This file was created by the TYPO3 extension bib --- Timezone: CEST Creation date: 2024-09-07 Creation time: 20-16-19 --- Number of references 5 inproceedings 2023_pennekamp_benchmarking_comparison Designing Secure and Privacy-Preserving Information Systems for Industry Benchmarking 2023 6 15 13901 489-505 Benchmarking is an essential tool for industrial organizations to identify potentials that allows them to improve their competitive position through operational and strategic means. However, the handling of sensitive information, in terms of (i) internal company data and (ii) the underlying algorithm to compute the benchmark, demands strict (technical) confidentiality guarantees—an aspect that existing approaches fail to address adequately. Still, advances in private computing provide us with building blocks to reliably secure even complex computations and their inputs, as present in industry benchmarks. In this paper, we thus compare two promising and fundamentally different concepts (hardware- and software-based) to realize privacy-preserving benchmarks. Thereby, we provide detailed insights into the concept-specific benefits. Our evaluation of two real-world use cases from different industries underlines that realizing and deploying secure information systems for industry benchmarking is possible with today's building blocks from private computing. Lecture Notes in Computer Science (LNCS), Volume 13901 real-world computing; trusted execution environments; homomorphic encryption; key performance indicators; benchmarking internet-of-production https://www.comsys.rwth-aachen.de/fileadmin/papers/2023/2023-pennekamp-industry-benchmarking.pdf Springer Proceedings of the 35th International Conference on Advanced Information Systems Engineering (CAiSE '23), June 12-16, 2023, Zaragoza, Spain Zaragoza, Spain 35th International Conference on Advanced Information Systems Engineering (CAiSE '23) June 12-16, 2023 978-3-031-34559-3 0302-9743 10.1007/978-3-031-34560-9_29 1 JanPennekamp JohannesLohmöller EduardVlad JoschaLoos NiklasRodemann PatrickSapel Ina BereniceFink SethSchmitz ChristianHopmann MatthiasJarke GüntherSchuh KlausWehrle MartinHenze article 2022_brauner_iop A Computer Science Perspective on Digital Transformation in Production ACM Transactions on Internet of Things 2022 5 1 3 2 The Industrial Internet-of-Things (IIoT) promises significant improvements for the manufacturing industry by facilitating the integration of manufacturing systems by Digital Twins. However, ecological and economic demands also require a cross-domain linkage of multiple scientific perspectives from material sciences, engineering, operations, business, and ergonomics, as optimization opportunities can be derived from any of these perspectives. To extend the IIoT to a true Internet of Production, two concepts are required: first, a complex, interrelated network of Digital Shadows which combine domain-specific models with data-driven AI methods; and second, the integration of a large number of research labs, engineering, and production sites as a World Wide Lab which offers controlled exchange of selected, innovation-relevant data even across company boundaries. In this article, we define the underlying Computer Science challenges implied by these novel concepts in four layers: Smart human interfaces provide access to information that has been generated by model-integrated AI. Given the large variety of manufacturing data, new data modeling techniques should enable efficient management of Digital Shadows, which is supported by an interconnected infrastructure. Based on a detailed analysis of these challenges, we derive a systematized research roadmap to make the vision of the Internet of Production a reality. Internet of Production; World Wide Lab; Digital Shadows; Industrial Internet of Things internet-of-production https://www.comsys.rwth-aachen.de/fileadmin/papers/2022/2022-brauner-digital-transformation.pdf ACM 2691-1914 10.1145/3502265 1 PhilippBrauner ManuelaDalibor MatthiasJarke IkeKunze IstvánKoren GerhardLakemeyer MartinLiebenberg JudithMichael JanPennekamp ChristophQuix BernhardRumpe Wilvan der Aalst KlausWehrle AndreasWortmann MartinaZiefle article 2020-wehrle-digitalshadows Mit "Digitalen Schatten" Daten verdichten und darstellen : Der Exzellenzcluster "Internet der Produktion" forscht über die Produktionstechnik hinaus Der Profilbereich "Information & Communication Technology" 2020 0179-079X 10.18154/RWTH-2021-02496 MatthiasJarke Wilvan der Aalst ChristianBrecher MatthiasBrockmann IstvánKoren GerhardLakemeyer BernhardRumpe GüntherSchuh KlausWehrle MartinaZiefle inproceedings 2019_pennekamp_infrastructure Towards an Infrastructure Enabling the Internet of Production 2019 5 8 31-37 New levels of cross-domain collaboration between manufacturing companies throughout the supply chain are anticipated to bring benefits to both suppliers and consumers of products. Enabling a fine-grained sharing and analysis of data among different stakeholders in an automated manner, such a vision of an Internet of Production (IoP) introduces demanding challenges to the communication, storage, and computation infrastructure in production environments. In this work, we present three example cases that would benefit from an IoP (a fine blanking line, a high pressure die casting process, and a connected job shop) and derive requirements that cannot be met by today’s infrastructure. In particular, we identify three orthogonal research objectives: (i) real-time control of tightly integrated production processes to offer seamless low-latency analysis and execution, (ii) storing and processing heterogeneous production data to support scalable data stream processing and storage, and (iii) secure privacy-aware collaboration in production to provide a basis for secure industrial collaboration. Based on a discussion of state-of-the-art approaches for these three objectives, we create a blueprint for an infrastructure acting as an enabler for an IoP. Internet of Production; Cyber-Physical Systems; Data Processing; Low Latency; Secure Industrial Collaboration internet-of-production https://www.comsys.rwth-aachen.de/fileadmin/papers/2019/2019-pennekamp-iop-infrastructure.pdf IEEE Proceedings of the 2nd IEEE International Conference on Industrial Cyber-Physical Systems (ICPS '19), May 6-9, 2019, Taipei, TW Taipei, TW May 6-9, 2019 978-1-5386-8500-6/19 10.1109/ICPHYS.2019.8780276 1 JanPennekamp RenéGlebke MartinHenze TobiasMeisen ChristophQuix RihanHai LarsGleim PhilippNiemietz MaximilianRudack SimonKnape AlexanderEpple DanielTrauth UweVroomen ThomasBergs ChristianBrecher AndreasBührig-Polaczek MatthiasJarke KlausWehrle inbook 2008-thissen-LNCS-synergy Synergy by Integrating New Functionality 2008 519-526 Print M. Nagl, W. Marquardt Springer Lecture Notes in Computer Science 4970 Collaborative and Distributed Chemical Engineering, From Understanding to Substantial Design Process Support en 978-3-540-70551-2 SimonBecker MarkusHeller MatthiasJarke WolfgangMarquardt ManfredNagl OttoSpaniol DirkThißen