% % This file was created by the TYPO3 extension % bib % --- Timezone: UTC % Creation date: 2024-12-06 % Creation time: 02-30-59 % --- Number of references % 10 % @Article { 2019-kunze-ccwild-tnsm, title = {Congestion Control in the Wild - Investigating Content Provider Fairness}, journal = {IEEE Transactions on Network and Service Management}, year = {2019}, month = {12}, day = {27}, volume = {17}, number = {2}, pages = {1224 - 1238}, url = {https://www.comsys.rwth-aachen.de/fileadmin/papers/2019/2019-kunze-ccwild-tnsm.pdf}, ISSN = {1932-4537}, DOI = {10.1109/TNSM.2019.2962607}, reviewed = {1}, author = {Kunze, Ike and R{\"u}th, Jan and Hohlfeld, Oliver} } @Inproceedings { 2019-krude-online-reprogramming, title = {Online Reprogrammable Multi Tenant Switches}, year = {2019}, month = {12}, day = {9}, tags = {maki}, url = {https://www.comsys.rwth-aachen.de/fileadmin/papers/2019/2019-krude-online-reprogramming.pdf}, publisher = {ACM}, booktitle = {1st ACM CoNEXT Workshop on Emerging in-Network Computing Paradigms (ENCP '19)}, ISBN = {978-1-4503-7000-4/19/12}, DOI = {10.1145/3359993.3366643}, reviewed = {1}, author = {Krude, Johannes and Hofmann, Jaco and Eichholz, Matthias and Wehrle, Klaus and Koch, Andreas and Mezini, Mira} } @Inproceedings { 2019-glebke-in-network-cv, title = {Towards Executing Computer Vision Functionality on Programmable Network Devices}, year = {2019}, month = {12}, day = {9}, tags = {reflexes,maki,internet-of-production}, url = {https://www.comsys.rwth-aachen.de/fileadmin/papers/2019/2019-glebke-in-network-cv.pdf}, misc2 = {Online}, publisher = {ACM}, booktitle = {1st ACM CoNEXT Workshop on Emerging in-Network Computing Paradigms (ENCP '19)}, language = {en}, ISBN = {978-1-4503-7000-4/19/12}, DOI = {10.1145/3359993.3366646}, reviewed = {1}, author = {Glebke, Ren{\'e} and Krude, Johannes and Kunze, Ike and R{\"u}th, Jan and Senger, Felix and Wehrle, Klaus} } @Inproceedings { 2019-hiller-aeit-regaining, title = {Regaining Insight and Control on SMGW-based Secure Communication in Smart Grids}, year = {2019}, month = {9}, abstract = {Smart Grids require extensive communication to enable safe and stable energy supply in the age of decentralized and dynamic energy production and consumption. To protect the communication in this critical infrastructure, public authorities mandate smart meter gateways (SMGWs) to intercept all inbound and outbound communication of premises such as a factory or smart home, and forward the communication data on secure channels established by the SMGW itself to be in control of the communication security. However, using the SMGW as proxy, local devices can neither review the security of these remote connections established by the SMGW nor enforce higher security guarantees than established by the all in one configuration of the SMGW which does not allow for use case-specific security settings. We present mechanisms that enable local devices to regain this insight and control over the full connection, i.e., up to the final receiver, while retaining the SMGW's ability to ensure a suitable security level. Our evaluation shows modest computation and transmission overheads for this increased security in the critical smart grid infrastructure.}, note = {ECSEL; European Union (EU); Horizon 2020; CONNECT Innovative smart components, modules and appliances for a truly connected, efficient and secure smart grid; Grant Agreement No 737434}, tags = {connect}, url = {https://www.comsys.rwth-aachen.de/fileadmin/papers/2019/2019-hiller-aeit-regaining.pdf}, publisher = {IEEE}, booktitle = {Proceedings of the 2019 AEIT International Annual Conference, September 18-20, 2019, Firenze, Italy}, event_place = {Firenze, Italy}, event_name = {AEIT International Annual Conference}, event_date = {September 18-20, 2019}, ISBN = {978-8-8872-3745-0}, DOI = {10.23919/AEIT.2019.8893406}, reviewed = {1}, author = {Hiller, Jens and Komanns, Karsten and Dahlmanns, Markus and Wehrle, Klaus} } @Inproceedings { 2019-krude-chain-opt, title = {Optimizing Data Plane Programs for the Network}, year = {2019}, month = {8}, day = {23}, abstract = {With the move of Software-defined networking from fixed to programmable data planes, network functions are written with P4 or eBPF for targets such as programmable switches, CPU based flow processors and commodity CPUs. These data plane programs are, however, limited in per-packet time budget (e.g., 67.2 ns at 10GbE) and program size, making program optimization imperative. Existing approaches focus on optimizing the distribution of flow rules in fixed data planes or they are limited to a single switch. We see great potential in integrating the network topology into program optimization.}, tags = {maki}, url = {https://www.comsys.rwth-aachen.de/fileadmin/papers/2019/2019-krude-chain-opt.pdf}, publisher = {ACM}, booktitle = {NetPL '19: ACM SIGCOMM Workshop on Networking and Programming Languages}, event_place = {Beijing, China}, ISBN = {978-1-4503-6877-3/19/08}, DOI = {10.1145/3341561.3349590}, reviewed = {1}, author = {Krude, Johannes and Eichholz, Matthias and Winck, Maximilian and Wehrle, Klaus and Mezini, Mira} } @Inproceedings { 2019-hohlfeld-bpfperf, title = {Demystifying the Performance of XDP BPF}, year = {2019}, month = {6}, day = {25}, tags = {maki,reflexes}, url = {https://www.comsys.rwth-aachen.de/fileadmin/papers/2019/2019-hohlfeld-bpfperf.pdf}, publisher = {IEEE}, booktitle = {IEEE International Conference on Network Softwarization (NetSoft)}, event_name = {IEEE International Conference on Network Softwarization}, DOI = {10.1109/NETSOFT.2019.8806651}, reviewed = {1}, author = {Hohlfeld, Oliver and Krude, Johannes and Reelfs, Jens Helge and R{\"u}th, Jan and Wehrle, Klaus} } @Inproceedings { 2019-rueth-ccfness, title = {An Empirical View on Content Provider Fairness}, year = {2019}, month = {6}, day = {19}, tags = {maki}, url = {https://www.comsys.rwth-aachen.de/fileadmin/papers/2019/2019-rueth-ccfness.pdf}, web_url2 = {https://arxiv.org/abs/1905.07152}, publisher = {IFIP/IEEE}, booktitle = {In Proceedings of the Network Traffic Measurement and Analysis Conference (TMA '19)}, event_place = {Paris, France}, event_name = {Network Traffic Measurement and Analysis Conference}, event_date = {19.06.2019 - 21.06.2019}, DOI = {10.23919/TMA.2019.8784684}, reviewed = {1}, author = {R{\"u}th, Jan and Kunze, Ike and Hohlfeld, Oliver} } @Inproceedings { 2019_pennekamp_infrastructure, title = {Towards an Infrastructure Enabling the Internet of Production}, year = {2019}, month = {5}, day = {8}, pages = {31-37}, abstract = {New levels of cross-domain collaboration between manufacturing companies throughout the supply chain are anticipated to bring benefits to both suppliers and consumers of products. Enabling a fine-grained sharing and analysis of data among different stakeholders in an automated manner, such a vision of an Internet of Production (IoP) introduces demanding challenges to the communication, storage, and computation infrastructure in production environments. In this work, we present three example cases that would benefit from an IoP (a fine blanking line, a high pressure die casting process, and a connected job shop) and derive requirements that cannot be met by today’s infrastructure. In particular, we identify three orthogonal research objectives: (i) real-time control of tightly integrated production processes to offer seamless low-latency analysis and execution, (ii) storing and processing heterogeneous production data to support scalable data stream processing and storage, and (iii) secure privacy-aware collaboration in production to provide a basis for secure industrial collaboration. Based on a discussion of state-of-the-art approaches for these three objectives, we create a blueprint for an infrastructure acting as an enabler for an IoP.}, keywords = {Internet of Production; Cyber-Physical Systems; Data Processing; Low Latency; Secure Industrial Collaboration}, tags = {internet-of-production}, url = {https://www.comsys.rwth-aachen.de/fileadmin/papers/2019/2019-pennekamp-iop-infrastructure.pdf}, publisher = {IEEE}, booktitle = {Proceedings of the 2nd IEEE International Conference on Industrial Cyber-Physical Systems (ICPS '19), May 6-9, 2019, Taipei, TW}, event_place = {Taipei, TW}, event_date = {May 6-9, 2019}, ISBN = {978-1-5386-8500-6/19}, DOI = {10.1109/ICPHYS.2019.8780276}, reviewed = {1}, author = {Pennekamp, Jan and Glebke, Ren{\'e} and Henze, Martin and Meisen, Tobias and Quix, Christoph and Hai, Rihan and Gleim, Lars and Niemietz, Philipp and Rudack, Maximilian and Knape, Simon and Epple, Alexander and Trauth, Daniel and Vroomen, Uwe and Bergs, Thomas and Brecher, Christian and B{\"u}hrig-Polaczek, Andreas and Jarke, Matthias and Wehrle, Klaus} } @Article { rueth:iw:TNSM19, title = {TCP’s Initial Window – Deployment in the Wild and its Impact on Performance}, journal = {IEEE Transactions on Network and Service Management}, year = {2019}, month = {1}, day = {30}, volume = {16}, number = {2}, pages = {389--402}, tags = {maki}, url = {http://www.comsys.rwth-aachen.de/fileadmin/papers/2019/2019-rueth-iwtnsm.pdf}, ISSN = {1932-4537}, DOI = {10.1109/TNSM.2019.2896335}, reviewed = {1}, author = {R{\"u}th, Jan and Kunze, Ike and Hohlfeld, Oliver} } @Article { 2019_wehrle_dagstuhl_beginners, title = {The Dagstuhl Beginners Guide to Reproducibility for Experimental Networking Research}, journal = {ACM SIGCOMM Computer Communication Review}, year = {2019}, month = {1}, volume = {49}, number = {1}, pages = {24-30}, abstract = {Reproducibility is one of the key characteristics of good science, but hard to achieve for experimental disciplines like Internet measurements and networked systems. This guide provides advice to researchers, particularly those new to the field, on designing experiments so that their work is more likely to be reproducible and to serve as a foundation for follow-on work by others.}, ISSN = {0146-4833}, DOI = {10.1145/3314212.3314217}, author = {Bajpai, Vaibhav and Brunstrom, Anna and Feldmann, Anja and Kellerer, Wolfgang and Pras, Aiko and Schulzrinne, Henning and Smaragdakis, Georgios and W{\"a}hlisch, Matthias and Wehrle, Klaus} }