This file was created by the TYPO3 extension bib --- Timezone: CEST Creation date: 2024-04-25 Creation time: 13-30-12 --- Number of references 3 inproceedings 2023-wolsing-xluuvlab XLab-UUV – A Virtual Testbed for Extra-Large Uncrewed Underwater Vehicles 2023 10 Roughly two-thirds of our planet is covered with water, and so far, the oceans have predominantly been used at their surface for the global transport of our goods and commodities. Today, there is a rising trend toward subsea infrastructures such as pipelines, telecommunication cables, or wind farms which demands potent vehicles for underwater work. To this end, a new generation of vehicles, large and Extra-Large Unmanned Underwater Vehicles (XLUUVs), is currently being engineered that allow for long-range, remotely controlled, and semi-autonomous missions in the deep sea. However, although these vehicles are already heavily developed and demand state-of-the-art communi- cation technologies to realize their autonomy, no dedicated test and development environments exist for research, e.g., to assess the implications on cybersecurity. Therefore, in this paper, we present XLab-UUV, a virtual testbed for XLUUVs that allows researchers to identify novel challenges, possible bottlenecks, or vulnerabilities, as well as to develop effective technologies, protocols, and procedures. Maritime Simulation Environment, XLUUV, Cyber Range, Autonomous Shipping, Operational Technology https://www.comsys.rwth-aachen.de/fileadmin/papers/2023/2023-wolsing-xluuvlab.pdf IEEE 1st IEEE LCN Workshop on Maritime Communication and Security (MarCaS) Daytona Beach, Florida, USA 1st IEEE LCN Workshop on Maritime Communication and Security (MarCaS) Oktober 1-5, 2023 accepted en 10.1109/LCN58197.2023.10223405 1 KonradWolsing AntoineSaillard ElmarPadilla JanBauer inproceedings 2022-wolsing-ipal IPAL: Breaking up Silos of Protocol-dependent and Domain-specific Industrial Intrusion Detection Systems 2022 10 26 The increasing interconnection of industrial networks exposes them to an ever-growing risk of cyber attacks. To reveal such attacks early and prevent any damage, industrial intrusion detection searches for anomalies in otherwise predictable communication or process behavior. However, current efforts mostly focus on specific domains and protocols, leading to a research landscape broken up into isolated silos. Thus, existing approaches cannot be applied to other industries that would equally benefit from powerful detection. To better understand this issue, we survey 53 detection systems and find no fundamental reason for their narrow focus. Although they are often coupled to specific industrial protocols in practice, many approaches could generalize to new industrial scenarios in theory. To unlock this potential, we propose IPAL, our industrial protocol abstraction layer, to decouple intrusion detection from domain-specific industrial protocols. After proving IPAL’s correctness in a reproducibility study of related work, we showcase its unique benefits by studying the generalizability of existing approaches to new datasets and conclude that they are indeed not restricted to specific domains or protocols and can perform outside their restricted silos. /fileadmin/papers/2022/2022-wolsing-ipal.pdf Proceedings of the 25th International Symposium on Research in Attacks, Intrusions and Defenses (RAID 2022) 10.1145/3545948.3545968 1 KonradWolsing EricWagner AntoineSaillard MartinHenze proceedings 2022-wolsing-radarsec Network Attacks Against Marine Radar Systems: A Taxonomy, Simulation Environment, and Dataset 2022 9 rfc https://www.comsys.rwth-aachen.de/fileadmin/papers/2022/2022-wolsing-radar.pdf IEEE Edmonton, Canada 47th IEEE Conference on Local Computer Networks (LCN) September 26-29, 2022 10.1109/LCN53696.2022.9843801 1 KonradWolsing AntoineSaillard JanBauer EricWagner Christianvan Sloun Ina BereniceFink MariSchmidt KlausWehrle MartinHenze