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Abstract
Modern manufacturing environments handle increasing numbers
of raw data streams that carry large volumes of data. Searching
this raw data for anomalous events, such as faults, failures, or
degrading product quality, across multiple data sources can help
engineers optimize the underlying manufacturing processes. Yet,
facilitating corresponding analyses on the massive data streams is
challenging: it requires powerful processing platforms, but strict
latency requirements or limited bandwidths often make sending
the full raw data to suitable, centralized locations (in the cloud or
locally) impossible. As a middle ground, the processing logic for
finding relevant events can also be placed on the edge, close to the
data source, but this still requires high-speed compute capabilities.

In this paper, we show that in-network computing provides an
effective solution to this dilemma. In particular, we design Reducio,
which detects relevant events directly on the data path and dy-
namically adapts where and in which resolution data is forwarded
for further analysis. Underneath, Reducio leverages the process se-
mantics of clocked manufacturing processes to first aggregate raw
data streams across multiple sensors and independent machines
on a shop floor. It then uses the aggregates to detect anomalous
events and assess the stability of the underlying processes to switch
between data resolutions and identify machine or sensor malfunc-
tions. We demonstrate the practicality of Reducio by applying a
Tofino prototype to the clocked process of fineblanking in several
experiments, which reveal that Reducio can detect instabilities in
a timely manner while reducing the data volumes by up to 90 %
without losing important process information.
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1 Introduction
In modern manufacturing environments, machines and their con-
nected sensors generate vast amounts of raw data at increasing ve-
locities [42]. Collecting important data across all relevant streams of
a single machine or a connected shop floor can be used to optimize
maintenance intervals [47], predict the quality of manufactured
parts [30], or detect anomalous events [7]. The latter is of particular
interest as anomalies are often linked to a decreased manufactur-
ing quality [13] and can also give early indications for problems
with process resources, such as impending machine failures. For
example, clocked and discrete (mass production) processes are typ-
ically set up once, after which their operations are executed for
thousands of repetitions (cycles) with minimal fluctuations. Phases
with larger deviations, thus, represent anomalies and can provide
crucial information on the physical state of the process.

To run retrospective analysis, data can be stored in data lakes [12],
enabling a holistic view of past manufacturing steps. However, the
large volume of raw data, paired with its high velocity, puts a signif-
icant burden on the communication and storage infrastructure [9].
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In particular, manufacturing companies need to either invest in
expensive on-premise compute resources or rely on cloud solutions
and require networks capable of handling the raw data volumes.
Consequently, naïve concepts scale poorly to modern manufactur-
ing environments with many machines and sensors, so companies
often avoid deploying automated solutions. Hence, there is a strong
need to sensibly reduce the load on the infrastructure and the net-
work edge, without losing relevant process information.

Focusing on the detection and analysis of anomalous events men-
tioned above, most data, by definition, does not exhibit anomalies
and is, therefore, of limited interest. Hence, resource-constrained
processes can be optimized by first detecting anomalies and then
only persisting data related to these occurrences in full for closer in-
spection later [1]. During stable phases without anomalies, coarsely
tracking the process via sampled data can suffice [20]. The key chal-
lenge lies in the timely assessment of the process state and detection
of anomalous events, which requires analyzing multiple massive
data streams in near real-time. Suitable approaches are needed that
facilitate aggregation, processing, analysis, and decision-making on
heterogeneous hardware across multiple connected data streams
in the cloud-edge continuum [15, 44, 45]. Possible target platforms
range from powerful server hardware to low-power edge devices.

In-network computing (INC) opens up a new solution space
by utilizing the high processing rates of programmable network-
ing devices (PNDs) and their privileged position on the data path.
Indeed, the broader related work has already studied executing
general functions, such as windowing [4], filtering, mapping, and
joining [10] on PNDs. Previous research also worked on accelerat-
ing queries in established frameworks such as Apache Spark using
functions in the network [36] and supporting complex event pro-
cessing with PNDs [17]. In contrast, most works studying INC in
industrial settings only perform simple per-packet processing and
usually ignore the larger semantic context [5, 11, 18, 31, 32]. How-
ever, these semantics are important for handling complex events in
industrial data streams, which requires analyzing the raw sensor
data for base events in the first place. While recent works have
started exploring this new dimension [22, 40], INC approaches fully
leveraging these semantics for data reduction are still missing.

In this paper, we present Reducio, an adaptive analytic system tar-
geting clocked and discrete industrial processes. In short, Reducio
can (i) summarize entire process cycles in a handful of charac-
teristic values, (ii) combine these values across multiple sensors
and multiple machines, and (iii) use this information for assessing
the stability of the underlying physical processes and detecting
anomalous events in the process. Based on this assessment, Reducio
adaptively forwards data in different resolutions, e.g., using full
resolution for anomalous cycles and only forwarding the character-
istic values otherwise. For this paper, we prototype Reducio on the
Intel Tofino [37], demonstrating its capabilities with fineblanking,
an example of a clocked and discrete process. Our evaluation on
large data series from a research fineblanking line shows that by
aggregating event data and detecting anomalous events, we can sig-
nificantly reduce the transmitted data volumes while still providing
the required information at most times. Additionally, Reducio scales
to medium-sized shop floors with tens to hundreds of independent
processes as long as they use sensors that can be captured with the
same metrics. With Reducio, we provide a building block toward

network-accelerated data stream processing on the industrial edge.
Overall, the contributions of this paper are as follows:

• Reducio, our modular, event-based INC system for data ag-
gregation on the edge, leverages the semantics and cyclic
behavior of clocked processes to substantially reduce data
rates while preserving key information.

• Our Tofino prototype robustly detects individual process
cycles, aggregates their raw data in a few metrics, determines
process stability and adjusts the forwarded data resolution.

• We demonstrate Reducio’s feasibility by applying it to the
fineblanking process and show that we can reduce data vol-
umes by up to 90 % while still being able to detect harmful
events, such as equipment failures and process instabilities.

Structure. In Sec. 2, we introduce clocked industrial processes and
outline how their repetitive nature can be leveraged for intelligent
data reduction. We also discuss related work on industrial data
processing and motivate the potential for INC. Based on these
considerations, we design Reducio in Sec. 3, present our P4-based
prototype targeting clocked processes in Sec. 4, and show how
we can apply it to fineblanking in Sec. 5. We extensively evaluate
Reducio with data from a research fineblanking line in Sec. 6 and
broadly discuss the applicability of Reducio beyond our example
use case in Sec. 7. We conclude this paper in Sec. 8.

2 Industrial Data Processing
The increasing interconnection and monitoring of industrial pro-
cesses, e.g., encouraged by Industry 4.0 [23], International Data
Spaces [28], or the Internet of Production [29], lead to high data vol-
umes with a high velocity of up to several Gbps, significantly chal-
lenging today’s communication and processing infrastructures [9].
In the following, we illustrate the requirements of industrial settings
with the example of clocked and discrete processes before discussing
related work in the edge-cloud continuum.

2.1 Monitoring Clocked Manufacturing
Clocked and discrete processes are often used in mass production
and consist of a fixed set of manufacturing operations that are
repeatedly executed for a large number of cycles. For example,
stamping processes are executed with 15 to 1400 strokes per minute
depending on the concrete process setup and the used machinery,
resulting in consistent process signals during execution (cf. Fig. 1.1-
Fig. 1.2). As the processes usually run without changing parameters,
differences between cycles can hint at changes in the physical
process state (Fig. 1.3-Fig. 1.4). Thus, monitoring process signals,
both on short time scales and over longer periods, can help to detect
anomalous events and changes in process behavior.
How to monitor clocked processes? During manufacturing op-
erations, directly measuring actual physical conditions, such as
stresses and tensions, is often infeasible as the tools are typically
inaccessible. Similarly, mathematical or simulation models cannot
describe the conditions with sufficient accuracy, as they cannot
account for the stochastic nature of, e.g., material or machine com-
ponents. Instead, sensor systems are deployed to record auxiliary
signals. Depending on the process, various signals are relevant,
either independently or in combination, such as forces (Fig. 1.1-
Fig. 1.3) or acoustic emissions (Fig. 1.4) in sheet metal forming or
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Figure 1: Clocked process signals feature low (inactive i○)
and high (active a○) deflection areas (1). Consistent cycle-to-
cycle manifestations characterize a stable state (2). Long- (3)
or short-term (4) fluctuations can indicate problems.

pressure in die casting. In practice, signals are often acquired at
high frequencies (e.g., up to 1 MHz in sheet metal forming [38])
across multiple sensors, resulting in vast quantities of data that
need to be transmitted, analyzed, and stored for each cycle.
How to interpret the signals? Once a mass production process
is set up and optimized, engineers aim to maintain consistent pro-
cess conditions such that signal variations can indicate undesirable
deviations in the physical process state. In a stable state, minimal
signal deviations between cycles are considered normal and are
often caused by machine dynamics (Fig. 1.2). Larger instabilities,
e.g., over longer periods (Fig. 1.3) or on short time scales (Fig. 1.4),
can indicate machine damage or a decrease in workpiece quality.
Hence, monitoring the signals can help, e.g., change the tool early
enough to reduce waste and avoid longer downtime.
Challenges for process monitoring. The collective sensor vol-
umes are often too large for direct processing as, e.g., shop floors
of smaller to medium-sized companies are already strained when
operating multiple acoustic emission sensors as their infrastruc-
ture is not designed for such tasks. Reducing the data as much as
possible is a straightforward solution to allow for scalability, but
it comes with an inherent trade-off: data should be reduced only
to the extent that it can still satisfy the requirements of associated
use cases, e.g., the detection of anomalous events, even when this
requires combining information from multiple independent sensor
streams. Furthermore, sensors may fail themselves, e.g., due to the
harsh manufacturing environments, which in turn causes problems
for data-driven approaches relying on them. To better illustrate real
use case needs, we next present two example scenarios.

2.1.1 Scenario 1: Predicting Workpiece Quality. Workpieces are
typically inspected manually in regular intervals, e.g., every 500
produced workpieces, to verify that they meet defined quality re-
quirements. However, such inspections do not allow assessing the
quality of all workpieces, which is commonly thought to be infeasi-
ble. Addressing this gap, previous studies have proposed predicting
workpiece quality based on process signals, postulating that fluctua-
tions exceeding a specific threshold may signify quality degradation.
Havinga et al. [13], e.g., trace quality deviations back to problems
with machine components by closely analyzing captured signals
for which they require high-resolution data. This approach can be
realized by analyzing all cycles with full resolution, which, however,
causes high data volumes and strains the infrastructure.
Solution angle and requirements. As workpiece quality is only
expected to be affected in unstable phases, an alternative is to only
cover unstable cycles with high-resolution data while data for the

remaining cycles can be subsampled for scalability. This variant re-
quires an accurate online assessment of process stability, e.g., based
on long-term signal fluctuations (Fig. 1.2 vs. Fig. 1.3), to ensure high
coverage, i.e., capture all cycles with fluctuations. If feasible, this
option has immense potential for data reduction and may signifi-
cantly relieve the infrastructure while still ensuring that the quality
of workpieces likely to exhibit degradation can be assessed. Under
the reasonable assumption that only a few machines experience
anomalies at a given time, we can scale this approach to many
machines and larger shop floors while limiting the requirements
on the network infrastructure.

2.1.2 Scenario 2: Detecting Machine Failures. Tools for clocked
processes are typically used reliably for thousands of operations,
but at some point, their quality starts to degrade quickly, and there
may be additional failures in the machine setup or the auxiliary
machinery. Promptly detecting such failures is crucial to prevent
subsequent damage to other machine components. Monitoring
process signals can enable the detection of equipment malfunction
sufficiently in advance of a critical failure [27] as, e.g., sudden
drastic changes in acoustic emissions can be an early indicator (cf.
Fig. 1.4). Yet, this concept requires analyzing each process cycle,
again causing high data volumes and latencies if done remotely.
Solution angle and requirements. Executing such analyses close
to the process can reduce data volumes but requires a fast online
assessment of the process stability across multiple data streams
such that the latency of detecting potentially dangerous deviations
in the sensor signals is low enough for timely reactions.

In summary, closely monitoring industrial processes can help
strengthen automated decision-making in production while the
process monitoring itself can be optimized using process knowledge.
Next, we discuss the most relevant related work and why it does
not provide appropriate solutions for the described scenarios.

2.2 Related Work on Industrial Data Processing
State-of-the-art data stream processing systems, such as Apache
Flink [2] or Spark Streaming [43], can flexibly analyze large data
volumes in near real-time. However, they assume homogeneous
and powerful hardware as it exists in cloud environments [45]
while industrial settings are heterogeneous and often resource-
constrained [34] in terms of compute and network bandwidth to-
ward centralized (cloud) environments. Recent stream processing
systems consider such edge settings [25, 35, 45] and collaborative
cloud-edge environments [15, 41]. However, the entailed edge com-
ponents still require infrastructure and compute resources capable
of handling massive data streams. Addressing these shortcomings
and aiming for cost-effective solutions, work on INC deploys im-
portant data stream and event processing operations to networking
hardware [4, 17] which provides the needed compute capabilities,
including high processing rates and fast reaction times, as well as
the required networking capabilities at the same time.
In-network computing. INC typically uses PNDs that have a
high-speed data plane and a slower control plane: the former pro-
cesses packets at very high rates with a restricted set of operations,
while the latter can perform arbitrary computations at much slower
speeds. Through the use of specialized hardware, the programmable
data plane combines the advantages of software-defined behavior
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with the processing speeds of traditional networking devices, en-
abling innovative use cases. The strengths of the fast data plane
and the privileged position of PNDs — on-path and close to the
data source — are well-suited for industrial data stream processing.

Györgyi et al. [11], e.g., reduce industrial traffic on restricted
networks by filtering out unnecessary messages based on protocol
information, Kunze et al. [18] and Sankaran et al. [31, 32] perform
computations on the payload, and Cesen et al. [5] use PNDs for
simple decision-making, i.e., triggering emergency stop signals for
robots. Overall, these approaches solve their tasks by looking at
individual packets of a stream which aligns with the main strengths
of PNDs but neglects dependencies spanning across longer data
series often found in industrial systems (cf. Sec. 2.1).

Recently, some research has taken steps toward leveraging this
streaming nature of data on PNDs, which is significantly more chal-
lenging. Laki et al. [22], e.g., consider a robot arm control scenario
in which a control plane program first computes movement trajec-
tories and passes waypoints along the planned paths to the data
plane of a PND and Kunze et al. [21] monitor change rates in sensor
data of continuous processes. These are then compared to position
data from the arms, and real-time-critical control signals for the
next movements are calculated upon approaching the waypoints.
Similarly, Wang et al. [40] control a production line from a PND. As
illustrated by these approaches, considering long-term dependen-
cies inherent to the streaming nature of industrial sensor data opens
further possibilities for monitoring and controlling machinery.
Research gap. The discussed approaches either perform pure per-
packet processing or target low-latency feedback for industrial
control applications. However, no solution focuses on enabling the
analysis of industrial sensor data, which, in turn, enables advanced
applications, such as process anomaly detection [7]. In fact, many of
today’s manufacturing shop floors lack automated solutions, which
means that the mentioned benefits are seldom realized in practice.
What is needed are solutions that can dynamically detect and react
to changes in the process state, e.g., adaptively reducing the often
large volumes of data with regard to the required information.
Contribution. In this paper, we propose Reducio, which compre-
hensively implements and evaluates the processing of industrial
data streams on PNDs. With regard to observing long event se-
ries on network hardware, we build on early ideas by Kunze et
al. [20], who sketched ideas for leveraging longer-term dependen-
cies of industrial sensor data using INC pipelines. In particular,
we extend these considerations by (i) supporting multiple sensors
and machines in generic clocked processes with diverse sensor
types, (ii) introducing additional process state assessment method-
ologies, and (iii) considering complex sensor failures. Additionally,
we provide a broad experimental evaluation based on the scenarios
introduced in Sec. 2.1 using datasets collected at a real fineblanking
line (cf. Sec. 6). In the following, we first give a general design
overview of Reducio in Sec. 3 before we present how our concepts
map to a prototypical implementation for the Intel Tofino in Sec. 4.

3 Reducio – Design Overview
Reducio leverages the cyclic behavior of clocked and discrete manu-
facturing processes to reduce the data volumes of industrial sensor
streams based on the process context and the unique characteristics

of each cycle (cf. Sec. 2.1). While low data resolutions are usually
sufficient, full-resolution data must be available for close inspection
if anomalous events are detected. Reducio maps these considera-
tions to two main components, illustrated in Fig. 2: (1) we identify
process cycles (events) using the characteristic sensor profiles and
summarize them with a few meaningful sensor- and process-de-
pendent key metrics. (2) We use these summaries to assess the
current process state before choosing a suitable data resolution. In
the following, we motivate and discuss these building blocks.

3.1 Process Cycle Detection and Aggregation
Reducio relies on the correct separation of subsequent process cycles.
To separate cycles independent of the used control system, we
exploit discrete process characteristics, which typically have an
active and inactive period, indicated by low and high deflections, as
also illustrated in Fig. 1.
Cycle detection. Reducio detects individual cycles by tracking at
least one sensor signal and identifying the start or end of the active
period. To support multi-sensor setups and ensure an unambiguous
behavior, we always define a primary sensor that triggers the detec-
tion. Reducio can further correlate the results of all available sensors
to identify if the primary sensor is broken or provides inaccurate
readings, such that we can switch the detection to another source.
Data aggregation. When the primary sensor detects a cycle, Re-
ducio generates a summary consisting of key metrics, such as maxi-
mum, minimum, or mean values, gathered from all available sensors.
The metrics depend on the monitored signals and the process. We
can then forward the resulting low-volume stream of summary
packets to subsequent processing components, or we can use it
internally for further analyses. In this paper, we first use the sum-
mary packets to assess the state of the process before deciding on
the required data resolution for forwarding.

3.2 Stability Assessment and Data Resolution
Reducio uses the cycle summaries to assess process stability. While
the exact assessment inherently depends on the characteristics of
each process, stability can generally be determined by tracking
fluctuations in a series of subsequent cycles. Specifically, a stable
process is characterized by little short- and long-term fluctuations
(cf. Fig. 1.2), while unstable processes exhibit fluctuations. In stable
phases, process signals only show expected deviations in a given
window of tolerance, which allows us to safely minimize data res-
olution to key metrics. During unstable phases, Reducio forwards
the raw sensor data to allow for detailed monitoring of anomalies.
Long-term instability. Instability in the form of small cycle-to-
cycle fluctuations amounting to larger differences over longer du-
rations (cf. Fig. 1.3) is relevant for assessing workpiece quality.
Short-term instability. Other instabilities manifest on shorter
time scales (cf. Fig. 1.4). They might require immediate reactions
and can often be detected via cycle-to-cycle thresholds.

3.3 Additional Considerations
Our design allows observing process signals across multiple sources,
for which Reducio needs to be configured to the concrete setup.
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Figure 2: Our system consists of three main components.
The Data Aggregation Unit detects and aggregates individual
process cycles while the System Stability Detection Unit uses
the aggregated information to assess the process stability.
The Failure Detection Unit reacts to immediate deviations.

Configuring Reducio for a specific process. When applying
Reducio to a new process, it needs to be adapted to the process char-
acteristics and the deployed sensor profiles. In particular, we need
to (i) parameterize the cycle detection to correctly distinguish active
and inactive periods, (ii) choose key metrics, and (iii) configure the
stability assessment for the specific properties of the process.
Subsequent processing steps. Reducio provides a basic build-
ing block for event detection and identification for a whole class
of industrial manufacturing processes. Depending on the process,
different subsequent processing steps could, e.g., directly trigger
behavior on the shop floor or automatically tune process parame-
ters. Furthermore, Reducio could integrate with data-stream- and
complex-event-processing frameworks, providing intelligent data
reduction capabilities beyond single machines across connected
shop floors. However, in this paper, we focus on Reducio’s core abil-
ities and how we can realize them in high-performance networking
hardware, specifically the Intel Tofino platform [14].

4 Reducio – Tofino-based Prototype
We prototype Reducio for Tofino, a PND that enables processing
rates of up to 100 Gbps per port, and implement our concept with
three main components as shown in Fig. 2: 1 a data aggregation
unit that detects process cycles and summarizes the related portion
of the sensor data stream using key metrics, 2 a system stability
detection unit that uses the summaries to assess process stability,
and 3 a failure detection unit that monitors the sensor signals (and
their relations) for deviations to enable fast reactions to sensor or
machine failures. Next, we briefly summarize relevant conceptual
specifics of Tofino before presenting our prototype.
Platform specifics. The Tofino uses a pipeline-based, per-packet
processing model to achieve high processing rates on programmable
ASICs [14, 19]. Operations and memory are statically assigned to a
specific pipeline stage and can be used once per pipeline pass. Each
packet passes each stage once. We can perform a fixed number of
consecutive operations, which are limited to those that can be exe-
cuted fast and with predictable latency: multiplications are possible
if one factor is statically defined and access to stateful memory
(i.e., registers) has to be atomic, limiting the program to simple
read-update-write operations. These pipelines can be defined using
the P4 programming language. While registers can be grouped in
arrays, we can only access one entry for each packet. Each packet
can either be (a) forwarded to an external target, (b) recirculated,

i.e., reinserted at the front, or (c) sent to the control plane. From the
general-purpose control plane, we can read and write the current
state from and to the registers. With these specifics in mind, we
next present the components of our prototype, focusing on relevant
details and challenges when realizing the concepts from Sec. 3.

4.1 Data Aggregation Unit
The data aggregation unit detects process cycles and aggregates
sensor data streams as conceptualized in Sec. 3.1. To enable ag-
gregation over massive data streams and the detection of events
with low latency, its fundamental components are implemented en-
tirely in the Tofino data plane with additional failover functionality
provided by the control plane as described in the following.

4.1.1 Event Detection. We detect process cycles (events) in sensor
data streams via the pronounced active and inactive periods of
sensor profiles of clocked processes (cf. Sec. 3.1).
Sensor profile tracking. Events are usually characterized by high
deflections of the observed sensor signal, which settle after the
event is completed. Our event detection, thus, monitors the sensor
data streams to identify events based on two parameters: (i) a noise
threshold 𝛾 , and (ii) a phase change delay 𝑛𝑑 . In short, sensor read-
ings below 𝛾 are generally too low to be part of the actual event
and most likely correspond to the inactive phase characterized by
noise areas before and after the event. We further require 𝑛𝑑 con-
secutive readings below the noise threshold 𝛾 to consider an event
completed to filter outliers and avoid false detections.
Parameterization. 𝛾 and 𝑛𝑑 are process-specific parameters that
need tuning when the process changes. Currently, we manually
analyze data samples of the process and determine 𝛾 and 𝑛𝑑 based
on domain expertise. In the future, the parameters could also be
learned automatically, e.g., by initially forwarding the raw data to
the control plane for a few strokes, where we could then detect the
process frequency [39] and tune the parameters accordingly. Since
the data plane configuration can be updated at runtime, parameters
can also be adjusted for changes in process behavior.
Multiple sensors and sensor failover. Reducio can simultane-
ously monitor multiple sensors, each sensor using an individual
parameterization of 𝛾 and 𝑛𝑑 . For an unambiguous cycle detec-
tion, we always designate a single primary sensor per machine and
collect event data across all sensors associated with the machine
simultaneously when the primary sensor detects a cycle. How-
ever, individual sensors might fail due to the harsh manufacturing
environments. Hence, to mitigate failures of the primary sensor,
our prototype supports sensor failover. For this, the control plane
constantly compares the event detection rates across all available
sensors. If a majority of sensors detect events at a different rate
than the primary sensor, we switch to another sensor. In contrast to
approaches that specifically require redundant sensor signals [24],
our solution can consider different sensor types and frequencies.
Additionally, it is sensitive to a larger range of failure modes beyond
complete sensor failures as it explicitly leverages the semantics of
process cycles instead of plainly comparing raw data streams.

4.1.2 Aggregation. We summarize the data between the start and
end of a cycle using maximum, minimum, and mean values. We
track each metric for each event in a dedicated P4 register. For
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minimum and maximum values, we constantly compare the current
value with the current maximum and minimum. However, the
specifics of Tofino do not allow directly aggregating the mean.
Instead, we capture the sum of all sensor values and the number of
values for each event, which can be processed to the mean value
during any subsequent processing on general-purpose hardware.
Scope. In general, our system can calculate characteristics for mul-
tiple streams at the same time, either for each stream independently
or by considering multiple streams for the same metric. For example,
we could determine the maximum value measured across multiple
sensors or the maximum for each sensor individually. Furthermore,
a single sensor stream can be part of multiple aggregations, and
multiple machines can be observed individually.
Collection. Once we detect the end of an event based on the pri-
mary sensor, we collect the aggregated values from the registers
belonging to related sensors, i.e., all sensors belonging to the same
machine, in a single summary packet and reset the register values
for the next event. To generate and emit the summary packet imme-
diately, we recirculate a single packet per event as we need to read
state from multiple stages. We then use the aggregated information
to assess the stability of the underlying manufacturing process,
which we describe in more detail in the following.

4.2 System Stability Detection Unit
The system stability detection unit monitors event data over a series
of events to assess the long-term stability of the process, realizing the
concepts presented in Sec. 3.2. For this, we need to define a window
of considered sensor readings and a way to analyze the gradient and
standard deviation. Due to the complexity of the involved compute
operations, we split the assessment logic to the joint capabilities
of the data and control plane: a ring-based cache runs on the data
plane and holds the 𝑛 latest values, while we analyze the gradient
and standard deviation on the control plane to assess the stability.
Aggregate cache. The first part of the stability detection is a ring-
based cache that buffers a specific metric for the latest 𝑛 events.
We implement this cache in the data plane using one register array
and one register to account for Tofino’s memory access patterns:
the register array stores the actual values, while the single register
stores a pointer to the array position holding the latest value.
Gradient and standard deviation analyzer. The actual stability
detection uses the data from the aggregate cache and is imple-
mented in the control plane. In regular, configurable intervals, the
control plane retrieves the key values of the most recent 𝑚 events
from the data plane cache (where 𝑚 < 𝑛) and then assesses the
process stability. The standard deviation is calculated of the last
𝑘 < 𝑛 values, where 𝑘 is configurable and determines the reactive-
ness toward phase changes: smaller values result in faster phase
changes but may also cause more incorrect change detections. The
analyzer retrieves only 𝑚 new values that are not yet cached in
the control plane and no more than the 𝑘 values needed for the
currently relevant stability metrics. Finally, the analyzer yields a
classification of the process stability. The system could be config-
ured to detect multiple different classes. In the simplest case, we use
a binary classification, differentiating between stable and unstable.
Decision logic. The data plane labels each summary with the cur-
rent classification. The control plane reconfigures the forwarding
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Figure 3: The System Stability Detection Unit uses the aggre-
gated cycle data to assess the process stability, e.g., based on
the standard deviation and reacts by labeling packets and
configuring forwarding accordingly.

behavior of the data plane in case the stability assessment changes,
forwarding the aggregated cycle summaries in stable phases and
the raw stream if instability is detected.

4.3 Failure Detection
In addition to assessing the long-term stability, Reducio can also de-
tect short-term machine malfunctions and cope with sensor failures.
As described in Sec. 3.2, we check for system failures by defining
thresholds for (i) absolute differences in a signal between cycles or
between multiple signals in the same cycle, or (ii) absolute values
of individual metrics. This enables us to detect anomalies based on
rapid changes in individual signals. Further, we achieve robustness
through observing and combining data across sources and detecting
deviations between them. For example, multiple sensors of the same
type can be observed and deviations between them may indicate
an anomalous state of the machine or sensor. Through additional
sensors, those states can be differentiated. As part of our failure
detection unit, we analyze the stability on multiple sensor signals
independently and determine the overall stability as a majority vote
across all sources (cf. Sec. 4.1.1). Note, that this semantic approach
also works across different signal types and sensor profiles, as long
as all combined sources exhibit process stability characteristics.

5 Applying Reducio to Fineblanking
Reducio is applicable to many industrial processes but needs to be
configured for the unique sensor profiles and dynamics of each
process to maximize its effectiveness. Hence, to show Reducio’s
practical feasibility and demonstrate how it can support specific
requirements, we apply our prototype to one example process with
different sensor types — fineblanking.

5.1 Intricacies of Fineblanking
Fineblanking is a sheet metal forming process designed for high
production quality, e.g., in the automotive and aerospace indus-
tries [16]. It uses a triple-acting press where three characteristic
forces (punch, V-ring, and counterpunch force) interact to form
a complex load collective and perform the actual blanking of the
material for workloads of several thousand strokes at speeds of
up to 140 strokes per minute. We can monitor each fundamental
force signal with one or multiple sensors to detect asymmetries
in the load collective. Additionally, acoustic emission (AE) sensors
provide auxiliary information on the machine health and can detect
early stages of wear and friction [27]. During fineblanking, errors
in the lubrication regime or damage to active tool elements can in-
fluence the force signal profiles [3]. Likewise, analyzing the profiles
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can reveal increasing tool wear [26] or deviations in the workpiece
quality [13]. Hence, fineblanking is a representative example of
clocked and discrete manufacturing processes, as the considera-
tions of Sec. 2.1 apply. Next, we present how we configure Reducio
to monitor a real fineblanking process.

5.2 Configuring Reducio for Fineblanking
Reducio can be configured for the class of clocked and discrete
processes, of which fineblanking is one representative.
Stroke detection. Our prototype detects individual strokes by
observing steep increases and decreases in various force signals
(punch and counterpunch force) as well as an AE signal. Due to
its cyclic profile and low noise characteristics, we choose a single
punch force sensor as the primary sensor to detect strokes, and we
fall back to another source if a failure is detected.
Data aggregation. For each stroke, our data aggregation unit col-
lects the most insightful process-specific key metrics: the maximum
positive force applied to the workpiece and the sum of acoustic emis-
sions during the stroke. The maximum force can be used to detect
fluctuations between two strokes and to determine the long-term
process stability. High acoustic emissions can indicate immediate
problems, such as a jammed tool, or help predict future issues, such
as tool breakages.
Stability detection. In general, we use the standard deviation of
the captured maximum positive force over a window of strokes to
detect instability, where a standard deviation over a certain thresh-
old indicates unstable behavior. However, in addition to stable and
unstable phases, the fineblanking process also entails an additional
ramp-up phase. In this state, the machine needs some time to warm
up, and the measured forces constantly increase before stabilizing.
In this paper, we focus primarily on the default phases of Reducio:
stable and unstable. Hence, we detect and filter the initial ramp-up
phase by monitoring the gradient over a window of strokes and
consider the ramp-up to be completed once the gradient levels out.
However, by utilizing the modularity of our approach, we could
also configure Reducio to explicitly consider the ramp-up behavior
as a dedicated process phase and classify packets accordingly.
Failure detection. We configure an additional failure detection
mechanism that incorporates the AE sensor as it is well-suited for
early detection of critical process failures [27]. In particular, when
observing a sudden drastic increase in the AE signal or an out-
of-bounds force signal, we detect a critical process failure. Using
domain knowledge, we define thresholds for the maximum expected
force during a stroke, as well as the expected AE signal energy over
the duration of each stroke. In our prototype, we use the sum
aggregation function to measure the overall energy by summing
up all absolute AE readings for each stroke. After detailing how
Reducio can be configured for a clocked process, we next assess its
performance with real-world data recorded on a fineblanking line.

6 Evaluation
For this evaluation, we focus on Reducio’s different components
based on our Tofino prototype that we configured for fineblanking.
We start by studying how different sensor types and parameteriza-
tions influence Reducio’s fundamental ability to detect individual

Strokes Unstable Phases
Stable length

ID Steel Yes No Hz # 𝜇 𝜎

E1 42CrMo4 15995 4524 50 715 6.3 7.8
E2 C60 23143 5948 50 778 7.6 9.2
E3 16MnCr5 9594 4535 120 221 20.5 92.9
E4 58CrV4 18788 11162 50 851 13.1 40.8
E5 42CrMo4 830 99 50 10 9.8 6.4

Table 1: The experimental datasets E1-E5 differ in the pro-
cessed steel, the number of stable/unstable strokes, the exe-
cuted strokes per minute, as well as the number of unstable
phases and their length distribution.

strokes before we evaluate Reducio’s theoretical aggregation capa-
bilities. We then assess Reducio in two larger application scenarios:
First, inspired by the goal of predicting workpiece quality based on
sensor data (cf. Sec. 2.1.1), we analyze how well Reducio can provide
critical information on process instabilities while still reducing the
data rate. Second, we evaluate Reducio’s ability to detect events
that require immediate attention, specifically process and sensor
failures. Based on our findings, we then discuss the implications for
the envisioned deployment scenario of multi-machine shop floors
in the subsequent Sec. 7. In the following, we start by presenting
our general evaluation setting and methodology.

6.1 Methodology
We evaluate Reducio using sensor data recorded from a real fineblank-
ing line in a research environment during five experiments. The
process forces were measured by three piezoelectric sensors placed
at different positions of the punch, acquiring data with a frequency
of 10 kHz. Additionally, an AE sensor measured mechanical vibra-
tions with a frequency of 1 MHz close to the punch. Table 1 shows
the main experiment parameters and statistically characterizes the
portion of observed instabilities during each process.
Datasets. The main distinguishing factor of the experiments is the
processed steel, whose characteristics change the process forces. For
example, the alloyed QT-steel 58CrV4 is significantly harder than
the alloyed case hardening steel 16MnCr5, such that process forces
are generally higher. As a result, we observed different numbers of
unstable phases of varying lengths, which we determined following
Niemietz et al. [26]. As Reducio fundamentally leverages process
stability, these different stability characteristics allow us to assess
Reducio’s performance from multiple perspectives. Note that E5
was aborted as the punch broke, resulting in an interesting dataset
for the analysis of short-term machine failures.
Evaluation. To enable reproducibility, we replay the four recorded
sensor signals from two machines, M1 and M2, through separate
network interfaces connected to one Tofino-based switch running
Reducio. The resulting (potentially reduced) data stream is sent to
machine M2, where it is captured for analysis. Additionally, we
log the state of our control plane, including information about de-
cisions made by our prototype. We use this information to study
the performance of our online approach, e.g., comparing the detec-
tion capabilities of the Stability Analyzer with an offline algorithm.
While the offline algorithm uses the same methodology as described
in Sec. 4.2, it determines unstable phases on the full set of captured
summary packets instead of making near real-time decisions. Since
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Figure 4: 𝐹1 score (colored) of the stroke detection for dif-
ferent values of noise threshold 𝛾 and phase change delay 𝑛𝑑
for the E1 and E2 datasets, and force (F) and acoustic emis-
sion (AE) sensors. High scores indicate correctly identified
cycles.

the offline approach is not limited by access intervals, it provides
an optimal baseline for the timely detection of process instability.

6.2 Data Aggregation Unit
Reducio’s first component, the data aggregation unit, initially detects
individual process cycles and then summarizes each cycle in a single
summary packet using key metrics across multiple data streams. In
the following, we first study the detection of cyclic events before
we turn our focus to the aggregation capabilities.

6.2.1 Cycle Detection. The correct detection of individual cycles
from the available signals is essential to ensure that exactly one
summary packet is generated for each cycle. Different processes,
source materials, and sensor types cause signals with different
profiles, amplitudes, sampling rates, and noise levels, for which
we can configure our detection using the noise threshold 𝛾 and
phase change delay 𝑛𝑑 . For fineblanking, the force signals provide
a visually distinguishable profile for each stroke, while AE signals
are significantly noisier and might make reliable detection more
challenging. Hence, we evaluate the impact of the profile and the
parameterization on the correctness of the event detection.
Approach. We simulate the stroke detection over a range of pa-
rameters for the E1 and E2 datasets as they represent materials
with sufficiently different processing characteristics and include
recorded force and AE data. For the subsequent stability detection,
missed strokes increase delay and reduce accuracy. Wrongly de-
tected strokes based on noise could heavily impact the stability
metrics and cause the system to falsely claim process instability.
Therefore, the cycle detection parameters must be optimized such
that the number of detected real strokes is maximized (true posi-
tive), the number of missed strokes is minimized (false negative),
and the number of detections without a corresponding real stroke
is also minimized (false positive). We evaluate the accuracy and
robustness of our cycle detection by checking if Reducio detected
each stroke at the correct point in time compared to the process
knowledge contained in the original datasets.
Results. Fig. 4 shows the stroke detection rates from our simulation
depending on different parameter settings for 𝛾 and 𝑛𝑑 , where a
darker shade of green indicates a higher 𝐹1 score and, therefore, a
good detection of cycles (many true positives, few false positives).
The range of available parameter choices varies across the sensor
types and the processed material. Regarding the used sensor types,
we can, e.g., observe that the force sensor in experiment E1 has a

0.0

0.5

1.0

Sc
or

es

Recall
Precision
F1

E3 E4 E5 E2 E1
0

500

Vo
lu

m
e/

St
ro

ke
[k

B
]

Raw
Opt.
Min.
Reducio

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: Reducio’s practical stability assessment (top) and
data reduction (bottom) performance for all datasets, ordered
by decreasing mean length of their unstable phases.

very large range of good parameters but cannot be configured per-
fectly with a maximum 𝐹1 score of 0.996. In contrast, the drastically
smaller parameter range of the E1 AE sensor allows for perfect
stroke detection. Regarding the used material, the AE sensor in E2
has a broader range of parameters compared to its E1 counterpart
and still allows for perfect detection, while the force sensor in E2
has a smaller range but yields a slightly higher 𝐹1 score of 0.999.
Takeaway.We conclude that Reducio can reliably detect cycles from
different sensor profiles, if parameterized correctly, but sensors used
for the cycle detection need to be selected carefully. Ideally, the profiles
of such sensors reflect the cyclic behavior of the underlying process and
feature a measurable deflection during the active phases. However, the
detection parameterization still needs to be adjusted when changing
process parameters, e.g., when a different material is processed. Yet,
even if sensor profiles are unsuitable or no suitable parameters exist,
they can still be part of the subsequent aggregation triggered by
another sensor with reliable event detection.

6.2.2 Data Aggregation. Reducio’s data aggregation summarizes
the raw data of entire cycles into a single summary packet, signifi-
cantly reducing the data volume without losing the most important
data points that are relevant during regular operation. The efficiency
of the data reduction partly depends on the process frequency and
the sampling rates of the observed sensors and generally decreases
with increasing process speeds and lower sampling rates. We can
mathematically determine the minimum data volume for a single
cycle for varying frequencies based on the packet sizes, i.e., in our
case, 51 B packets for raw sensor signals and 97 B for summary
packets. For realistic speeds of fineblanking, i.e., up to 140 strokes
per minute, and sensor sampling rates of 10 kHz (force) or higher
(e.g., AE), Reducio could theoretically reduce the data volume in our
configuration to less than 0.05 % of the raw data stream, showing
the immense potential of such an aggregation technique. In prac-
tice, however, Reducio only applies the data reduction if it classifies
the process as stable. Consequently, the actual data volume also
depends on the stability properties of the process (cf. Table 1) and
the stability analyzer component. For that reason, we now explicitly
focus on Reducio’s overall performance and investigate how well it
addresses the requirements outlined in Sec. 2.1.
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Figure 6: Detection rate and delay for unstable strokes across different phase lengths for the E2 experiment.

6.3 System Stability and Failure Detection
We evaluate Reducio based on our general considerations for clocked
and discrete processes in Sec. 2.1 with two scenarios of practical
relevance. First, we analyze if Reducio provides high coverage of
unstable strokes with high-resolution data while minimizing the
overall data rate. Second, we assess if Reducio is able to promptly
detect tool and sensor defects at low latencies.

6.3.1 Scenario 1 - Workpiece Quality. In manufacturing, work-
pieces produced during stable process phases are often considered
to be of good quality, while larger-than-normal fluctuations can be
indicators of decreased quality. However, fluctuations do not neces-
sarily require the immediate shutdown of the machine. Instead, it
is more important to record as many anomalous strokes as possible
with the full sensor resolution while keeping the data rate as low
as possible when the process is operating as expected. Hence, we
study Reducio’s coverage of anomalous strokes in relation to its
potential to save bandwidth using all datasets and configuring it to
use a force sensor for the stroke detection.
Coverage. Fig. 5 (top) shows precision, recall, and 𝐹1 scores for
the detection of anomalous strokes for all datasets, which we sort
based on the mean length of unstable phases from largest (left, E3)
to smallest (right, E1). Based on our system design, we expect Re-
ducio to perform worse for shorter phases of instability. The recall
indicates how well unstable strokes were detected and decreases
if unstable strokes are missed. In our use case, this results in the
loss of relevant information we intend to collect during anomalies.
The precision considers how many of the detected strokes were
unstable and decreases if more stable strokes are incorrectly labeled
as unstable. In our use case, this results in unnecessarily detailed
data transmissions and, therefore, an increased utilization of net-
work bandwidth. Since we want to optimize both metrics, we are
interested in the 𝐹1 score as the harmonic mean between recall and
precision. For all considered datasets, Reducio achieves 𝐹1 scores
of over 0.75. As expected, for datasets with longer mean unstable
phases (left), Reducio performs better.
Volume reduction. Fig. 5 (bottom) shows Reducio’s achieved re-
duced data rate in comparison with (i) the raw data rate, i.e., the
baseline case of sending full resolution data, (ii) the minimum data
rate, i.e., only sending summary packets, and (iii) the theoretical
optimum of always forwarding data in the desired level of detail,
i.e., sending the raw data for anomalies and the minimum for sta-
ble strokes. As can be seen, Reducio always performs close to the
optimum, only slightly undershooting the theoretical optimum and
achieving a reduction to less than 20 % of the original data rate for
most experiments. The worse performance for E3 and E4 of around

35 % can be explained by a lower sensor reading rate per stroke due
to higher punch frequencies at constant sampling rates (E3) and
high rates of unstable phases (both). Additionally, we notice a small
systemic delay of Reducio, which impacts both the stroke coverage
and the volume reduction. Hence, we next study this aspect in more
detail using the example of E2.
Detection delay. Fig. 6 illustrates the mean detection delay in
strokes (dots) together with the percentage of detected unstable
strokes (bars) for unstable phases of different lengths contained
in the E2 dataset. We consider an unstable phase to be detected
if Reducio captures data at full resolution for at least one stroke
of the unstable phase. Based on this definition, inspecting Fig. 6
reveals that our approach cannot reliably detect very short phases
of unstable strokes. This is reasoned by two aspects: (1) the Stability
Detection in the control plane reacts to data only after a stroke (delay
of at least one stroke due to the previous aggregation), and (2) we
always compute our stability metrics over windows of multiple
strokes. However, as soon as detection becomes possible, we react
quickly with delays of only up to three strokes in most cases, with
only very few outliers mainly explained by complete sensor outages.
This delay also explains why the coverage achieved by Reducio
depends on the mean length of unstable phases. Overall, our results
are in line with our goal of detecting longer unstable phases.
Takeaway. Our results indicate that our stability detection is gener-
ally capable of achieving a good coverage of unstable strokes while
drastically reducing the overall data rate for realistic datasets. While
Reducio, conceptually, cannot detect very short unstable phases, we
achieve high coverage of the more important longer unstable phases,
which can be detected with reasonable latencies.

Given Reducio’s inability to identify short unstable phases, we
next focus on the second scenario and consider machine defects
and sensor failures that require short-term reactions.

6.3.2 Scenario 2 - Detecting Failures. Reducio’s extensive moni-
toring capabilities allow for various failure detection mechanisms,
which we demonstrate in two examples.
Tool defects. Tool defects and malfunctioning periphery equip-
ment are typical root causes of lasting machine damage, and it is
important to detect them quickly. By focusing on the E5 dataset,
which contains a critical process failure, we can evaluate Reducio
with regard to such issues. Specifically, we aim to detect the issue
as early as possible, ideally before the actual failure occurs. For
this, we set up Reducio with three 10 kHz force sensor data streams
used for the stroke detection and an additional 1 MHz AE sensor.
We then configure the failure detection to raise alarms for out-of-
bounds strokes on the AE signal. Analyzing Reducio’s behavior in
this setting, we find that Reducio can predict the tool breakage 61
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Figure 7: Reducio’s use of the primary sensor which periodi-
cally fails and works for different durations.

strokes earlier compared to only observing individual force signals,
which illustrates how Reducio’s capability of tracking multiple het-
erogeneous sources and considering multi-sensor events can be
sensibly used for improving its detection performance.
Sensor defects. In addition to the defects of machine parts, the
rough environment of manufacturing machines also increases the
probability of sensor failures, which also need to be detected and
dealt with as quickly as possible. To limit the impact on production,
our goal is to combine results from multiple sensors and switch to
reliable sources automatically, aiming to use the designated primary
sensor whenever possible. To evaluate this scenario, we load Reducio
with four copies of a single force sensor but let the primary sensor
fail completely in periodic intervals of different durations, i.e., it is
active for 𝑛 strokes, then inactive for 𝑛 strokes, and so forth. Fig. 7
shows recall, precision, and 𝐹1 scores of our detection mechanism,
where true positives are cases where the primary sensor is inactive
and we have correctly switched to a secondary sensor, while true
negatives mean that we use the primary sensor and it is active.
As can be seen, we almost never use the primary sensor if it is
offline, while we increasingly use secondary sensors correctly for
increasing offline times of the primary sensor. This is because we
compare the detection of all tracked sensors and change to a stable
sensor as soon as the current sensor is classified as an outlier. Before
we switch back to the primary sensor, we require it to be stable for a
number of subsequent cycles since we prioritize correct detections
over the use of the primary sensor, assuming that the fallback is
sufficient in the meantime. Overall, these results show that Reducio
quickly switches back to the primary sensor as soon as it recovers.
Takeaway. The two examples show that Reducio can effectively
identify machine faults and cope with sensor failures by integrating
data from multiple sources. While failure handling depends on the
process, Reducio’s diverse monitoring capabilities enable a large range
of possible mechanisms addressing these needs.

In conclusion, our evaluation shows that Reducio is capable of
detecting process cycles across heterogeneous sensor sources in a
failure-tolerant fashion and uses the aggregated cycle information
to detect failures and long-term process instabilities for multiple
sensors on a single machine. With this approach, we can reduce the
overall data volume by up to 90 % without losing important process
information. In the following, we discuss the implications of our
findings for the wider envisioned deployment scenario in Sec. 7.

7 Discussion
Manufacturing companies are set to benefit from collecting and
analyzing the vast amounts of industrial data streams generated by

machines and sensors in modern manufacturing environments [42].
However, many manufacturing companies are still unable to reap
any benefits as their shop floors are not fit for handling these data
volumes in near real-time, so automated data collection and analysis
solutions are largely missing in today’s shop floors.

Reducio aims to support near real-time analysis and data collec-
tion for clocked and discrete processes, through preprocessing and
analyzing data streams on network devices on the edge. For this,
we leverage process semantics to significantly reduce data volumes
when processes are in a stable state while we still provide high-
resolution data for anomalous phases to enable a detailed analysis
of, e.g., the workpiece quality when it is needed most. In this paper,
we have shown that Reducio seamlessly maps to PNDs and that we
can effectively track the fineblanking process.

In this section, we discuss how Reducio can be adapted for other
manufacturing processes with different data processing require-
ments and how it could be integrated into comprehensive data
stream processing platforms for edge environments, delineating
that Reducio is not limited to the presented fineblanking process.

7.1 Scalability
Reducio relies on anomalies only occurring infrequently. Hence, for
larger deployments targeting many machines on the same shop
floor, we can provision resource capacities based on the expected
data reduction rate (cf. Sec. 6.2) and the number of processes ex-
pected to simultaneously be in an anomalous state as Reducio dras-
tically reduces the data volumes for all other machines. While this
approach cannot handle the worst-case scenario where all pro-
cesses have anomalies at the same time, we argue that this risk
is far outweighed by the gain of enabling companies to deploy
data-driven analyses in the first place by reducing requirements.

Currently, Reducio is deployed on a single, independent PND
that is positioned on the data path close to the data source, which
enables high communication efficiency and supports multiple con-
nected and independent data streams across different machines on
a shop floor. In the future, we aim to broaden our scope and look at
diverse, distributed edge systems consisting of multiple PNDs inter-
acting with each other and integrate Reducio with general-purpose
data stream processing systems for cloud-edge environments, such
as NebulaStream [45]. In this setting, we envision data aggrega-
tion primitives and event definitions to be deployed on PNDs from
such systems, integrated into dynamic, cross-platform processing
pipelines. This way, the resulting streams and detected events can be
forwarded and processed on general-purpose hardware, enabling,
e.g., complex event processing, including event data from heteroge-
neous sources. By defining abstract events and processing targets,
workloads could be deployed on any target in the cloud-edge con-
tinuum based on optimization goals and available resources. Due
to their privileged position and high processing rates, PNDs could
play a critical role in such heterogeneous, multi-platform pipelines.

In addition to these general considerations on the target process,
Reducio’s scalability also depends on the selected hardware platform.
For this paper, we have implemented Reducio on a Tofino PND as
we target larger deployments with multiple machines.
Reducio on Tofino. The prototype used throughout this paper uses
resources on two separate hardware pipelines for data aggregation
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and stability assessment, running on a single PND. Each pipeline
represents an independent hardware block of the Tofino platform.
Both pipelines occupy up to 83.3 % of the available stages, although
they are mostly only lightly loaded. In particular, our prototype
uses less than 10 % of the available TCAM and match-action cross
bars while needing up to 20.1 % of the SRAM and 15.6 % of the ALUs
of the stability assessment pipeline. Overall, our prototype leaves
plenty of room for other functionality such that companies invest-
ing in a PND can also co-locate other relevant functionality or scale
to larger deployments. If we utilize the full available resources on
both pipelines, our Tofino 1 prototype can track up to 10 metrics for
a single machine. With a conservative cache size of 500 cycles (i.e.,
incorporating three minutes in our fineblanking example), Reducio
can scale up to about 100 independent machines, as long as all
machines can be captured with the same set of metrics. This is a
limitation of our implementation, which cannot combine multiple
metrics in a single physical register. As discussed in Sec. 5.1, indus-
trial companies often operate multiple identical or similar machines
in parallel. Therefore, this requirement is fulfilled in those cases.
With the more recent Tofino 2 hardware, we can increase the scal-
ability to 18 metrics per machine for up to 100 machines, which
shows that the technological advances in PND hardware increas-
ingly alleviate resource bottlenecks. Overall, deploying Reducio on
Tofino is particularly attractive for large, specialized companies that
are interested in tracking a limited number of key metrics across a
larger number of similar machines on a single shop floor.

7.2 Applicability
Reducio’s reduction concepts are applicable to a wide range of
industrial processes, which we demonstrated for fineblanking in
this paper. In the following, we discuss Reducio’s applicability to
other processes.
Related processes. While each clocked process has a unique op-
erating principle, they all have similar characteristics, challenges,
and difficulties and produce periodic, repeating signals from which
deviations can indicate process instability. Production rates in other
stamping processes can exceed 2000 strokes per minute, and typical
manufacturing facilities employ approximately 10 to 80 machines
in parallel production lines. Hence, these settings are ideal for ben-
efiting from Reducio’s data reduction capabilities on the shop floor.
Metrics. For our prototype, we have provided a limited set of core
metrics. While sufficient for realizing the analysis for fineblanking
and illustrating Reducio’s fundamental concepts, tracking other
processes might require alternative metrics. For example, related
work has shown that tracking statistical measures, such as me-
dian, variance, and standard deviation [8], is possible using P4 in
general, and reformulations and approximations of mathematical
problems [18, 33] can be implemented as metrics on Tofino.
Stability detection. Our stability detection is a two-component
mechanism making binary decisions on the process stability from
the control plane. However, we can easily adapt this binary notion to
further classes by using additional metrics in the control plane and
defining new processing and forwarding rules. We could also realize
this component entirely in the data plane, e.g., based on related
work [6, 46], if even faster responses are required, but the feasibility
depends on the specific stability metrics for a given process. Reducio,

therefore, allows individual analysis and classification modules
to be deployed either in the control plane or the data plane. To
parameterize these classes, we currently rely on explicitly given
domain knowledge. In the future, this process might be automated
by observing a longer series of raw or aggregated cycles in advance
and learning the expected behavior under normal conditions.
Other applications. Beyond analyzing anomalous phases, Reducio
can also support other tasks. For example, Reducio could automati-
cally trigger workpiece inspections or automatic rejections based
on the detected signal deviations. Embedding Reducio in the over-
all process control is another straightforward extension, e.g., to
signal to the control system that an action is required to automat-
ically correct the detected deviations. However, possible control
responses are highly process- and control-specific such that general
solutions are hard to design. Further, through integrating Reducio
into distributed cloud-edge infrastructures and providing extensible
building blocks to define events and processing primitives, generic,
event-driven data streams could be observed, analyzed, aggregated,
and combined with external information.

8 Conclusion
The growing sensor data streams in modern industrial environ-
ments are one important source for expanding domain knowledge
and helping to improve manufacturing processes. However, they
also pose a challenge for industrial companies whose forwarding,
processing, and storing infrastructures are typically not built for
such immense volumes. What is needed are solutions that enable
these improvements while simultaneously reducing the data rates
and the infrastructural load, ideally only keeping those data points
that hold important information.

Addressing this need, Reducio targets clocked processes, which
are characterized by repeatedly executed process cycles with very
characteristic sensor profiles. We leverage this knowledge to detect
individual process cycles and summarize their information in a
handful of key metrics. The metrics allow us to assess the process
stability, detect anomalous events, and, ultimately, decide the result-
ing data resolution to reduce the transmitted data volumes while
still providing the required level of information in critical situations.
Our evaluation on a real fineblanking process proves that Reducio
can satisfy the requirements for two distinct application scenarios,
and we further demonstrate how different parameterizations allow
for performance finetuning of our event and stability detection.
With appropriate parameters, Reducio accurately summarizes in-
dividual events from raw sensor data and detects longer unstable
phases reliably, while only very short phases may be missed.

Overall, our work contributes to a vision of hybrid solutions
making full use of the edge-cloud continuum as our approach al-
lows, e.g., the summary packets to be sent to a central cloud while
analyzing anomalous traffic in more detail on the edge. More prac-
tically applicable solutions in this vein will be necessary to enable
sustainable and efficient industrial environments of the future.
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