage and processing of large genome datasets through cloud services greatly aggravates these concerns. Current research efforts thus investigate the use of strong cryptographic methods and protocols to implement privacy-preserving genomic computations. We propose FHE-Bloom and PHE-Bloom, two efficient approaches for genetic disease testing using homomorphically encrypted Bloom filters. Both approaches allow the data owner to securely outsource storage and computation to an untrusted cloud. FHE-Bloom is fully secure in the semi-honest model while PHE-Bloom slightly relaxes security guarantees in a trade-off for highly improved performance. We implement and evaluate both approaches on a large dataset of up to 50 patient genomes each with up to 1000000 variations (single nucleotide polymorphisms). For both implementations, overheads scale linearly in the number of patients and variations, while PHE-Bloom is faster by at least three orders of magnitude. For example, testing disease susceptibility of 50 patients with 100000 variations requires only a total of 308.31 s (σ=8.73 s) with our first approach and a mere 0.07 s (σ=0.00 s) with the second. We additionally discuss security guarantees of both approaches and their limitations as well as possible extensions towards more complex query types, e.g., fuzzy or range queries. Both approaches handle practical problem sizes efficiently and are easily parallelized to scale with the elastic resources available in the cloud. The fully homomorphic scheme, FHE-Bloom, realizes a comprehensive outsourcing to the cloud, while the partially homomorphic scheme, PHE-Bloom, trades a slight relaxation of security guarantees against performance improvements by at least three orders of magnitude.
Proceedings of the 5th iDASH Privacy and Security Workshop 2016
Secure outsourcing; Homomorphic encryption; Bloom filters
sscilops; mynedata; rfc
https://www.comsys.rwth-aachen.de/fileadmin/papers/2017/2017-ziegeldorf-bmcmedgenomics-bloom.pdf
Online
BioMed Central
Chicago, IL, USA
November 11, 2016
en
1755-8794
10.1186/s12920-017-0277-y
1
Jan HenrikZiegeldorf
JanPennekamp
DavidHellmanns
FelixSchwinger
IkeKunze
MartinHenze
JensHiller
RomanMatzutt
KlausWehrle
article
dombrowski-vdi
Funktechnologien für Industrie 4.0
VDE Positionspapier
2017
6
1
VDE - Verband der Elektrotechnik, Elektronik, Informationstechnik e.V.
Stresemannallee 15, 60596 Frankfurt am Main, Germany
IsmetAktas
AlexanderBentkus
FlorianBonanati
ArminDekorsy
ChristianDombrowski
MichaelDoubrava
AliGolestani
FrankHofmann
MikeHeidrich
StefanHiensch
RüdigerKays
MichaelMeyer
AndreasMüller
Stephanten Brink
NedaPetreska
MilanPopovic
LutzRauchhaupt
AhmadSaad
HansSchotten
ChristophWöste
IngoWolff
inproceedings
2017-serror-pads-cows
Code-transparent Discrete Event Simulation for Time-accurate Wireless Prototyping
2017
5
24
memosim,symbiosys
https://www.comsys.rwth-aachen.de/fileadmin/papers/2017/2017-serror-pads-cows.pdf
ACM
online
Proceedings of the 5th ACM SIGSIM/PADS Conference on Principles of Advanced Discrete Simulation (SIGSIM-PADS’17), Singapore, Singapore
Singapore, Singapore
5th ACM SIGSIM/PADS Conference on Principles of Advanced Discrete Simulation (SIGSIM-PADS’17)
May 24-26, 2017
978-1-4503-4489-0
10.1145/3064911.3064913
1
MartinSerror
Jörg ChristianKirchhof
MirkoStoffers
KlausWehrle
JamesGross
conference
2017-fink-brainlab
BrainLab – towards mobile brain research
2017
4
24
2
/fileadmin/papers/2017/2017-fink-brainlab.pdf
http://informaticsforhealth.org/wp-content/uploads/2017/04/IFH2017-Digital-Programme.pdf
2017-05-09
Online
Informatics for Health 2017, Manchester UK
Manchester, UK
Informatics for Health 2017, Manchester UK
24-26 April 2017
en
1
Ina BereniceFink
BerndHankammer
ThomasStopinsky
RoannRamos
EkaterinaKutafina
Jó AgilaBitsch Link
StephanJonas
inproceedings
2017-matzutt-mynedata
myneData: Towards a Trusted and User-controlled Ecosystem for Sharing Personal Data
2017
1073-1084
Personal user data is collected and processed at large scale by a handful of big providers of Internet services. This is detrimental to users, who often do not understand the privacy implications of this data collection, as well as to small parties interested in gaining insights from this data pool, e.g., research groups or small and middle-sized enterprises. To remedy this situation, we propose a transparent and user-controlled data market in which users can directly and consensually share their personal data with interested parties for monetary compensation. We define a simple model for such an ecosystem and identify pressing challenges arising within this model with respect to the user and data processor demands, legal obligations, and technological limits. We propose myneData as a conceptual architecture for a trusted online platform to overcome these challenges. Our work provides an initial investigation of the resulting myneData ecosystem as a foundation to subsequently realize our envisioned data market via the myneData platform.
Presentation slides are in German
Personal User Data, Personal Information Management, Data Protection Laws, Privacy Enhancing Technologies, Platform Design, Profiling
mynedata_show
https://www.comsys.rwth-aachen.de/fileadmin/papers/2017/2017-matzutt-informatik-mynedata.pdf
https://www.comsys.rwth-aachen.de/fileadmin/misc/mynedata/talks/2017-matzutt-informatik-mynedata-presentation.pdf
Presentation slides
Eibl, Maximilian and Gaedke, Martin
Gesellschaft für Informatik, Bonn
INFORMATIK 2017
Chemnitz
INFORMATIK 2017
2017-09-28
English
978-3-88579-669-5
1617-5468
10.18420/in2017_109
1
RomanMatzutt
DirkMüllmann
Eva-MariaZeissig
ChristianeHorst
KaiKasugai
SeanLidynia
SimonWieninger
Jan HenrikZiegeldorf
GerhardGudergan
IndraSpiecker gen. Döhmann
KlausWehrle
MartinaZiefle