This file was created by the TYPO3 extension bib --- Timezone: CEST Creation date: 2024-04-25 Creation time: 17-20-53 --- Number of references 4 article 2022-henze-tii-prada Complying with Data Handling Requirements in Cloud Storage Systems IEEE Transactions on Cloud Computing 2022 9 10 3 1661-1674 In past years, cloud storage systems saw an enormous rise in usage. However, despite their popularity and importance as underlying infrastructure for more complex cloud services, today’s cloud storage systems do not account for compliance with regulatory, organizational, or contractual data handling requirements by design. Since legislation increasingly responds to rising data protection and privacy concerns, complying with data handling requirements becomes a crucial property for cloud storage systems. We present Prada , a practical approach to account for compliance with data handling requirements in key-value based cloud storage systems. To achieve this goal, Prada introduces a transparent data handling layer, which empowers clients to request specific data handling requirements and enables operators of cloud storage systems to comply with them. We implement Prada on top of the distributed database Cassandra and show in our evaluation that complying with data handling requirements in cloud storage systems is practical in real-world cloud deployments as used for microblogging, data sharing in the Internet of Things, and distributed email storage. https://www.comsys.rwth-aachen.de/fileadmin/papers/2022/2022-henze-tii-prada.pdf Online en 2168-7161 10.1109/TCC.2020.3000336 1 MartinHenze RomanMatzutt JensHiller ErikMühmer Jan HenrikZiegeldorf Johannesvan der Giet KlausWehrle inproceedings 2017-henze-mobiquitous-cloudanalyzer CloudAnalyzer: Uncovering the Cloud Usage of Mobile Apps 2017 11 7 262-271 Developers of smartphone apps increasingly rely on cloud services for ready-made functionalities, e.g., to track app usage, to store data, or to integrate social networks. At the same time, mobile apps have access to various private information, ranging from users' contact lists to their precise locations. As a result, app deployment models and data flows have become too complex and entangled for users to understand. We present CloudAnalyzer, a transparency technology that reveals the cloud usage of smartphone apps and hence provides users with the means to reclaim informational self-determination. We apply CloudAnalyzer to study the cloud exposure of 29 volunteers over the course of 19 days. In addition, we analyze the cloud usage of the 5000 most accessed mobile websites as well as 500 popular apps from five different countries. Our results reveal an excessive exposure to cloud services: 90 % of apps use cloud services and 36 % of apps used by volunteers solely communicate with cloud services. Given the information provided by CloudAnalyzer, users can critically review the cloud usage of their apps. Privacy; Smartphones; Cloud Computing; Traffic Analysis trinics https://www.comsys.rwth-aachen.de/fileadmin/papers/2017/2017-henze-mobiquitous-cloudanalyzer.pdf Online ACM Proceedings of the 14th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (MobiQuitous '17), November 7-10, 2017, Melbourne, VIC, Australia Melbourne, VIC, Australia November 7-10, 2017 en 978-1-4503-5368-7 10.1145/3144457.3144471 1 MartinHenze JanPennekamp DavidHellmanns ErikMühmer Jan HenrikZiegeldorf ArthurDrichel KlausWehrle inproceedings 2017-henze-ic2e-prada Practical Data Compliance for Cloud Storage 2017 4 4 252-258 ssiclops, ipacs https://www.comsys.rwth-aachen.de/fileadmin/papers/2017/2017-henze-ic2e-prada.pdf Online IEEE Proceedings of the 2017 IEEE International Conference on Cloud Engineering (IC2E 2017), Vancouver, BC, Canada en 978-1-5090-5817-4 10.1109/IC2E.2017.32 1 MartinHenze RomanMatzutt JensHiller ErikMühmer Jan HenrikZiegeldorf Johannesvan der Giet KlausWehrle inproceedings 2016-henze-cloudcom-trinics Towards Transparent Information on Individual Cloud Service Usage 2016 12 12 366-370 trinics https://www.comsys.rwth-aachen.de/fileadmin/papers/2016/2016-henze-cloudcom-trinics.pdf Online IEEE Proceedings of the 2016 IEEE International Conference on Cloud Computing Technology and Science (CloudCom), Luxembourg, Luxembourg en 978-1-5090-1445-3 10.1109/CloudCom.2016.0064 1 MartinHenze DanielKerpen JensHiller MichaelEggert DavidHellmanns ErikMühmer OussamaRenuli HenningMaier ChristianStüble RogerHäußling KlausWehrle