
VGPrio: Visually Guided HTTP/3 Prioritization
Constantin Sander, Ike Kunze, Dario Veltri, Klaus Wehrle

Communication and Distributed Systems, RWTH Aachen University, Aachen, Germany
{sander, kunze, veltri, wehrle}@comsys.rwth-aachen.de

© IFIP, 2025. This is the author’s version of the work. It is posted here by permission of IFIP for your personal use. Not for redistribution. The definitive
version was published in Proceedings of the 2025 IFIP Networking Conference.

Abstract—HTTP prioritization allows to signal the priority of
web resources to aid and speed up the webpage loading process.
However, setting optimal resource priorities is challenging. Typ-
ically, generalized priority strategies are used to achieve good
performance for most websites, but the strategies struggle in
certain scenarios reducing human-perceivable performance.

Thus, we propose VGPrio, an approach that automatically
optimizes resource priorities w.r.t. visual metrics / human-
perceivable performance. VGPrio uses a Bayesian optimiza-
tion–based method to learn prioritization strategies for websites
that specifically improve the human-perceivable SpeedIndex.
Through its sample-efficient method, VGPrio only requires few
iterations while our evaluation on a public website corpus shows
that it can improve the SpeedIndex by up to 50% compared
to default strategies evading strong detriments and being more
widely applicable than related work aiming at similar goals. As
such, VGPrio represents a promising option to improve human-
perceivable web performance beyond manual optimization.

Index Terms—HTTP Resource Prioritization, Web Perfor-
mance, SpeedIndex, Bayesian Optimization.

I. INTRODUCTION

Modern websites consist of many resources and each has a
different impact on the page-loading process and the user’s
visual perception [1], [2]. In particular, essential resources
need to be transferred as early as possible to quickly advance
the rendering state of a web page. HTTP addresses this
challenge with resource priorities to send certain resources
earlier than others, thus speeding up the page load [2]–[4].
Typically, the priorities are set by the browsers, which use
different, generalized prioritization strategies to decide on the
actual schedule and assign priorities based on a resource’s
type. However, each strategy has specific advantages and
drawbacks for distinct websites and/or network scenarios [2],
[5], [6]. While experimental approaches aim to address these
weaknesses with more fine-grained generalized strategies, they
can still introduce significant detriments and are not directly
deployable in practice [2], [5], [7], such that a clear one-size-
fits-all solution does not exist.

Accounting for this observation, research has studied the
efficacy of overriding prioritization schedules on the server
and using website tailored strategies instead. For instance,
Reinforcement learning (RL) can be used to provide these
tailored schedules [8] but typically requires vast amounts of
data for training [9]. Thus, simplified simulations are used
to efficiently determine PLT-related objectives that RL can
improve upon. However, page load time (PLT) metrics do not
correlate well with human perception, questioning the benefit
of these solutions for user satisfaction.

In contrast, visual metrics, such as the SpeedIndex, show
better correlation [10]–[12] but are harder to simulate as
they require intricate knowledge of the (visual) dependencies
of web page resources and their interplay with the browser
rendering pipeline [13]. As a result, related work usually
gathers the SpeedIndex via capturing the viewport of real
browsers [2], [10], [14]. However, relying on real browsers
incurs substantial computational overhead, so applying previ-
ous learning-based prioritization approaches to the SpeedIndex
is infeasible. Overall, effective HTTP prioritization schemes
based on visually meaningful metrics are still missing.

In this work, we fill this gap with VGPrio, a visually guided
Bayesian optimization–based method for improving HTTP/3
resource priorities. VGPrio collects SpeedIndex samples taken
from page loads in a real browser and uses Bayesian optimiza-
tion [9] and resource clustering on these samples to derive
website-specific resource schedules. Since Bayesian optimiza-
tion is known to be sample efficient, VGPrio requires only
a few samples for training, thus providing a feasible runtime
while still relying on an expensive yet visually meaningful
metric that resonates with human perception. We evaluate the
performance improvements of VGPrio on a common corpus of
webpages and find that VGPrio is able to improve performance
for certain websites by more than 50%. In the median, it
achieves around 9% improvement while significantly reducing
detriments in comparison to other prioritization strategies.
Hence, overall, VGPrio presents an efficient and visually
guided approach to resource prioritization that can automat-
ically adapt to web pages and can be applied to any website.

Specifically, we make the following contributions:
• We describe challenges for prioritization and why user-

perceivable performance metrics are essential for solutions.
• We present how VGPrio tackles these challenges and learns

prioritization strategies that improve on visual metrics.
• We evaluate VGPrio’s performance on different websites

and network configurations to characterize its performance
in different scenarios. We show that VGPrio is able to
improve performance in many scenarios.

• We discuss how to efficiently deploy VGPrio, and provide
guidance concerning its extensibility and future proofness.

Structure. In Sec. II, we introduce essential web page loading
mechanics and performance metrics. We then present the
design of VGPrio in Sec. III and our training and evaluation
methodology in Sec. IV. We evaluate the performance of
VGPrio in Sec. V. In Sec. VI, we position VGPrio in the
context of related work. Sec. VII discusses larger implications
of VGPrio. We conclude the paper in Sec. VIII.



II. BACKGROUND

Loading a web page relies on a fine-grained interplay
between resource dependencies and the browser rendering
pipeline. VGPrio leverages specific observations of this in-
teraction to derive optimized resource schedules. Hence, to
better position the design of VGPrio in this domain, this
section describes how browsers load a web page, how resource
prioritization can influence and speed up this process, and how
corresponding web performance impacts can be measured.

A. Web Page Loading Process and Critical Path

Loading a web page starts with the browser downloading
and parsing the main HTML document to discover the initial
structure of the page and its entailed resources [15]. The
browser then concurrently downloads, evaluates, and renders
the new resources to eventually display the complete web page.
However, certain resources, such as Javascripts or stylesheets,
can change the page structure and its visible layout. Thus,
to avoid inconsistent states, such resources are blocking, i.e.,
the parsing and rendering of other resources is halted until the
blocking resource is downloaded and evaluated. Consequently,
blocking resources and their dependencies have a crucial
impact on web performance and form the critical path: this
path needs to be processed in line before the browser can start
rendering the web page and its other, non-blocking resources,
such as images. Accounting for this diversity in importance
for the page load, HTTP includes a dedicated mechanism for
specifying which resources to transmit with which priority
so that important resources can ideally be transmitted more
quickly than other resources.

B. HTTP/3 Prioritization

Starting with HTTP/2 [4], browsers can signal resource
priorities to web servers to inform about resource impor-
tance. While HTTP/2, originally, used a complex dependency
graph [4], HTTP/3 and the most recent HTTP/2 RFC [16]
remove this graph, but let browsers use the Extensible Prioriti-
zation Scheme (EPS) [3]. Specifically, every HTTP request can
be assigned a priority with one out of eight urgency values and
an incremental flag. Servers can then process the requests in
order of ascending urgencies, where same-urgency requests are
either processed round robin when the incremental flag is set
or in order of arrival. To set the priority signals during loading,
browsers use different heuristics [2], [6]. Chrome, e.g., follows
a sequential approach by not setting the incremental flag
and giving blocking resources the highest priorities. Similarly,
Firefox switched to a sequential approach with HTTP/3 while
it used a complex parallel approach with HTTP/2 to also load
resources incrementally [6]. Other browsers used (weighted)
round robin with HTTP/2 that can now only be expressed as
pure round robin in the EPS. Importantly, no single heuristic
(graph nor EPS-based) yields the best performance in all
scenarios as a website’s performance can also rely on certain
non-blocking resources that the heuristics do not account
for [2], [6]. For example, while prioritizing blocking resources
helps progress the critical path, images may crucially shape the

appearance of a page and need to be loaded quickly, especially
when considering user-perceivable performance. Such nuances
are covered with different performance metrics.

C. Web Performance Metrics

There are multiple metrics for gauging how fast browsers
display a web page [10]–[12]. The PLT measures the time
from the initial request until all resources have been fully
evaluated and loaded. However, the PLT has been found to
correlate poorly with human perception [10]–[12] as it ignores
the visual appearance of a page. For example, above-the-fold
(ATF) resources, i.e., ones that are visible in the viewport, are
important for human perception, while below-the-fold (BTF)
resources do not have an immediate impact; PLT gives equal
weight to both kinds of resources.

In contrast, visually guided metrics consider the visual
appearance of a website as a whole and, thus, implicitly the
different impacts of ATF and BTF resources. For instance,
the SpeedIndex [12] integrates the visual completeness
of a web page over time into a single value to describe
how fast the browser displays the actual web page. This
approach is computationally more expensive, as it uses
screenshots of a real browser loading a page to compute
the visual completeness, but correlates well with human
perception [10]–[12]. However, until now, the SpeedIndex
and resource prioritization were considered independently
and were not jointly optimized which explains the detriments
that are sometimes observed [2], [6].

Takeaway. How fast a web page loads is defined by
its used resources that impact performance differently. As
a result, browsers use heuristics to set HTTP priorities to
load important resources quicker. Yet, these heuristics are not
guided by human-perceivable performance metrics such as
the SpeedIndex and can thus show detriments.

Since web content is arguably intended for humans, VG-
Prio makes central use of the SpeedIndex to gain human-
perceivable performance improvements, as we detail next.

III. DESIGN

Focusing on the effects of web performance on human per-
ception, VGPrio derives tailored per-website HTTP/3 prioriti-
zation strategies that minimize a web page load’s SpeedIndex.
For this, VGPrio navigates the large prioritization space of
all possible resource prioritization permutations and evaluates
its performance. To do so efficiently, VGPrio subdivides
the space and explores it using Bayesian optimization (BO)
to enable discovering strategies with the highest impact on
user-perceived performance. In the following, we first give
an overview of VGPrio’s general design before we provide
detailed information on how it optimizes the HTTP/3 priorities
and how prior web page information is used to support the
optimization approach.



example.com
Resource Priorities

SpeedIndex Performance Results

Resource
Information

Resource
Clustering

Bayesian
Optimization

Web Browser

+
Group
Priorities

Group
Resources

1 2

Fig. 1: VGPrio has two main components: web page-informed
resource clustering is used to group resources limiting the
dimensionality of our optimization space and Bayesian op-
timization is used to efficiently optimize the resource group
priorities guided by SpeedIndex samples.

A. Overview

VGPrio is designed to optimize the SpeedIndex of a website
for which it repeatedly, yet efficiently, finds and evaluates dif-
ferent possible prioritization schedules. Doing so, it identifies
priority impacts and guides the overall strategy into the direc-
tion of the best SpeedIndex performance (cf. Figure 1). For-
malized, it focuses on the optimization problem argminx f(x)
where f(x) describes the SpeedIndex of a web page load with
resources priorities x. That means, VGPrio adjusts x to reach
a configuration with an improved SpeedIndex. However, this
optimization problem comes with two main challenges:

First, calculating the SpeedIndex, as described in Sec-
tion II, consists of a page load including the intertwined and
concurrent web page loading pipeline. Therefore, deriving a
closed-form solution of f(x) is prohibitively difficult, and the
optimization problem cannot be solved analytically. Instead,
f(x) can only be seen as a black-box function that is also
expensive to evaluate, as a real browser needs to fully load
the web page, which can take up to several tens of seconds.

Second, the parameter space of resource priorities x can
quickly explode. In particular, websites can easily consist of
50 or more resources (cf. Fig. 4) and each resource has eight
possible urgency values plus the incremental flag (cf. Sec. II).
This results in 16n possible prioritization combinations where
larger websites strain the approach and its scalability signif-
icantly, especially in light of the expensive objective. Hence,
the size of x needs to be limited by grouping and excluding
certain combinations to bound complexity.

Given these conditions, VGPrio uses two building blocks:
1 Bayesian Optimization. VGPrio uses Bayesian optimiza-

tion (BO) [9], [17] to minimize f(x). BO specifically targets
black-box functions and can learn the SpeedIndex behavior
of the loading process by repeatedly sampling f(x). Addi-
tionally, BO is sample-efficient, i.e., it requires few samples
for training, which is particularly beneficial in light of the
expensive page load process. In contrast, alternatives, such as
deep reinforcement learning (DRL), also apply in general but
require prohibitively large amounts of data.
2 Resource Clustering. VGPrio employs a web-page-

informed resource clustering to contain the parameter space of

x. While our optimization problem can generally grow nearly
unlimitedly with the number of resources and BO struggles
with large input spaces, many resource priority combinations
are prohibitive or do not need full flexibility. For instance,
deprioritizing blocking resources is detrimental and resource
groups can have similar influence on the objective such that
their priority combinations can be aggregated. Clustering these
combinations with web page information thus allows us to
reduce the space, include specific domain knowledge, and
relax the problem.

In the following, we describe the building blocks in detail
and show how they are connected as visualized in Figure 1.

B. Bayesian Optimization

BO optimizes black-box functions by cleverly sampling
their input space to find estimated minima. For this, BO (typi-
cally) remodels the functions via Gaussian processes and uses
uncertainty and value estimates to find new sampling points via
a so-called acquisition function. These newly found sampling
points are then used to update BO’s model to improve its
certainty and value estimates. This target-driven acquisition of
new sampling points allows BO to be very efficient, especially
when used with expensive black-box functions.

To apply BO to our use case, we model the web page
loading process as a function f(x), which yields the Speed-
Index when using prioritization x. For now, x represents a
vector of resource priorities, where every resource establishes
two entries in the vector consisting of its urgency and the
incremental flag. For sampling f , we fully load the according
web page given resource priorities x and use the perceived
web performance as result of f . Since web performance
measurements can be noisy, we sample f ten times and use the
average of the ten runs as the sample for BO. Applying BO
with the UCB [9] acquisition function, we repeatedly evaluate
the web performance of different prioritization schedules and
automatically reach a prioritization x that minimizes the
SpeedIndex.

However, when directly representing each resource in x, x
grows with the number of resources, such that our approach
would be sensitive to a web page’s size. Furthermore, BO
scales badly to large input spaces. To address this challenge,
we limit the input space by clustering resources, so x repre-
sents the priorities for groups of resources.

C. Resource Clustering

To limit the input space and avoid the curse of dimension-
ality, we cluster resources by their web page meaning and
also remove certain groups from the input space to relieve
optimization further. Specifically, we extract type and visual
information of resources, which is then used as follows:

First, we combine non-blocking script resources, such as
asynchronous Javascripts, into one group in the optimization
vector, such that these resources receive their own priority
signal. Blocking resources, on the other hand, are excluded
from the optimization, as they reside on the critical path of
the page, so require highest priority and get urgency 0.



tbftbf netemnetem

h2o Chrome
veth

tbf

netem

Bandwidth 
Shaping
Delay + 
Loss

QueueQueue Delay / LossDelay / Loss

Web Server Lighthouse DNS Server

Emulated Network

Priorities SpeedIndex

Fig. 2: Emulated network testbed for web page loading: Web
server and browser reside in different namespaces that are
connected via virtual links that are shaped to represent various
bandwidth, loss and latency restrictions.

Second, we divide images into subgroups through k-means
clustering on their height, width and whether they are ATF
resources. We choose k = 3 for the best trade-off between
cluster cohesion and input space complexity. In most cases,
these three groups resemble small, big and BTF images.

Third, we combine all other resources into one group of the
optimization vector for which we apply the standard priority
but decide on the incremental flag.

These group priority parameters are then used as x, forming
a 9-dimensional (non-blocking urgency+incremental, 3 × im-
ages u+i, other i) input vector on which BO can optimize. For
retrieving the actual resource priorities, e.g., when evaluating
a newly acquired sampling point, we invert the clustering and
apply the group priorities to the group resources, which then
enable correctly prioritizing the HTTP resource requests.

IV. TRAINING & EVALUATION METHODOLOGY

We train and evaluate VGPrio in a reproducible testbed
environment similar to MahiMahi [18]. In particular, we first
download websites, then host them on a local web server, and,
finally, access them with a browser through a virtualized net-
work with configurable conditions. The resulting SpeedIndex
in this process is then used for our final evaluation but also
for training. In the following, we describe this process and the
different components of our training and evaluation pipeline
in more detail in Sec. IV-A. In Sec. IV-B, we then describe our
evaluation scenarios.

A. Training & Evaluation Testbed

We use a training and evaluation methodology that allows
reproducibility of our results. In particular, we use a focused
testbed with well-controlled network conditions that locally
replays target websites and captures web performance metrics
through Lighthouse [19].
Overview. At its core, our testbed consists of an adapted
h2o web server, an emulated network, a DNS server, and a
local browser embedded in the Lighthouse web performance
measurement framework as shown in Fig. 2.
Web Page Replay. To conduct experiments on a specific
website, we first download the website and store all entailed
resources as well as the request/response headers used for

the transfers. We then host the website on our h2o web
server, which can enforce different prioritization strategies.
We request the websites using Chrome 95.0.4638.54 from
within Lighthouse to extract meaningful web performance
metrics, such as the SpeedIndex, and configure Lighthouse
to represent a local desktop browser while also disabling
its internal network simulation, which is known to provide
unsteady estimates [20]. Instead, we explicitly control the
network conditions with our emulated network.
Network Emulation. For connecting browser and web server,
we deploy an emulated network using virtual ethernet links
and network namespaces. This setup allows us to configure
different network conditions including bandwidth, round-trip
time (RTT), and packet loss via Linux tc, netem, and tbf.
Specifically, we dedicate different namespaces to different
functions to avoid backpressure / influences between the tc
qdiscs and the network stack biasing its function [21], [22].
The testbed is deployed on a consumer-grade PC equipped
with an Intel i5-4590 CPU and 16GB of RAM, representing
consumer-perceived performance.
Training. For training, we use our testbed to gather SpeedIn-
dex samples of a web page for differing prioritization sched-
ules which VGPrio can then use to optimize on. However,
before starting the actual training, we first load the web
page once and execute a custom Javascript to gather web
page resource information by extracting images and script
tags from the page as well as specific features, such as
image positions. We then feed this information into VGPrio’s
resource clustering to generate the resource groups on which
BO operates. Subsequently, we also run Lighthouse 30 times
with the default prioritization to estimate the variance of the
measurements, priming the BO model on the expected noise.

After this setup, we commence VGPrio’s actual optimiza-
tion process. Starting with a first random schedule, we let
VGPrio generate a new priority schedule via BO which we
configure on our web server. We then measure the SpeedIndex
for the given web page ten times and take the mean of these
ten measurements (to even out noise) as sample for BO. For
each website, we perform 50 iterations of this process, aiming
to minimize the SpeedIndex and improve the perceivable
performance resulting in a final prioritization strategy.
Evaluation. For evaluation, we again use our testbed to gather
SpeedIndex samples of a web page subject to the optimized
strategy and compare it against prioritization schedules defined
by the other prioritization strategies. Specifically, we compare
the strategies in the scenarios that we define next.

B. Training & Evaluation Scenarios

We train and evaluate VGPrio on different websites and in
different network scenarios and compare its performance to
different prioritization strategies.
Website Corpus. For our evaluation, we rely on a website
corpus originally proposed by Wijnants et al. [2]. Specifically,
the corpus consists of 40 popular websites with different
sizes, numbers of resources, and complexities, thus equally
representing simple but also resource-intensive web pages. We



faster slowerfaster slowerfaster slowerfaster slower
−0.5 0.0 0.5

∆SpeedIndex

0.00

0.25

0.50

0.75

1.00

CD
F

10Mbps, 50ms, 2%

faster slowerfaster slowerfaster slowerfaster slower
−0.5 0.0 0.5

∆SpeedIndex

10Mbps, 50ms, 0%

faster slowerfaster slowerfaster slowerfaster slower
−0.5 0.0 0.5

∆SpeedIndex

10Mbps, 10ms, 0%
Chrome Firefox VGPrio RR

(a) Performance for 10Mbps with varied RTTs and Loss

faster slowerfaster slowerfaster slowerfaster slower
−0.5 0.0 0.5

∆SpeedIndex

0.00

0.25

0.50

0.75

1.00

CD
F

50Mbps, 50ms, 0%

faster slowerfaster slowerfaster slowerfaster slower
−0.5 0.0 0.5

∆SpeedIndex

2Mbps, 50ms, 0%

faster slowerfaster slowerfaster slowerfaster slower
−0.5 0.0 0.5

∆SpeedIndex

2Mbps, 50ms, 2%
Chrome Firefox VGPrio RR

(b) Performance for varied bandwidth

Fig. 3: Relative SpeedIndex changes of VGPrio, round robin and Firefox’s strategy against Chrome’s strategy.

discard one internal web page and www.bitly.com from the
corpus due to unavailability and replay issues. Otherwise, we
use an exact copy of the web pages with unaltered HTTP
headers and body contents, including possible compression
used by the sites.
Network Configurations. We evaluate VGPrio in a broad
range of network scenarios with different bandwidths, RTTs,
and loss patterns. Specifically, we use bandwidths from
2Mbps to 50Mbps, RTTs from 10ms to 50ms, and consider
packet loss of up to 2%.
Prioritization Strategies. We compare VGPrio’s performance
to three prioritization strategies: round-robin scheduling,
Chrome’s prioritization strategy, and an HTTP/3 compatible
adaption of Firefox’s parallel strategy used for HTTP/2 [6]. We
specifically use this adaption, as Firefox introduced a unique
parallel strategy with HTTP/2 (cf. Sec. II) that it discarded for
a sequential strategy very similar to Chrome with HTTP/3 [6].
As such, we use the parallel strategy to still represent a
wide variety of prioritization schedules. To gain the specific
priorities, we load every web page once via Chrome and also
via Firefox to gather the sent prioritization signals and then
use the curated signals to override the prioritization with our
adapted h2o server.
Experiments. We repeat all evaluation runs 30 times and we
show the corresponding median in our plots. Our artifacts are
available at https://github.com/COMSYS/VGPrio.

V. EVALUATION RESULTS

In this section, we present the page load performance
results of VGPrio across multiple representative scenarios.
First, in Sec. V-A, we compare the performance of VGPrio to
the default strategy of Chrome, the adapted Firefox strategy,
and a plain round-robin strategy. Thereafter, we delve deeper
into the behavior of VGPrio and identify specific website
characteristics which VGPrio can benefit the most in Sec. V-B.
We further characterize the learning progress of VGPrio in
Sec. V-C and, finally, compare VGPrio to SipLoader [23], a
related approach, on a subset of our scenarios in Sec. V-D.

A. Page Load Performance

For our initial assessment, we use the performance of
Chrome’s default prioritization as our baseline and compute

the relative SpeedIndex improvement of VGPrio’s, Firefox’s
and the round-robin strategy. Fig. 3 shows corresponding
CDFs for experiments in six representative network scenar-
ios. We distinguish between three base scenarios that use a
bandwidth of 10Mbps with different RTTs and loss rates in
Fig. 3a and three diversified scenarios for performance and
prioritization in Fig. 3b, where we also vary the bandwidth.
In each plot, values below 0 on the left side represent relative
performance improvements compared to Chrome, whereas
values above 0 on the right represent deteriorations.
Base Scenarios (10Mbps). Starting with the best base sce-
narios in Fig. 3a, we find that VGPrio improves the median
SpeedIndex compared to Chrome by 10% (mean 13%) in the
left-most setting, i.e., for a bandwidth of 10Mbps, an RTT
of 50ms, and 2% packet loss. In contrast, Firefox and round
robin decrease performance by 2% in the median where round
robin shows weaker improvements but stronger detriments
than Firefox in total. As such, VGPrio outperforms Chrome
as well as Firefox and round robin. Moreover, we identify
performance improvements of more than 15% for 30% of the
websites and that performance never degrades by more than
17%. In particular, this worst-case degradation only occurs for
a single website, while 90% of websites do not experience a
detriment above 6%. We attribute the strong detriment to the
probabilistic packet loss increasing noise such that VGPrio is
more challenged finding the model, which could be improved
with more samples for averaging at cost of longer training.

For the same scenario but without packet loss (center), we
see slightly weaker improvements, but also weaker detriments
as transmissions are generally smoother. VGPrio still outper-
forms Chrome, Firefox, and round robin. More than 20%
of websites see improvements above 10% and the maximum
detriment is capped at 5%. Similarly, the performance benefits
persist with a lower RTT of 10ms (right), showing that
VGPrio can effectively improve performance at 10Mbps.
Next, we investigate if these benefits also translate to other
bandwidths and more challenging scenarios.
Diverse Scenarios. Fig. 3b (left) shows VGPrio’s performance
for a bandwidth of 50Mbps and an RTT of 50ms with no
packet loss. In this scenario, all prioritization schedules show
very similar performance. We attribute this effect to the higher
bandwidth moving the bottleneck to the processing side of web



0.75

0.50

0.25

0.00

−0.25 -∆
Sp

ee
dI

nd
ex

0.75

0.50

0.25

0.00

−0.25 -∆
Sp

ee
dI

nd
ex

Website

0

50

100

150
10Mbps, 50ms, 0%

w
w

w.w
ikipedia.org

w
w

w.gov.uk
w

w
w.facebook.com

w
w

w.sciencedirect.com
w

w
w.spotify.com

w
w

w.researchgate.net
w

w
w.vtm

.be
w

w
w.dem

orgen.be
w

w
w.google.com

w
w

w.intel.com
w

w
w.github.com

w
w

w.ed.gov
w

w
w.gravatar.com

w
w

w.opera.com
w

w
w.gnu.org

w
w

w.etsy.com
w

w
w.phpbb.com

w
w

w.apache.org
w

w
w.w

3.org
w

w
w.nature.com

w
w

w.academ
ia.edu

w
w

w.joom
la.com

w
w

w.nytim
es.com

w
w

w.w
ordpress.com

w
w

w.harvard.edu
w

w
w.youtube.com

w
w

w.statcounter.com
w

w
w.sciencem

ag.org
w

w
w.dotdash.com

w
w

w.canvas.be
w

w
w.im

gur.com
w

w
w.colum

bia.edu
w

w
w.telegraph.co.uk

w
w

w.reddit.com
w

w
w.im

db.com
w

w
w.m

sn.com
w

w
w.cnet.com

w
w

w.pinterest.com

Website

0

50

100

150
2Mbps, 50ms, 0%

Images Resources Size (1/10MB) Performance

Fig. 4: VGPrio improvements per website compared to number
of images and resources (sorted by number of images).

page loading, such that network scheduling does not show
strong improvements, but also no detriments.

For lower bandwidths at 2Mbps (Fig. 3b, center and right),
we see stronger impacts. The network presents a strong
bottleneck which VGPrio can alleviate by more than 50%
for some websites while avoiding the strong detriments that
Firefox and round robin incur (more than 40% of the websites
have up to 50% deterioration). For 2Mbps, 50ms RTT and
0% packet loss, VGPrio improves the median SpeedIndex by
∼6% (mean 11%) and shows benefits for more than 80% of
the websites. These benefits grow beyond 25% improvement
for 20% of the websites.

When adding 2% packet loss, VGPrio shows a similar
performance as before. The median improvement reduces to
3.5% (mean 12%), but again more than 75% of the websites
see benefits and 20% achieve improvements above 27%.
Takeaway. All in all, our results show that VGPrio improves
median SpeedIndex performance w.r.t. Chrome and avoids
strong detriments that Firefox’s or round-robin scheduling
introduce. For lower bandwidths or higher packet loss, VGPrio
improves more than 75% of websites by up to 50%.

Having studied the general performance of VGPrio and in
which network scenarios websites can benefit the most, we
next focus on the impact of specific website characteristics
on performance, aiming to provide further guidance regarding
ideal deployment scenarios for VGPrio.

B. Web Page Performance Impacts

The websites in our website corpus are diverse and range
from simple to resource-intensive ones. We, thus, next analyze
which websites can benefit the most. For this, Fig. 4 shows

0 10 20 30 40 50

Iteration

0.00

0.25

0.50

0.75

1.00

sc
al

ed
SI

Fig. 5: Training progress / performance of VGPrio per iteration
for all scenarios scaled by minimum/maximum.

the inverted SpeedIndex difference of VGPrio compared to
Chrome (-∆SpeedIndex) for each website in relation to the
number of images and resources and the overall size. In
contrast to Sec. V-A, values above 0 represent performance im-
provements, whereas values below 0 represent deteriorations.

Our first main finding is that the achievable performance
benefits generally increase when more images reside on a
page in the 2Mbps case. In particular, pages with many
images, such as imdb.com, but also many resources, such as
nytimes.com, benefit from the targeted prioritization of re-
sources for acceleration. We conjecture that VGPrio correctly
distributes the available bandwidth to the important resources,
while delaying unimportant ones.

For a higher bandwidth of 10Mbps, the resource count
impact vanishes and pages with few images benefit similarly
to pages with more images. Still, especially pages with a large
overall size benefit. Here, we conjecture that VGPrio correctly
determines the specific impact of the (few) resources on
performance and delays unimportant resources that sensitively
block bandwidth due to their relatively high size.
Takeaway. We derive that VGPrio benefits pages with many
resources and images most, where correct prioritization pays
out, but also pages with relatively big resources where single
wrong prioritization decisions can sensitively delay page load.

C. Training Progress

Focusing on the applicability of VGPrio, we next study its
training effort. In particular, we evaluate how the SpeedIndex
improvements progress with the number of training iterations
to assess how many iterations might be needed in practice to
generate a suitable prioritization schedule.

Fig. 5 shows the SpeedIndex progress of VGPrio for every
run across all prior scenarios where we plot VGPrio’s training
SpeedIndex values scaled to the range from 0 to 1 based on
the minimum/maximum observed, i.e., lower values represent
a better performance. The red line describes the mean of all
training results per iteration.

As can be seen, VGPrio’s training shows an asymptotic
behavior where 15 iterations already suffice to reach 25% of
the overall reached minimum. Hence, our results indicate that
VGPrio does not need the full 50 iterations we used during
training and instead allows a trade-off between iterations and
performance which also mirrors in its runtime.
Runtime Impact. Since VGPrio relies on real web browser
measurements, every iteration represents a real web page



faster slowerfaster slower
−0.5 0.0 0.5

∆SpeedIndex(VGPrio)

0.00

0.25

0.50

0.75

1.00

CD
F

10Mbps, 50ms, 0%

faster slowerfaster slower
−0.5 0.0 0.5

∆SpeedIndex(VGPrio)

2Mbps, 50ms, 0%
VGPrio SipLoader

Fig. 6: Relative SpeedIndex changes of related work SipLoader
in comparison to VGPrio.

load via Lighthouse with additional processing steps, e.g., for
extracting the SpeedIndex. We found a median Lighthouse
runtime of 32 s that translates to a total of approximately
4.5 h of measuring the SpeedIndex with 50 iterations and ten
repeated measurements per iteration. Additionally, our network
emulation restarts with every repetition for accuracy to reset
any potential state. However, this restart can be omitted leaving
Lighthouse as main contributor. Yet, as 15 iterations suffice
to reach 75% of VGPrio’s performance, this runtime could
be reduced to below 1.5 h or 10min when parallelizing the
individual measurements. In comparison, the actual runtime
of BO and our clustering is negligible.
Takeaway. While the reliance on real browser measurements
introduces costly computations, VGPrio’s use of BO and clus-
tering for reduced parameter spaces allows it to still achieve
good results with few iterations, allowing effective training
times below 10min when fully parallelizing the measurements.

D. Comparison with Related Work

Besides comparing VGPrio to standard industry prioriti-
zation strategies, we also compare VGPrio with the pub-
licly available and also visually guided web accelerator
SipLoader [23]. In short, SipLoader extracts visual dependen-
cies of websites and integrates a Javascript resource scheduler
into web pages that starts resource requests on the client
side, preferring visually impactful resources. It specifically
does not use a learning-based method that optimizes the
overall SpeedIndex, but a greedy approach, which loads most
impactful resources first, representing a contrasting solution
to VGPrio. Thus, we reran the provided analysis pipeline of
SipLoader on our website corpus and reran our measurements
for comparing the approaches. However, we noticed that 20 of
our 38 web pages experienced a strong change in their visual
appearance with missing elements. We observed similar effects
in SipLoader’s original artifacts. For ten more pages, we saw
slight design changes caused by SipLoader rewriting web page
content. Thus, we compare VGPrio and SipLoader only on the
remaining eight pages that were not impacted.

In Fig. 6, we use VGPrio as reference and show SipLoader’s
relative SpeedIndex difference. As can be seen, SipLoader
achieves improvements for some of the websites but also
detriments for others. Median differences are around −2.5%
and 4% for our 10Mbps and 2Mbps cases with means
above 4%/11%. We deduce the improvements to SipLoader’s

specific advantage of deciding when a request starts, while
VGPrio ultimately relies on the browser starting the request
to then prioritize it. On the other hand, we deduce the perfor-
mance disadvantages of SipLoader (aside its web page rewrit-
ing stage) to following a greedy, per-element optimization
approach. We object that this approach neglects the interplay
of all resources, which defines the joint visual appearance
and, thus, the overall SpeedIndex. Moreover, SipLoader cannot
control prioritization features such as incremental streams
which can help to load progressive images in parallel. Hence,
performance-wise, there is no clear winner among the two
approaches. However, considering the error-prone nature of
SipLoader, which changes the look of many web pages, we
conclude that VGPrio presents an equally beneficial, but more
robust and widely applicable solution to improve human-
perceivable performance.
Takeaway. Related work using visual impact for Javascript-
based scheduling achieves similar results to VGPrio, but is
less robust and, thus, not as widely applicable as VGPrio.

VI. RELATED WORK

With its focus on HTTP prioritization, VGPrio contributes
to a longer line of research on improving web performance. We
distinguish three main branches of work, focusing on Server
Push, client-side request scheduling, and HTTP prioritization.
Server Push Optimization. Server Push is an HTTP fea-
ture that enables web servers to initiate unsolicited resource
transfers prior to requests to improve performance. In general,
related work on server push finds that simply pushing all
available resources is detrimental for performance [14], [24]
and that targeted push instrumentation is required. Hence,
Vroom [25] implements a dependency resolution process to
identify critical resources and push these independent of the
other resources. Similarly, HTTP Steady Connections [26]
analyzes web page dependencies to identify when a browser
is waiting for a specific resource, aiming to provide resources
in a way that they are fully available when needed. Alo-
hamora [14] uses DRL combined with PLT simulations to
find network- and website-specific push strategies. Klotski [27]
and Webgaze [28] gather user preferences for resource priority
(manually and via eye-tracking), and then specifically push the
identified resources. All approaches have in common that they
either require manual intervention or rely on the PLT. Hence,
they do not offer automated and human-perception-guided
optimization. Furthermore, Server Push has been deprecated
by Chrome [29] and Firefox [30], due to its unclear benefits
and drawbacks, such that more than 80% of web users [31]
cannot use it. In contrast, VGPrio automatically improves on
the SpeedIndex and is independent of client support, as it
overrides the signal at the server which subsequently needs
to decide on requests scheduling either way. Hence, even
deprecating HTTP prioritization in clients would not render
VGPrio inapplicable.
Client-Side Request Scheduling. Another branch of work
shifts the request scheduling to the client with a Javascript-
based scheduler that overrides the actual web page, sends the



required requests at the anticipated times, and reconstructs
the page. For instance, Polaris [32] dissects Javascript code
and identifies whether two scripts access the same resources.
Thereafter, it decides, whether execution needs to be blocked
and waiting for a script is required, or whether blocking
can be skipped. SipLoader [23] gathers the visual impact
of resources to then request visually important requests first.
Both approaches alter web pages to implement their sched-
ulers, which is known to be error-prone [33], and we indeed
saw issues when applying SipLoader in our evaluation (cf.
Sec. V-D). Additionally, the scheduler incurs overhead w.r.t.
transfer size and computation. In contrast, VGPrio does not
require additional Javascript files and does not alter web pages,
but instead alters the server-side prioritization signals.
HTTP Prioritization. In the field of HTTP prioritization,
different works aim for generalized strategies for more fine-
grained resource scheduling [2], [5], [7], while still being
universally applicable to a broad set of websites. This website-
agnostic view does not reap all of the available performance
benefits and it can also have detrimental effects, as we have
seen for round robin and Firefox. As an alternative, DRP-
RL [8] uses DRL for generating website-specific resource
priorities. The approach uses an objective that is guided by
the PLT and how long critical resources were blocked which is
simulated to account for the increased amounts of data needed
for DRL. Hence, DRP-RL does not directly focus on human-
perceivable performance and relies on simulations, which also
makes it hard to adapt to visual metrics. With VGPrio, we
specifically avoid these constraints by relieving the need for
high amounts of data via BO and clustering to directly use
SpeedIndex samples from real browsers.

VII. DISCUSSION

After evaluating the performance of VGPrio and positioning
it in the context of related work, we finally discuss VGPrio
with a specific focus on deployability and future use cases.

A. Deploying VGPrio

Our VGPrio proof-of-concept implementation shows that
website-specific priority strategies can achieve good perfor-
mance, while avoiding detriments (as, e.g., caused by the
generalized strategies) or limiting applicability (e.g., due to
forcefully rewriting web pages as done by SipLoader). How-
ever, VGPrio also comes with a higher complexity than the
generalized strategies. Still, this complexity does not rule out
a larger-scale deployment and neither do seemingly prohibitive
training cost and model selection as we discuss next.
Training Cost. The training phase of VGPrio can take sev-
eral hours. Moreover, in theory, every web page requires
its own training, incurring a high computation penalty that
is not necessary with the traditional prioritization strategies.
However, subpages of a website typically follow a similar
structure [14] that VGPrio captures. Thus, retraining is not
needed for such website subpages as long as VGPrio can
distinguish and associate the resources. This is the specific task

of VGPrio’s resource clustering, which can be adapted accord-
ingly to map resource information between such pages. For
example, we could load each subpage once to determine the
resource mapping or we could leverage information contained
in common content management systems without needing
a full reload [14]. Further generalizing this consideration,
VGPrio does not necessarily require retraining for all web page
changes, but only when the structure is changed. Additionally,
the training process can be sped up by distributing the page
load process to multiple machines as demonstrated in Sec. V-C.
Model Selection. Besides training, VGPrio also needs to select
the correct model for each scenario. Selecting the correct
model per web page is trivial, but also requires network
condition estimates, such as bandwidth, RTT, and loss. No-
tably, these estimates can be gathered a-priori from public
user speedtest data [34], [35] (for bandwidth and loss) or at
connection establishment (for RTT) to select the closest model.
Inference Cost. Generating resource priorities on the server
running the full VGPrio pipeline is not excessively expensive,
but potentially unwelcome when processing huge amounts of
requests per second. Yet, it is not necessary to run the full
pipeline every time, but it is possible to cache its results, sav-
ing computation and freeing resources. The gathered priority
information can then be set by webservers or CDNs without
fully executing VGPrio.

B. Future Effect of Prioritization

Our evaluation shows that VGPrio is limited in its effective-
ness by resource prioritization being actually effective. With
high bandwidths, we could see that the performance bottleneck
shifted away from the network to client-side processing. In
this scenario, prioritization and, thus, also VGPrio were less
effective. Yet, we argue that web pages will further grow in
resource count and size in the future, as has happened in
the past [1], straining the network again. Additionally, client
processing power will also grow, again focusing performance
issues on the network side and how resources are ultimately
transferred. As such, we argue that VGPrio will be able to also
affect higher bandwidths when processing power and web page
weight increase. Moreover, we think that lower bandwidth
scenarios are also of interest given that median bandwidths
in mobile networks are in the range of 15Mbps [36] and
adversarial scenarios with high packet loss can still happen.

C. Other Metrics and Future Web Features

As VGPrio models the overall objective as a black-box func-
tion, it is independent of the actual metrics used to define the
aim of optimization. Hence, besides the SpeedIndex, VGPrio
can also use other metrics, e.g., the Largest Contentful Paint
(LCP), as its optimization goal. The independent modeling
and the sample-efficiency allow for freedom in which metrics
are used with no need for simulations. As such, we argue
that VGPrio is also easily adaptable to future web features:
updating the browser suffices for the optimization to account
for new features that would otherwise require intricate domain
knowledge and reconfiguration of performance simulations.



VIII. CONCLUSION

In this paper, we present VGPrio, an approach to create and
learn website-optimized prioritization strategies that directly
improve the SpeedIndex, a visual, human-perceivable web
performance metric. As the SpeedIndex is hard to simulate,
VGPrio uses real web browser measurements that, however,
incur a significant cost. Thus, VGPrio introduces a sample-
efficient Bayesian optimization-based learning approach in
combination with web resource clustering to both reduce the
parameter space and efficiently scan it for feasible training.
Our results indicate that VGPrio can significantly reduce detri-
ments of traditional prioritization strategies while retaining
and even improving the performance. In particular, VGPrio
improves the mean performance for many websites by more
than 10% with some websites seeing performance benefits of
above 50% for low bandwidths. At the same time, VGPrio
does not need to alter web page content, making it more
easily applicable than related work, and its training time can be
reduced to few minutes. As such, VGPrio presents a valuable
new method for faster web page loads.

ACKNOWLEDGMENTS

This work has been funded by the German Research Foun-
dation DFG under Grant No. WE 2935/20-1 (LEGATO). We
thank the anonymous reviewers for their valuable feedback
and Hendrik Buschbaum for facilitating measurements with
SipLoader in our testbed.

REFERENCES

[1] HTTP Archive, “State of the Web: Total Number of Requests,”
https://httparchive.org/reports/state-of-the-web, 2024, (Accessed on
07/03/2025).

[2] M. Wijnants, R. Marx, P. Quax, and W. Lamotte, “HTTP/2 Prioritization
and Its Impact on Web Performance,” in World Wide Web Conference.
ACM, 2018.

[3] K. Oku and L. Pardue, “Extensible Prioritization Scheme for HTTP,”
RFC 9218, Jun. 2022.

[4] M. Belshe, R. Peon, and M. Thomson, “Hypertext Transfer Protocol
Version 2 (HTTP/2),” IETF, RFC 7540, 2015.

[5] R. Marx, T. De Decker, P. Quax, and W. Lamotte, “Of the Utmost
Importance: Resource Prioritization in HTTP/3 over QUIC,” in Web
Information Systems and Technologies (WEBIST ’19), 2019.

[6] C. Sander, I. Kunze, and K. Wehrle, “Analyzing the Influence of
Resource Prioritization on HTTP/3 HOL Blocking and Performance,”
in Network Traffic Measurement and Analysis Conference. IFIP, 2022.

[7] R. Marx, T. De Decker, P. Quax, and W. Lamotte, “Resource Multiplex-
ing and Prioritization in HTTP/2 over TCP Versus HTTP/3 over QUIC,”
in Web Information Systems and Technologies (WEBIST ’19), 2020.

[8] K. Wong and L. Cui, “Fine-grained HTTP/3 prioritization via reinforce-
ment learning,” Computer Networks, vol. 233, p. 109880, 2023.

[9] R. Garnett, Bayesian Optimization. Cambridge University Press, 2023.
[10] T. Zimmermann, B. Wolters, and O. Hohlfeld, “A QoE Perspective

on HTTP/2 Server Push,” in Workshop on QoE-Based Analysis and
Management of Data Communication Networks. ACM, 2017.

[11] J. Rüth, K. Wolsing, K. Wehrle, and O. Hohlfeld, “Perceiving QUIC:
do users notice or even care?” in Conference on Emerging Networking
Experiments And Technologies. ACM, 2019.

[12] T. Hoßfeld, F. Metzger, and D. Rossi, “Speed Index: Relating the
Industrial Standard for User Perceived Web Performance to web QoE,”
in International Conference on Quality of Multimedia Experience, 2018.

[13] E. Bocchi, L. De Cicco, and D. Rossi, “Measuring the Quality of
Experience of Web users,” SIGCOMM Comput. Commun. Rev., vol. 46,
no. 4, p. 8–13, Dec 2016.

[14] N. Kansal, M. Ramanujam, and R. Netravali, “Alohamora: Reviving
HTTP/2 Push and Preload by Adapting Policies On the Fly,” in
Networked Systems Design and Implementation. USENIX, 2021.

[15] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall,
“Demystifying Page Load Performance with WProf,” in Networked
Systems Design and Implementation. USENIX, 2013.

[16] M. Thomson and C. Benfield, “HTTP/2,” RFC 9113, Jun. 2022.
[17] J. B. Mockus and L. J. Mockus, “Bayesian approach to global opti-

mization and application to multiobjective and constrained problems,”
Optimization Theory and Applications, vol. 70, no. 1, pp. 157–172, 1991.

[18] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein, J. Mickens,
and H. Balakrishnan, “Mahimahi: Accurate Record-and-Replay for
HTTP,” in Annual Technical Conference. USENIX, 2015.

[19] “Introduction to Lighthouse – Chrome for Developers,” https://developer.
chrome.com/docs/lighthouse/overview, (Accessed on 05/03/2025).

[20] Matt Zeunert, “How does Lighthouse simulated throttling work?”
https://calendar.perfplanet.com/2021/how-does-lighthouse-simulated-
throttling-work/, 2021, (Accessed on 07/03/2025).

[21] “Best Practices for Benchmarking CoDel and FQ CoDel,”
https://www.bufferbloat.net/projects/codel/wiki/Best practices for
benchmarking Codel and FQ Codel/#the-netem-qdisc-does-not-
work-in-conjunction-with-other-qdiscs, (Accessed on 02/03/2025).

[22] “tc-netem - Limitations,” https://man.archlinux.org/man/tc-netem.8.en#
LIMITATIONS, (Accessed on 02/03/2025).

[23] W. Liu, X. Yang, H. Lin, Z. Li, and F. Qian, “Fusing Speed Index during
Web Page Loading,” Proc. ACM Meas. Anal. Comput. Syst., vol. 6,
no. 1, feb 2022. [Online]. Available: https://doi.org/10.1145/3511214

[24] T. Zimmermann, B. Wolters, O. Hohlfeld, and K. Wehrle, “Is the
Web Ready for HTTP/2 Server Push?” in Conference on Emerging
Networking EXperiments and Technologies. ACM, 2018.

[25] V. Ruamviboonsuk, R. Netravali, M. Uluyol, and H. V. Madhyastha,
“Vroom: Accelerating the Mobile Web with Server-Aided Dependency
Resolution,” in Conference of the ACM Special Interest Group on Data
Communication. ACM, 2017.

[26] S. Kim and W. Lee, “HTTP Steady Connections for Robust Web
Acceleration,” in World Wide Web Conference. ACM, 2023.

[27] M. Butkiewicz, D. Wang, Z. Wu, H. V. Madhyastha, and V. Sekar,
“Klotski: Reprioritizing Web Content to Improve User Experience on
Mobile Devices,” in Networked Systems Design and Implementation.
USENIX, 2015.

[28] C. Kelton, J. Ryoo, A. Balasubramanian, and S. R. Das, “Improving
User Perceived Page Load Times Using Gaze,” in Networked Systems
Design and Implementation. USENIX, 2017.

[29] “Removing HTTP/2 Server Push from Chrome,” https://developer.
chrome.com/blog/removing-push/, 2022, (Accessed on 07/03/2025).

[30] “Firefox 132 for developers,” https://developer.mozilla.org/en-US/docs/
Mozilla/Firefox/Releases/132, 2024, (Accessed on 06/03/2025).

[31] Statcounter, “Browser Market Share Worldwide,” https://gs.statcounter.
com/browser-market-share#monthly-202404-202407-bar, 2024, (Ac-
cessed on 07/03/2025).

[32] R. Netravali, A. Goyal, J. Mickens, and H. Balakrishnan, “Polaris: Faster
Page Loads Using Fine-grained Dependency Tracking,” in Networked
Systems Design and Implementation. USENIX, 2016.

[33] V. Agababov, M. Buettner, V. Chudnovsky, M. Cogan, B. Greenstein,
S. McDaniel, M. Piatek, C. Scott, M. Welsh, and B. Yin, “Flywheel:
Google’s Data Compression Proxy for the Mobile Web,” in Networked
Systems Design and Implementation. USENIX, 2015.

[34] Measurement Lab, “The M-Lab Network Diagnostic Tool Data Set,”
https://measurementlab.net/tests/ndt, (Accessed on 07/03/2025).

[35] C. Dovrolis, K. Gummadi, A. Kuzmanovic, and S. D. Meinrath, “Mea-
surement lab: overview and an invitation to the research community,”
SIGCOMM Comput. Commun. Rev., vol. 40, no. 3, p. 53–56, Jun. 2010.

[36] R. Sanchez-Arias, L. G. Jaimes, S. Taj, and M. S. Habib, “Understanding
the State of Broadband Connectivity: An Analysis of Speedtests and
Emerging Technologies,” IEEE Access, vol. 11, pp. 101 580–101 603,
2023.


