% % This file was created by the TYPO3 extension % bib % --- Timezone: CEST % Creation date: 2024-04-19 % Creation time: 04-33-12 % --- Number of references % 3 % @Inproceedings { 2019_pennekamp_dataflows, title = {Dataflow Challenges in an Internet of Production: A Security \& Privacy Perspective}, year = {2019}, month = {11}, day = {11}, pages = {27-38}, abstract = {The Internet of Production (IoP) envisions the interconnection of previously isolated CPS in the area of manufacturing across institutional boundaries to realize benefits such as increased profit margins and product quality as well as reduced product development costs and time to market. This interconnection of CPS will lead to a plethora of new dataflows, especially between (partially) distrusting entities. In this paper, we identify and illustrate these envisioned inter-organizational dataflows and the participating entities alongside two real-world use cases from the production domain: a fine blanking line and a connected job shop. Our analysis allows us to identify distinct security and privacy demands and challenges for these new dataflows. As a foundation to address the resulting requirements, we provide a survey of promising technical building blocks to secure inter-organizational dataflows in an IoP and propose next steps for future research. Consequently, we move an important step forward to overcome security and privacy concerns as an obstacle for realizing the promised potentials in an Internet of Production.}, keywords = {Internet of Production; dataflows; Information Security}, tags = {internet-of-production}, url = {https://www.comsys.rwth-aachen.de/fileadmin/papers/2019/2019-pennekamp-dataflows.pdf}, publisher = {ACM}, booktitle = {Proceedings of the 5th ACM Workshop on Cyber-Physical Systems Security and PrivaCy (CPS-SPC '19), co-located with the 26th ACM SIGSAC Conference on Computer and Communications Security (CCS '19), November 11-15, 2019, London, United Kingdom}, event_place = {London, United Kingdom}, event_date = {November 11-15, 2019}, ISBN = {978-1-4503-6831-5/19/11}, DOI = {10.1145/3338499.3357357}, reviewed = {1}, author = {Pennekamp, Jan and Henze, Martin and Schmidt, Simo and Niemietz, Philipp and Fey, Marcel and Trauth, Daniel and Bergs, Thomas and Brecher, Christian and Wehrle, Klaus} } @Inproceedings { 2019_wagner_dispute_resolution, title = {Dispute Resolution for Smart Contract-based Two Party Protocols}, year = {2019}, month = {5}, abstract = {Blockchain systems promise to mediate interactions of mutually distrusting parties without a trusted third party. However, protocols with full smart contract-based security are either limited in functionality or complex, with high costs for secured interactions. This observation leads to the development of protocol-specific schemes to avoid costly dispute resolution in case all participants remain honest. In this paper, we introduce SmartJudge, an extensible generalization of this trend for smart contract-based two-party protocols. SmartJudge relies on a protocol-independent mediator smart contract that moderates two-party interactions and only consults protocol-specific verifier smart contracts in case of a dispute. This way, SmartJudge avoids verification costs in absence of disputes and sustains interaction confidentiality among honest parties. We implement verifier smart contracts for cross-blockchain trades and exchanging digital goods and show that SmartJudge can reduce costs by 46-50\% and 22\% over current state of the art, respectively.}, keywords = {Ethereum,Bitcoin,smart contracts,two-party protocols,dispute resolution,cross-blockchain trades}, tags = {mynedata, impact-digital, rfc}, url = {https://www.comsys.rwth-aachen.de/fileadmin/papers/2019/2019-wagner-dispute.pdf}, publisher = {IEEE}, booktitle = {IEEE International Conference on Blockchain and Cryptocurrency 2019 (ICBC 2019)}, event_place = {Seoul, South Korea}, event_name = {IEEE International Conference on Blockchain and Cryptocurrency 2019}, language = {English}, DOI = {10.1109/BLOC.2019.8751312}, reviewed = {1}, author = {Wagner, Eric and V{\"o}lker, Achim and Fuhrmann, Frederik and Matzutt, Roman and Wehrle, Klaus} } @Article { 2019_wehrle_dagstuhl_beginners, title = {The Dagstuhl Beginners Guide to Reproducibility for Experimental Networking Research}, journal = {ACM SIGCOMM Computer Communication Review}, year = {2019}, month = {1}, volume = {49}, number = {1}, pages = {24-30}, abstract = {Reproducibility is one of the key characteristics of good science, but hard to achieve for experimental disciplines like Internet measurements and networked systems. This guide provides advice to researchers, particularly those new to the field, on designing experiments so that their work is more likely to be reproducible and to serve as a foundation for follow-on work by others.}, ISSN = {0146-4833}, DOI = {10.1145/3314212.3314217}, author = {Bajpai, Vaibhav and Brunstrom, Anna and Feldmann, Anja and Kellerer, Wolfgang and Pras, Aiko and Schulzrinne, Henning and Smaragdakis, Georgios and W{\"a}hlisch, Matthias and Wehrle, Klaus} }