% % This file was created by the TYPO3 extension % bib % --- Timezone: CEST % Creation date: 2024-09-09 % Creation time: 07-26-27 % --- Number of references % 2 % @Article { 2020_gleim_factDAG, title = {FactDAG: Formalizing Data Interoperability in an Internet of Production}, journal = {IEEE Internet of Things Journal}, year = {2020}, month = {4}, day = {14}, volume = {7}, number = {4}, pages = {3243-3253}, abstract = {In the production industry, the volume, variety and velocity of data as well as the number of deployed protocols increase exponentially due to the influences of IoT advances. While hundreds of isolated solutions exist to utilize this data, e.g., optimizing processes or monitoring machine conditions, the lack of a unified data handling and exchange mechanism hinders the implementation of approaches to improve the quality of decisions and processes in such an interconnected environment. The vision of an Internet of Production promises the establishment of a Worldwide Lab, where data from every process in the network can be utilized, even interorganizational and across domains. While numerous existing approaches consider interoperability from an interface and communication system perspective, fundamental questions of data and information interoperability remain insufficiently addressed. In this paper, we identify ten key issues, derived from three distinctive real-world use cases, that hinder large-scale data interoperability for industrial processes. Based on these issues we derive a set of five key requirements for future (IoT) data layers, building upon the FAIR data principles. We propose to address them by creating FactDAG, a conceptual data layer model for maintaining a provenance-based, directed acyclic graph of facts, inspired by successful distributed version-control and collaboration systems. Eventually, such a standardization should greatly shape the future of interoperability in an interconnected production industry.}, keywords = {Data Management; Data Versioning; Interoperability; Industrial Internet of Things; Worldwide Lab}, tags = {internet-of-production}, url = {https://comsys.rwth-aachen.de/fileadmin/papers/2020/2020-gleim-iotj-iop-interoperability.pdf}, publisher = {IEEE}, ISSN = {2327-4662}, DOI = {10.1109/JIOT.2020.2966402}, reviewed = {1}, author = {Gleim, Lars and Pennekamp, Jan and Liebenberg, Martin and Buchsbaum, Melanie and Niemietz, Philipp and Knape, Simon and Epple, Alexander and Storms, Simon and Trauth, Daniel and Bergs, Thomas and Brecher, Christian and Decker, Stefan and Lakemeyer, Gerhard and Wehrle, Klaus} } @Inproceedings { 2019_pennekamp_infrastructure, title = {Towards an Infrastructure Enabling the Internet of Production}, year = {2019}, month = {5}, day = {8}, pages = {31-37}, abstract = {New levels of cross-domain collaboration between manufacturing companies throughout the supply chain are anticipated to bring benefits to both suppliers and consumers of products. Enabling a fine-grained sharing and analysis of data among different stakeholders in an automated manner, such a vision of an Internet of Production (IoP) introduces demanding challenges to the communication, storage, and computation infrastructure in production environments. In this work, we present three example cases that would benefit from an IoP (a fine blanking line, a high pressure die casting process, and a connected job shop) and derive requirements that cannot be met by today’s infrastructure. In particular, we identify three orthogonal research objectives: (i) real-time control of tightly integrated production processes to offer seamless low-latency analysis and execution, (ii) storing and processing heterogeneous production data to support scalable data stream processing and storage, and (iii) secure privacy-aware collaboration in production to provide a basis for secure industrial collaboration. Based on a discussion of state-of-the-art approaches for these three objectives, we create a blueprint for an infrastructure acting as an enabler for an IoP.}, keywords = {Internet of Production; Cyber-Physical Systems; Data Processing; Low Latency; Secure Industrial Collaboration}, tags = {internet-of-production}, url = {https://www.comsys.rwth-aachen.de/fileadmin/papers/2019/2019-pennekamp-iop-infrastructure.pdf}, publisher = {IEEE}, booktitle = {Proceedings of the 2nd IEEE International Conference on Industrial Cyber-Physical Systems (ICPS '19), May 6-9, 2019, Taipei, TW}, event_place = {Taipei, TW}, event_date = {May 6-9, 2019}, ISBN = {978-1-5386-8500-6/19}, DOI = {10.1109/ICPHYS.2019.8780276}, reviewed = {1}, author = {Pennekamp, Jan and Glebke, Ren{\'e} and Henze, Martin and Meisen, Tobias and Quix, Christoph and Hai, Rihan and Gleim, Lars and Niemietz, Philipp and Rudack, Maximilian and Knape, Simon and Epple, Alexander and Trauth, Daniel and Vroomen, Uwe and Bergs, Thomas and Brecher, Christian and B{\"u}hrig-Polaczek, Andreas and Jarke, Matthias and Wehrle, Klaus} }