% % This file was created by the TYPO3 extension % bib % --- Timezone: CEST % Creation date: 2024-04-25 % Creation time: 19-59-39 % --- Number of references % 1 % @Inproceedings { 2020_pennekamp_supply_chain_sensing, title = {Secure End-to-End Sensing in Supply Chains}, year = {2020}, month = {7}, day = {1}, abstract = {Trust along digitalized supply chains is challenged by the aspect that monitoring equipment may not be trustworthy or unreliable as respective measurements originate from potentially untrusted parties. To allow for dynamic relationships along supply chains, we propose a blockchain-backed supply chain monitoring architecture relying on trusted hardware. Our design provides a notion of secure end-to-end sensing of interactions even when originating from untrusted surroundings. Due to attested checkpointing, we can identify misinformation early on and reliably pinpoint the origin. A blockchain enables long-term verifiability for all (now trustworthy) IoT data within our system even if issues are detected only after the fact. Our feasibility study and cost analysis further show that our design is indeed deployable in and applicable to today's supply chain settings.}, keywords = {supply chain; trusted computing; trusted execution; blockchain; Internet of Production; condition monitoring}, tags = {internet-of-production}, url = {https://comsys.rwth-aachen.de/fileadmin/papers/2020/2020-pennekamp-supply-chain-sensing.pdf}, publisher = {IEEE}, booktitle = {Proceedings of the 5th International Workshop on Cyber-Physical Systems Security (CPS-Sec '20), co-located with the 8th IEEE Conference on Communications and Network Security (CNS '20), June 29-July 1, 2020, Avignon, France}, event_place = {Avignon, France}, event_date = {June 29-July 1, 2020}, ISBN = {978-1-7281-4760-4}, DOI = {10.1109/CNS48642.2020.9162337}, reviewed = {1}, author = {Pennekamp, Jan and Alder, Fritz and Matzutt, Roman and M{\"u}hlberg, Jan Tobias and Piessens, Frank and Wehrle, Klaus} }