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Abstract—Sourcing medical experience in finding effective
patient-treatment strategies is challenged by strict privacy
requirements these days. Specifically, the cross-institutional
discovery of “similar” patients based on certain attributes,
e.g., to align treatment strategies or collect clinical expertise
on rare diseases, is currently either impossible, impractical,
or it exposes sensitive data. Addressing this research gap,
we propose PATDISCOVER, which is a fully homomorphic
encryption-based design that supports multiple attribute types
of medical importance, such as Enum, Range, and Distance. This
way, institutions may compose and submit complex queries to
several other institutions to discover relevant patients elsewhere.
We evaluate PATDISCOVER extensively using real-world patient
data from nuclear medicine and demonstrate its adequate
performance, scalability, precision, and security for real-world
use. In conclusion, our work enables the privacy-preserving
discoverability of patients for various applications in healthcare
(research) and beyond.

Index Terms—information security; healthcare; rare diseases;
distributed analysis

1. Introduction

Improving the individual treatment of patients is a con-
tinuous challenge despite the shift to data-driven, evidence-
based healthcare [1], irrespective of the disease or symptoms
at hand. Indeed, various advances have been made, with
electronic health records (EHRs) and related concepts being
used more widely nowadays [2], [3]. These approaches
facilitate a better and scalable monitoring of, for example,
(personalized) treatment strategies, among other benefits.
Accounting for the data’s sensitivity [4]-[6], the desire
for data sovereignty [7], and the expectation of a consent
mechanism [8] is crucial in this context and must strictly be
considered at all times. Hence, indexing, discovering, and
exchanging patient data face multiple vital challenges.

A common approach to deal with the sensitivity of
data and privacy of individuals is to aggregate information,
e.g., by considering k-anonymity [9], applying differential
privacy [10], or by utilizing distributed concepts like the
personal health train [11]. By design, these approaches
only give insights into patient statistics while abstracting

individual attributes, thereby ensuring patient privacy. This
aggregation level of detail only covers a subset of relevant
applications in healthcare. However, both for research and
treatment, knowing about ‘“similar” patients across insti-
tutions is critical to, for example, assess an individual’s
likely response to specific drugs [12], [13], analyze patient
trajectories under specific conditions [14], or reach out to
compatible patients and/or practitioners in charge concerning
new developments in the field [15]. Specifically, with rare
diseases such as brain tumors [16], patient data is often
scarce. This scarcity is accentuated by a limited number
of cases per institution, making it challenging to utilize
(traditional) statistical approaches on local data. We thus
exemplarily motivate our research based on this use case in
nuclear medicine.

Due to the benefits, there is a huge interest in identifying
“similar” patients globally to strengthen the foundation for
clinical and research decision-making. Similar patients must
express specific features for being eligible for relevance.
Given the sensitive nature of such data and the imperative-
ness of reliably protecting patient privacy, simply storing
expressive patient data in unprotected central repositories is
not an option. Thus, the domain of healthcare is in urgent
need of a privacy-preserving alternative for the decentralized
discovery of similar patients across institutions.

Conceptually, various building blocks come to mind when
designing a solution for enhanced privacy, and indeed, related
work mirrors this diversity. Secure multi-party computation,
as explored in prior work [17], [18], offers robust privacy
but requires significant precautions to ensure data availability
while scaling poorly in settings with numerous institutions. In
contrast, advanced centralized approaches like ObliDB [19]
or databases employing searchable encryption [20]-[22]
were shown to leak information on an individual level,
making them unsuitable for our context. Recent encrypted
database systems [23], [24] generally solve these privacy
issues but implement a superset of the required query
functionality, inducing non-negligible performance overheads.
Lastly, approaches based on homomorphic encryption (HE)
either suffer from limited query expressiveness [4], [25]
or introduce minor but non-tolerable privacy leaks [26],
highlighting a pressing and significant gap in research.

In this paper, we close this gap by proposing our
performant, conceptually-centralized, HE-based approach,



PATDISCOVER, designed for the privacy-preserving discovery
of patients across institutions. Specifically, we consider
pressing requirements that currently hinder real-world use,
i.e., data availability, scalability, query expressiveness, and
privacy preservation. We opted for a straightforward design
with reliable guarantees that focuses on the setting at hand.
PATDISCOVER is versatile and scales to generic forms of
patient discovery, i.e., beyond our evaluation in nuclear
medicine, as well as other attribute-based queries with
comparable requirements.

Contributions. Our primary contributions are as follows.

o PATDISCOVER is a privacy-preserving design for cross-
institutional patient discovery that supports rich queries,
promising personalized treatment plans for patients,
among other benefits.

« Based on prior work, we carefully derive HE-based
operators for efficient, approximated equality and less-
than comparisons.

o Ethically building upon real-world patient data from
nuclear medicine, we validate PATDISCOVER’s feasi-
bility of indexing and discovering rare-disease patients
privacy-preservingly.

Open Science. We open-source a prototype of PATDIS-
COVER [27] to ensure reproducibility and reusability.

Organization. The remainder of this paper is structured
as follows. First, in Section 2, we present the need and
requirements for practical and privacy-preserving patient
discovery. Specifically, we also refer to a real-world use case
from nuclear medicine. Second, in Section 3, we detail fully
homomorphic encryption as well as relevant related work
before introducing our privacy-preserving design, PATDIS-
COVER, in Section 4. In Section 5, we report on our imple-
mentation and evaluation, which covers both performance
and security aspects. Afterward, we discuss PATDISCOVER’s
impact in Section 6 and conclude in Section 7.

2. Scenario and Problem Statement

In Section 2.1, we present our considered scenario in
detail, outlining how information would ideally flow for
improved clinical practice and research. We augment this
introduction with a real-world use case. Subsequently, in
Section 2.2, we formalize this setting by (i) stating the
corresponding threat model and (ii) compiling an elaborate
list of information-security-specific research challenges.

2.1. Patient Treatment-Affecting Data Scarcity

Especially for rare diseases, treatment and clinical care
would benefit from joining patient data from several institu-
tions, i.e., establishing cross-institutional collaboration [28].
Likewise, when an institution is recruiting patients with
certain features for a study, the local cohort might be too
small, mandating the incorporation of patients from other
institutions [22]. Hence, without a discovery approach, we
observe data scarcity for individual institutions despite “sim-
ilar” patients being treated globally (low numbers overall).
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Figure 1. Using patient data, an institution wants to globally discover
patients with “similar” features at other institutions.

Difficulty in Sharing Medical Data. A broad data
foundation promises significant benefits for decision-making
both in clinical practice and research. In addition to recent
information, longitudinal data is also highly desired by
practitioners since it may convey insights about patient
trajectories. However, the discoverability of relevant patient
data is severely hindered by two aspects. First, expressive
identifiers might still be missing, for example, if a disease
has not been (unambiguously) diagnosed or if existing
frameworks like ICD-10 fail to capture crucial nuances
accurately [29]. Second, privacy expectations and legislation
restrict how patient data may be processed and shared—even
within a single institution [30].

Involved Stakeholders. Assuming that these barriers
have been overcome, the general setting of discovering
patients for the sake of sharing medical data is as follows.
We have an institution that is looking for “similar” patients
and thus defines a list of attributes that should be satisfied
precisely or approximately when considering relevancy. The
expressiveness of the attributes depends on the use case,
but they may cover matches in enumerations, Booleans, or
range queries, among others. In practice, either a patient
who is being treated or the parameters of a research project
define what “similar” refers to in the specific context. Such
a query would then be submitted internally or to third-
party institutions for processing. Using the communicated
attributes, these parties can check their local patient data for
relevancy so that they can respond with the number or even
a list of relevant patients.

Terminology from data ecosystems would translate the
described roles as “data consumer”, querying the data, and
“data provider(s)”, holding the data, respectively [31], as we
visualize in Figure 1. The number of data consumers and
providers is flexible (N > 1). For a practical realization,
queries to different institutions should be independent of
each other to not introduce processing dependencies.

Exemplary Use Case: Nuclear Medicine. Our work
is motivated by a highly-specific use case in healthcare but
also generalizes to other clinical contexts (cf. Section 6).
Compared to other diseases, the oncological treatment of
tumors is highly individual, depending on the tumor type,
location, and progression, among other aspects. Thus, data
on nuclear imaging and therapy is limited to “few” patients
globally and annually, which are even further split across
a small number of institutions or specialized practitioners.



TABLE 1. RELEVANT ATTRIBUTES IN THE AREA OF NUCLEAR MEDICINE.

Name Type Value Range

Diagnosis

Active Tumor Tissue
Tumor Progression

Boolean Yes, No
Boolean Yes, No

Tumor Information

1p/19q Codeletion Boolean Yes, No
IDH Wild-Type Boolean Yes, No
MGMT Promoter Meth. Boolean Yes, No

WHO Grade Enum L IL, 10, IV

Tumor Position Distance {z € R |10z € ZA0 <z < 4}3

Tumor Type Enum Glioblastoma, Oligodendroglioma,
Astrocytoma, Brain Metastasis

Treatment History

Biopsy Enum Yes, No, Unknown

Boost Therapy Enum Yes, No, Unknown

CeTeG Protocol Enum Yes, No, Unknown

Chemotherapy Enum  Yes, No, Unknown

FET-PET Enum Yes, No, Unknown

Radiotherapy Enum  Yes, No, Unknown

Resection Enum Yes, No, Unknown

TMZ Therapy Enum  Yes, No, Unknown

Patient Information

Age Range {z € Ng |z < 120}

Here, a single institution with elaborate patient data of around
8000 patients, covering all sorts of diseases (and irrespective
of specific attributes), is already considered very extensive.

Nuclear medicine utilizes radioactive substances, so-
called tracers, for diagnosis in PET-CT scanning [32]. Taken
up by active tumor cells with specific features correlated to,
e.g., receptor expression on channel activity or metabolism,
the accumulated tracers emitting radiation are detectable by
a PET scanner and thus help to identify the tumor’s location
and activity. Particularly, its application to brain tumors in the
context of medical imaging is currently without substitute in
clinical practice. Treating such rare diseases also highlights
why patient data can be exceptionally scarce.

When conceptualizing these influences into distinct at-
tributes of varying types, we can categorize them as follows.

o Diagnosis captures, for example, whether the tumor is
active, how it has progressed so far, and other symptoms.

o Tumor Information expresses, e.g., tumor type, its
position, etc., but also biopsy data, such as specific
gene mutations of relevance for the treatment, as well
as morphological and metabolic information that can be
further disentangled by so-called radiomics data mining
of medical images (CT, MRI, or PET).

o Treatment History records (past) therapies, e.g.,
chemotherapy.

e Fatient Information provides additional insights; most
frequently, age and gender are of interest here.

These attributes (summarized in Table 1) provide experts
with a data-driven basis for tailoring treatment strategies
to individual tumors and patients, e.g., when balancing the
toxicity and efficacy of chemotherapy. Thus, the ability to
discover “similar” patients across institutions is essential for
improving treatment strategies and patient outcomes.

2.2. Obstacles to Overcoming the Data Scarcity

As a prerequisite for assessing prior work, we now define
the threat model and associated research challenges.
Threat Model. Our setting features at least three types
of entities. In addition to (i) the data consumer and (ii) one
or multiple data providers, we also need to account for
(iii) snooping third parties, which must not get access to
any sensitive patient data. When utilizing a (distributed)
data ecosystem for processing and/or storage, (iv) all parties
operating the ecosystem must be considered as well. Overall,
privacy must be considered for queries, processed data,
and returned results. Exposing side-channel information to
anyone is acceptable if and only if sensitive patient data is
not affected, i.e., it must remain confidential at all times.
Given the setting with healthcare institutions, we as-
sume that authorization is in place, i.e., only authorized
data consumers and providers may participate. Accordingly,
patients are not expected to interact with any party other
than their treating practitioner. In light of these restrictions,
we assume a semi-honest attacker model and expect entities
not to collude with each other. Participating institutions are
bound by legislation, practitioners take the Hippocratic Oath,
and researchers are guided by scientific integrity. However,
under our threat model, they still aim at maximizing the
information gained from participating in PATDISCOVER.
Research Challenges. Within this setting (cf. Figure 1)
and under consideration of the threat model, we identify four
challenges with close relevance to information security.
Primary Challenge: »C1: SENSIBLE INDEXING. Most
importantly, the discovery mechanism must adequately ac-
count for the information’s sensitivity, i.e., any processing of
patient data and disease details may not violate the patients’
privacy and right to confidentiality at any point in time.
This challenge arises in three dimensions: Data privacy,
query privacy, and result privacy, highlighting the privacy
requirements of both data consumers and data providers.
Hence, a sensible indexing for patient data must address
these dimensions. However, leaking certain side-channel
information, like the frequency of queried attributes, may
even be acceptable in practice (cf. discussed threat model)
as long as it does not reveal sensitive patient data.
Applicability-Specific Challenges: In addition to the core
aspect of privacy preservation, three additional challenges
are crucial for ensuring the practicability and value of any
proposed design. »C2: UTILITY. This aspect expresses that
patient discovery also comes with usability requirements.
On the one hand, practitioners must be able to apply the
approach in real-world clinical contexts (ease of use), i.e.,
they may not be overwhelmed by its complexity. On the
other hand, the expressiveness of queries is crucial to support
highly-specialized inquiries. Otherwise, the design cannot
express the intricacies of rare diseases. »C3: AVAILABILITY.
The benefits of any discovery tool further correlate with the
availability of indexed patient data. Consequently, queries
must be possible at all times, indicating that the design
should have a mechanism that deals with data providers be-
ing offline/unavailable (temporarily). »C4: PERFORMANCE.



Finally, any secure approach is only practical if it addresses
the performance requirements: Data consumers expect results
to be returned in a timely manner. Accordingly, the discov-
ery protocol must excel in the following three scalability
dimensions: number of patients, involved institutions (data
providers), and combinations of queried attributes.

Looking at the bigger picture, compatibility and interop-
erability with large-scale initiatives, such as the European
Health Data Space [33] or EHRs [2], is a noble goal for
increasing the likelihood of widespread use. Nonetheless, we
consider this aspect to be a technical task (with the need for
standardization) rather than a pressing research challenge
and thus defer it for the sake of concision.

Takeaway. The attribute-based discovery of “similar”
patients is a challenging endeavor, given the strict confi-
dentiality requirements. Regardless, it promises significant
benefits in clinical contexts, especially when treating (or
researching) rare diseases like brain tumors.

3. Background and State of the Art

In response to the identified challenges, we first survey
solutions within our design space in Section 3.1. Subse-
quently, in Section 3.2, we study the feasibility of related
work for privacy-preserving patient discovery and point out
a lack of practical approaches. Finally, in Section 3.3, we
introduce the technical foundation of our design, namely,
homomorphic encryption.

3.1. Discussing the Design Space

Directly modifying sensitive data requires careful con-
sideration of both privacy and utility (cf. C2). A variety
of strategies have been developed to address this challenge,
including classical models such as k-anonymity [9], dis-
tributed approaches like the personal health train [11], and
mechanisms based on differential privacy [10]. The latter
has seen significant refinement, with Garfinkel et al. [34],
[35] striving for improved real-world deployments. At the
same time, protecting against re-identification of individuals
remains a central concern [36]. The limited expressions per
feature, e.g., for specific tumor types or treatments, seemingly
make the setting a good candidate to apply differential privacy
on. However, its goal—protecting individuals—is in stark
contrast to our setting, which specifically requires and builds
upon identifying “similar” patients, i.e., individuals.

Beyond anonymization and differential privacy, a number
of alternative approaches have been proposed. Relying on
a trusted third party represents a straightforward option,
though one that introduces a potential single point of failure.
Trusted execution environments provide stronger guarantees
and have been successfully applied in medical contexts [37],
albeit at the cost of specific hardware requirements that
may hinder broader use. Blockchain-based solutions [38]-
[40] present another promising direction but face challenges
regarding regulatory compliance and alignment with data
protection requirements such as the GDPR [41]. Recent
work [42] has further pointed out a gap between promise

and practice when applying these technologies in real-
world applications. Regardless, software-based approaches,
such as homomorphic encryption and searchable encryption,
emerge as promising building blocks that provide strong
confidentiality guarantees without necessarily relying on
trusted intermediaries or specialized hardware [43], offering
a reasonable middle ground for real-world deployments.

3.2. Related Work

Fundamentally, prior work utilizes well-established con-
cepts to achieve information security: Homomorphic encryp-
tion (HE) [4], [23]-[26], [44]-[46], searchable encryption
(SE) [20]-[22], secure multi-party computation (SMC) [17],
[18], [47], and trusted execution environments (TEEs) [19].
Some [17], [22], [26] of these approaches even have an
explicit focus on clinical research contexts. General frame-
works [48], [49] for creating cryptographic schemes, e.g., to
implement encrypted databases, complement the picture.

Table 2 places these approaches in the context of the
raised research challenges (Section 2.2). Indeed, most ap-
proaches satisfy the confidentiality requirements (C1). No-
tably, one HE-based approach [26] requires plaintext access
to the query. In contrast, ObliDB [19] leaks (intermediate)
result sizes, and approaches [20]-[22] that utilize searchable
encryption locally reveal access patterns, compromising result
privacy. Except for ObliDB, many designs [4], [17], [18],
[21], [22], [25], [26], [44] trade off the expressiveness of
queries (cf. C2) with information security, constraining the
feasibility for highly-specialized inquiries. Secure multi-party
computation-based concepts [17], [18], [47] fail to satisfy
the need for availability (C3). General-purpose encrypted
database systems [19], [23], [24], [45], [46] implement rich
capabilities, such as sorting, relational query support, or
grouping, which mandate, e.g., scheme switching and thus
induce performance penalties and implementation complexity.
Finally, the reliance on complex technical building blocks
constrains their performance across the board (C4).

Even though various approaches have been proposed,
they only inadequately fit to the challenges at hand: Prior
work either lacks sufficient availability and scalability [4],
[17], [18], [47], leaks confidential information [19]-[22],
[26], or has inadequate query support [25]. Thus, we are in
general need of new approaches that convincingly tackle the
aforementioned research challenges (cf. Section 2).

3.3. Preliminaries

As we detail in Section 4.1, our proposed approach,
PATDISCOVER, builds on an indexing using encrypted patient
data to account for confidentiality needs. Thus, we introduce
the relevant background information next.

Homomorphic Encryption (HE). This specialized en-
cryption enables function evaluation on encrypted inputs
without the need to decrypt any of the involved ciphertexts in
the process. HE schemes differ in supported features, which
allows for a granular classification into partially homomor-
phic (PHE), somewhat homomorphic (SWHE), leveled fully



TABLE 2. PAST (SECURE) APPROACHES HAVE NOTICEABLE ISSUES WITH
THE REQUIRED EXPRESSIVENESS IN PATIENT DISCOVERY SETTINGS.
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homomorphic (LFHE), and fully homomorphic (FHE) [50].
While PHE cannot express arbitrary functions, SWHE does
not provide guarantees regarding the function evaluation. In
contrast, LFHE ensures the correct computation of chained
arbitrary operations up to a concrete (multiplicative) depth.
FHE removes these limitations at the expense of computa-
tional complexity (the concept is called bootstrapping) and
increasing ciphertext sizes. Hence, if sufficiently expressive,
LFHE schemes promise better efficiency in most settings
compared to more powerful FHE schemes.

HE Cryptosystems. In the last decades, research has
proposed and evolved several HE schemes [51], [52]. In
PATDISCOVER, we utilize the BFV [53], [54] and CKKS [55]
schemes given their good fit. BFV enables precise calcu-
lations using modular arithmetic on integers, although the
modulus choice constrains inputs and outputs, with larger
moduli resulting in longer evaluation runtimes. In contrast,
CKKS supports approximate arithmetics over complex num-
bers but introduces inaccuracies when chaining operations.

Specialized (HE) Features. Various (general) concepts
provide additional amenities when working with HE, such
as cross-scheme optimizations and scheme interoperability.
Here, we focus on batching, proxy re-encryption, and scheme
switching. »Batching is a ciphertext encoding technique
where multiple plaintext values are packed into a single
ciphertext. This packing enables SIMD [51], which reduces
the computational overhead of using HE. »Key switching
allows for changing the secret key of a ciphertext [56].
» Proxy re-encryption allows a third party (proxy) to “key-
switch” a ciphertext that is destined for one party to an

altered ciphertext for another party [57]. The proxy does
not even require access to the encrypted plaintext data
when performing the key-switching. »Scheme switching is
a concept for transforming ciphertexts from one HE scheme
to another, allowing for taking advantage of the individual
strengths [44]. However, the switching operation is costly.

4. Design

Having established the scenario and corresponding re-
search challenges, we now focus on PATDISCOVER—our
new approach for establishing privacy-preserving discovery
of patients. After providing the intuition (Section 4.1), we
highlight the attribute types PATDISCOVER currently supports
before comparing different realizations in Section 4.3. Finally,
we discuss the creation of queries (Section 4.4).

4.1. Design Overview and Processing Sequence

PATDISCOVER utilizes HE to account for the sensitivity
of handled patient data (cf. C1). In this light, our design
further builds on proxy re-encryption (cf. Section 3.3) and
a distribution of competencies to achieve adequate data,
query, and result privacy for practical use. That is, a key
manager is responsible for the key management, while data
storage, handling, and processing take place at a discovery
server, ensuring the availability of patient data (C3). In
particular, PATDISCOVER supports complex queries that may
consist of multiple attributes of different types to feature-rich
expressiveness (cf. C2). By design, submitting patient data
and querying for “similar” patients requires institutions to be
authenticated. The exact registration mechanism underlying
this authentication is out of scope for this paper given our
focus on the discovery. However, authentication should be
straightforward to implement in settings with well-known,
registered healthcare and research institutions.

Involved Entities. We are dealing with four types: First,
we have data-providing institutions to which we refer as
data custodians. In PATDISCOVER, we do not refer to them
as data providers because they only provide pre-processed
information, i.e., various attributes per patient that have been
extracted from the original patient data. Second, we refer to
institutions looking for “similar” patients as clients, i.e., they
submit the queries. In practice, institutions may take on the
roles of both data custodians and clients over time. Finally,
the key manager and the discovery server are responsible
for privacy-preservingly discovering relevant results.

General Workflow. As we illustrate in Figure 2, PATDIS-
COVER consists of two independent workflows for importing
and querying information, respectively. On the one hand (B~
©), data custodians provide homomorphically-encrypted,
pre-processed information (i.e., attributes per patient) to
the discovery server for indexing. On the other hand @
®). clients create and submit queries for evaluation to
the discovery server, which eventually returns the relevant
“matches”. Such matches correspond to pseudonyms of
“similar” patients at a specific institution. These details then
enable clients to trigger the next step (@), i.e., contacting
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Figure 2. PATDISCOVER utilizes computations on FHE ciphertexts at the
discovery server to discover relevant “matches”.

identified institutions to request the relevant patient data
out of band. We consider Step @ to be independent of the
discovery mechanism PATDISCOVER facilitates, and thus, it
is out of scope for this paper.

Setup. Apart from the mentioned registration, PATDIS-
COVER further requires the one-time distribution of certain
keys. In particular, the key manager creates HE key material
(private &, public #, and eval ¥ keys) and shares the
eval key ¥ with the discovery server. Likewise, querying
institutions, i.e., clients, also require HE key material (private
&, and public #) for later use in the protocol. Finally, PAT-
DISCOVER relies on a globally agreed-upon pre-processing
to dissect patient data into meaningful, use-case-specific
attributes. With FHIR [58], ICD [29], or LOINC [59], various
standards are available to provide such pre-processed data in a
structured manner. However, given that the identification and
interoperability of attributes is highly use-case-specific, we
do not cover this largely orthogonal preparatory step in more
detail as part of this paper. For our evaluation (Section 5),
we later present an exemplary realization for our considered
use case of “nuclear medicine” (cf. Section 2.1).

Patient Indexing. In this workflow, the data custodian
first retrieves the key manager’s HE public key # (Step ).
Subsequently, in Step B), the data custodian encrypts the
pre-processed attributes of all patients (one HE ciphertext
per attribute) using the retrieved key before uploading the
HE ciphertexts along with a patient-unique pseudonym to the
discovery server (Step (©)). Finally, in Step ©), the discovery
server stores the tuple (institution ID, patient pseudonym,
list of ciphertexts). Each data-providing institution conducts
this workflow independently. When submitting updates or
indexing additional patients for discovery, the data custodian
can simply repeat the Steps B) and © to trigger Step ©).

Patient Discovery. In comparison to the indexing, the
privacy-preserving discovery of “similar” patients is more
complex. First, in Step (D, the client must share its HE
public key # with the key manager. In turn, as part of
Step @), with its HE private key &, the key server creates
a client-specific key-switching key #®, which later enables
proxy re-encryption (cf. Section 3.3) at the discovery server.
It forwards this key @, as well as its HE public key #, to

TABLE 3. PATDISCOVER SUPPORTS THE FOLLOWING ATTRIBUTE TYPES.
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f indicates that the respective set is a finite subset.

the client. Afterward, the client prepares its query (more
in Section 4.4) and encrypts it using the retrieved key
(Step @). In Step @), the client submits the query and
its key-switching key ¢ to the discovery server to trigger
Step ®), i.e., the computations at the discovery server (more
in Section 4.2), which depend on the key manager’s HE eval
key £. Afterward (Step ®), using the key-switching key
7, the discovery server transforms the computed result HE
ciphertexts before returning them to the client in Step @.
Finally, in Step ®), the client utilizes its HE private key
@, to decrypt the received (key-switched) HE ciphertexts.
As mentioned before, in Step ©), the discovered “matches”,
i.e., the list of “similar” patients (institution ID, patient
pseudonym), are to be used by the client. In PATDISCOVER,
queries are entirely independent of each other.

4.2. Query Attributes and their Evaluation

As we have discussed in Section 2.1, the discovery of
“similar” patients depends on attributes of different types.
In accordance with these needs, we incorporate four types
in PATDISCOVER (Table 3): Boolean, Enum, Range, and
Distance. Collectively, they offer the required expressiveness
for real-world queries (cf. C2).

PATDISCOVER addresses the confidentiality requirements
by relying on HE. Hence, we have to express the attribute
types using functions amenable to homomorphic evaluation.
HE schemes support only a (varyingly) limited set of
operations and differ in computational overhead and precision.
We realize the homomorphic “comparisons” for an attribute
value d and a query ¢ as follows.

Boolean. With d, ¢ € {0, 1}, this comparison relies on a
simple formula.

Boolean(d,q) =d-¢+ (1 —d)- (1 —¢q) (1)
Enum. Assuming a finite field IF,, (p must be prime) with
at most p distinct elements, we compare Enum attributes as

follows.

Enumprecise(da Q) =1- (d - Q)p_l mod p 2



Range. To check whether an item lies within defined
bounds (1b, ub), we utilize a less-than operator LT from prior
work [60].

Range,qcise (4, (qibs quv)) = LT(gm, d) - LT(d, guy)  (3)

Distance. First, an element-wise comparison, i.e., Vi €
{1,2,3} : (d; — ¢;)?, is computed on HE ciphertexts before
comparing the resulting sum, i.e., dist()?, to the maximum
upper distance ud.

DiStanceprecise(d7 (qus; QUd)) = LT(diSt(d, ons)za QUd) “4)

Now, these computations precisely represent the attribute
types from Table 3. However, they depend on costly multipli-
cations, which could potentially add significant computational
overhead. Thus, we also propose approximated attribute
types with superior performance (C4) for integration in
PATDISCOVER (cf. Section 5.3).

We make two adjustments: First, we rely on the idea
of approximating the sign function (sgn,,,.) by chain-
ing polynomials until the desired approximation precision
is reached [61]. We choose the minimax approximation
polynomials by Lee et al. [62] to build a composite poly-
nomial that provides the desired precision and requires
minimal multiplication operations. Additionally, we boost
the precision of the composite polynomial by chaining a
last polynomial f (cf. [61]), doubling the precision if
the approximation error is already low [63]. To efficiently
evaluate the composite polynomial, we utilize the baby-
step/giant-step algorithm [64], which has been proposed
before [65]. Second, we conceptualize an approximated less-

than operator LTapprox., Which also builds on sgn, .. .

Sgnapprox.(b - a) +1 (5)
2

These changes result in the following approximate com-
parisons.

Enum Approx. In contrast to Enumyecise, this realization
relies on the approximated sign function for improved
performance.

LTappl'OX-(a’ b) = Sgne%pprox.(b - a) :

Enumapprox.(da Q) =1- sgngpprox.(d - Q) (6)

Range Approx. For the range comparison, we only
replace the “precise” LT operator with an approximated
version (LT approx.)-

Rangeapprox. (d7 (q]b7 QUb)) = LTapprox. (q1b; d) : LTapprox. (d7 QUb)

(7N

Distance Approx. The same holds for the distance
comparison.

DiStanceapprox. (da (qpos; (Jud)) = LTapprox. (diSt(d7 qpos)2v QUd)

®)

Together, these precise and approximate homomorphic

comparison strategies enable us to trade off performance and

precision. Moving on, we theoretically analyze the compu-

tational complexity of implementing these comparisons in

PATDISCOVER, which we later complement via experimental
validation in Section 5.3.

TABLE 4. DIFFERENT COMPUTATIONAL COMPLEXITIES ARE FEASIBLE.

HE Multiply Multiplicative Pre-

Type Scheme Operations Depth Processing
Boolean BFV 2 1 X
Enum Precise BFV 16 16 X
Range Precise BFV 551 21 X
Distance Precise BFV 278 21 X
Enum Approx. CKKS 30 13 4
Range Approx. CKKS 97 18 v
Distance Approx. CKKS 66 25 4

Multiplicative operations only count ciphertext-ciphertext multiplications, omitting
plaintext-ciphertext multiplications.

4.3. Attribute Comparison

Looking at practical, real-world performance (C4), we
notice that the precise formulas introduce a significant
number of multiplicative operations and depth, as Table 4
summarizes. This situation is undesirable when dealing with
HE (cf. Section 3.3). Hence, despite requiring a client to pre-
process attributes (normalizing them to the interval [0, 1]), the
lower number of multiplicative operations promises valuable
performance improvements. In Section 5.3, we report on the
measured performance of the different attribute types.

As we detail in Section B, we also experimented with an
alternative precise realization that utilizes scheme-switching
(cf. Section 3.3) to implement the attribute types. In particular,
we switched ciphertexts from the CKKS [55] to FHEW [66]
and vice versa, as demonstrated in prior work [44], to exploit
the benefits of the individual HE schemes. This approach
thus promises high precision at the expense of no support
for batching and the need for (costly) scheme-switching.
In FHEW, we relied on the large-precision homomorphic
sign evaluation [67]. However, our measurements confirmed
the superior performance of our presented approach without
scheme-switching. Thus, we disregard this alternative.

4.4. Tree-Based Query Structure and Result(s)

Practical implementations for the discovery of “similar”
patients mandate adequate query expressiveness (cf. C2).
Accordingly, in PATDISCOVER, we introduce a tree-based
query structure per attribute type, which clients create and
which the discovery server processes. In particular, we
support combining attributes using three operators, AND, OR,
and SUM, which can be mixed as needed, offering diverse
composition opportunities to querying institutions. The SUM
operator simply adds ciphertexts (a + b) while the AND (a - b)
and OR (a+ b — a - b) are intended for Boolean comparisons.
This way, modeling a rich set of queries is possible. In
Section 5.2, we will present a real-world query example.

In response to the confidentiality requirements (cf. C1),
the discovery server executes these operations on HE ci-
phertexts. Consequently, the complexity of the query also
contributes to the overall multiplicative depths (due to the
combination of the tree’s height and depth) and count of
ciphertext-ciphertext multiplications, impacting performance
and precision alike. Hence, the chosen HE scheme must



accommodate these matters, account for the height of the
created trees, and be configured accordingly (cf. Section 3.3).

As part of Step ®), the discovery server returns key-
switched HE ciphertexts with the query results to the client.
Each tree that has been part of a query is being treated
separately. A query consists of at least as many trees as
different attribute types that have been part of the query.
Per tree, the discovery server returns one homomorphically-
encrypted result per indexed patient, along with a mapping
to the institution ID and the patient pseudonym. When using
batching (cf. Section 3.3), multiple patients are recorded
in a single HE ciphertext, introducing some negligible
implementation complexity. After decryption, the client can
verify whether the query result per tree matches its needs
to eventually identify the institutions and pseudonyms of
“similar” patients, disregarding the others. This information
then serves as input for Step ©)] (reaching out), exceeding
the functionality PATDISCOVER provides.

Takeaway. Our design, PATDISCOVER, focuses on the
privacy-preserving discovery of “similar” patients across
institutions while taking into account several critical chal-
lenges (cf. Section 2.2). It supports all attribute types that
are relevant in this context (realized either precisely or as
approximated counterparts) and even allows for expressing
complex queries. The inherent use of HE is key to ensure the
confidentiality needs when handling sensitive patient data.

5. Realization and Evaluation

We now focus on assessing the performance and scalabil-
ity (C4), precision, and security (cf. C1) of PATDISCOVER
in detail. First, in Section 5.1, we introduce our open-sourced
PATDISCOVER implementation [27] before reporting on our
experimental setup, along with the sourced use case data
in Section 5.2. Afterward, in Section 5.3, we present our
evaluation results. Our analysis covers multiple perspectives:
Scalability, runtime, data transmissions, memory needs, and
loss of precision. After discussing these measurements, we fo-
cus on PATDISCOVER’s security (guarantees) in Section 5.4.

5.1. Implementation

We implemented a prototype [27] of PATDISCOVER in
C++. We utilize the OpenFHE library [68] to internally
build on the BFV [53], [54] and CKKS [55] schemes (cf.
Section 3.3). We further rely on the Intel HEXL [69] backend
to accelerate the HE computations. Both HE schemes support
batching, enabling SIMD-based performance improvements,
and allow parallel processing of independent attributes.
We utilize the NTL [70] library for implementing the LT
operator, source Lattigo [63] for pre-computing minimax
approximation polynomials, and avoid costly bootstrapping
operations by using FHE schemes as leveled ones (LFHE).

Due to its limited resource needs, we configured
SQLite [71] as the database backend. We implemented
all networking functionality using two common libraries:
protobuf [72] and gRPC [73]. All network communication

is authenticated using self-signed X.509 certificates and is
further protected using TLS 1.3 during transit.

5.2. Experimental Setup and Use Case Data

We configured our evaluation environment as follows.
Experimental Setup. We configure the security of our
HE schemes according to the compiled HE standard [74]
to achieve an equivalent of 128 bit security. We leave the
default OpenFHE parameters for any remaining settings,
promising good performance [75]. This way, we utilize the
supported batching (cf. Section 3.3) and pack 32768 and
65 536 plaintext values for BFV and CKKS, respectively, into
a single HE ciphertext. We deployed all entities on a single
server (2x Intel Xeon Silver 4116 and 196 GB RAM). Hence,
all communication was local and not artificially constrained.
We report means and 99 % confidence intervals over 30 runs.
Dataset: Patient Letters from Nuclear Medicine. To
identify relevant attributes (cf. Table 3), a medical practitioner
sourced ten real-world patient letters. In total, we ended up
with five Boolean, ten Enum (at most four values), one
Distance (tumor position), and Range (age) attribute(s) (cf.
Section 3.3). Using this information, we created a generator
for synthetic patient data that maintains semantic correctness
and samples data per attribute uniformly at random. Given the
data-independent processing of HE calculations, we simulate
a large-scale application of up to 500k patients while still
accounting for the sensitivity of real-world patient data.
Representative Query. Together with a domain expert
from nuclear medicine, we crafted a representative query
(Figure 3) that queries for a specific tumor, in a specific posi-
tion, in a young patient (between the ages of 20 and 40), who
optionally has been treated with chemotherapy. It consists
of four separate trees (one per attribute) with heights one,
two, zero, and zero, respectively, and contains every attribute
type (cf. Table 3), totaling seven attributes: (1) [Boolean]
checks whether two attributes of tumor information hold
(using the AND operator), (2) [Enum] first compares whether
the tumor is of a specific type (OR operator) before applying
the SUM operator to include whether the patient has received
chemotherapy (3) [Range] simply conducts an age check
(without any operator), and (4) [Distance] captures the tumor

Boolean(s) Enum(s)

IDH Wild
Type

MGMT Promoter

Methylation Chemotherapy

Tumor Type

Tumor Type

Glioblastoma Oligodendroglioma

- Tumor Information - Treatment History - Patient Information

Figure 3. A visual illustration of our representative evaluation query that
utilizes all attribute types while also combining multiple attributes across
categories (SUM operator).
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Figure 4. The computations scale linearly with the number of indexed
patients. The runtime of the approximated attributes is significantly shorter
compared to the precise ones, at the expense of (acceptable) decryption
overhead at the client.

position (again without any combining operator). Given that
the Distance and Range attribute types occur only once
(cf. Table 1), we do not perform any aggregation; instead,
we return the results (1 or 0; cf. Table 3) per attribute. In
contrast, our representative query combines multiple Enum
and Boolean attributes, respectively, to mimic real-world use.

5.3. Performance Evaluation

In the following, we analyze the performance of PATDIS-
COVER in detail. After an initial assessment of the overall
performance in realistic real-world settings, we look at the
attribute types individually.

5.3.1. End-to-End Performance. As we illustrate in Fig-
ure 4, the runtime scales linearly with the number of
indexed patients. The corresponding slopes are 0.000036
(precise) and 0.000002 (approx.). The respective R? scores
are on par with 0.99, being nearly perfect. Overall, the
approximated attribute types outperform the precise ones.
However, relatively speaking, they have a higher client-side
processing. At first glance, this processing takes up a large
fraction of up to 11 % of the total processing. However,
in absolute numbers, this decryption overhead is negligible
when comparing both approaches: 6.3 s (precise) and 12s
(approx.) for 100k patients.

» Runtime. Looking at the total runtime, we identify two
crucial observations. First, even when looking for “similar”
patients in a large set of 500k indexed patients, despite
the HE-induced overhead, the query concludes in less than
45 min (3 min for the approximated variant). Approximated
variants are faster than their precise counterparts (except
for Enums), as we further detail in Section 5.3.4. We
consider this performance to be well-suited, especially when
dealing with rare diseases and the discovery of respective
patients, where new patients at a single institution surface
infrequently and with a certain delay. Second, the majority
of the computations are with the discovery server. The
processing by the key server is negligible. Consequently,
scaling out or scaling up the discovery server are convincing
strategies to address potential performance bottlenecks.

» Storage and Networking. Similar observations hold for
the storage and networking performance (Figure 5). Different
from the runtime, the approximated variant introduces some

I-PatientAttributes I Query W Query Resultsl
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Transferred Data [GB]
Transferred Data [GB]
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Patient Count

Figure 5. Approximated attributes add significant overhead to the transferred
data of the precise attributes. The indexing of patient attributes results in
large data transmissions.

overhead when compared to the precise one. The approx-
imated attributes trade off runtime benefits for additional
network load, with the size required for the HE eval keys
being notably larger for the approximate variants (precise:
554MB and approx.: 914 MB). Especially in constrained
networks, this difference is impactful. Fortunately, this
observation highlights that PATDISCOVER can be configured
according to use-case-specific requirements.

Locally, data transmitted for the query (including its
result) must only be stored temporarily. Hence, only the
indexed patient attributes add a permanent storage burden
on the discovery server. We consider a measured storage of
0.41 GB (precise) and 1.1 GB (approx.) per 100k patients
as well acceptable for real-world use.

» Memory. Likewise, the maximum memory consumption
for our largest evaluation setting with 500k indexed patients
is 52 GB and 18 GB for the precise and approximated variant,
respectively. These numbers can also be reduced when
executing fewer HE computations in parallel, increasing
the runtime. Thus, PATDISCOVER’s memory needs comply
easily with off-the-shelf server hardware.

Result: PATDISCOVER'’s performance (runtime, storage,
networking, and memory requirements) is satisfactory for
real-world settings.

5.3.2. Scalability Assessment. Complementing our mea-
surements, we now discuss the three scalability dimensions
of interest (cf. C4).

» Number of Patients. Our performance measurements
already highlight the linear scaling of PATDISCOVER concern-
ing the number of indexed patients. Since our implementation
processes large numbers of patients in batches (not to be
confused with batching in HE schemes) and these evaluations
have been using our experimental setup to capacity, we are
confident that even larger settings would also confirm the
reported, near-perfect linear trends.

»Involved Institutions. By design, the number of in-
volved institutions (data providers) does neither influence the
processing of attributes nor queries at the discovery server
(Steps © and ®—Q) because all uploaded patient attributes
are encrypted with the same public key (#). The introduction
of additional institutions thus mainly impacts the distribution
phase, where the key server distributes its public key (#)
during the initial setup (Step @). This process imposes only
a minimal overhead on the patient indexing. The situation is



I Precise W Approximate
Range

Enum Distance

Frequency
o o =
w ~ o
o w o
1 1 1
1 1
1 1

e

N

o
1

.J'.:. o

—0.0002 0.0000 0.0002 —0.0002 0.0000 0.0002 —0.0002 0.0000 0.0002
Absolute Error Absolute Error Absolute Error

o
o
S

Figure 6. The precision of the conducted HE computations is good across
attribute types, with absolute errors being small.

similar for an increasing number of querying clients. While
the operation of the discovery server is strictly identical
for each query (Steps @—@), each “new” client has to
interact with the key manager at least once (Steps (D and @),
resulting in minor processing at the key server. If necessary,
the key server scales horizontally. We thus conclude that the
number of involved institutions has no practical relevance
for PATDISCOVER’s scalability properties.

» Combinations of Queried Attributes. The query com-
plexity is another relevant scalability dimension. First, after
varying the number of attributes in a single query, we
identified a linear correlation with the runtime, which
is highly desirable for practical scalability in real-world
settings. Certainly, the attribute types come with different
individual processing times, as we carry out in more detail
(Section 5.3.4). Second, we also studied the influence of the
query height (cf. Section 4.4). Moreover, when increasing the
height of a perfect binary tree, we confirmed an exponential
growth in the measured runtime, which follows from the
exponential growth of the number of contained attributes in
such an expanded query.

Result: While the number of involved data providers
barely impacts PATDISCOVER’s scalability properties by
design, the number of indexed patients correlates linearly
with the runtime and storage requirements. Likewise, during
patient discovery, the runtime of a query scales linearly with
the number of attributes. Both dimensions allow for parallel
processing. In contrast and as expected, the query height
has an exponential influence on the runtime.

5.3.3. Validity of Results. Since we are dealing with an HE
scheme, which might lose precision (i.e., CKKS; BFV is
exact), we assess this dimension by comparing the ciphertext
calculation to its plaintext counterpart. As evaluation, we
compute >100000runs per attribute type, as we summarize
in Figure 6. The precise building blocks that build on BFV do
not show any issues. In contrast, the approximated variants
reveal only minor deviations. However, even in the worst case,
the absolute error remains below 0.00022 per single attribute
computation. Accordingly, we did not encounter any situation
where the HE-based “matching” results were skewed, i.e.,
we do not observe any false negatives or false positives.
Hence, the approximation and approximate arithmetics the
CKKS scheme introduces (cf. Section 3.3) do not skew or
impact PATDISCOVER’s results. Thus, we conclude that, with
our HE configuration (schemes), all attribute types provide
sufficient precision for practical, real-world use in healthcare.
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Figure 7. While precise attributes burden primarily the server, approximated
attributes put processing on the client as well.
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Result: The performance of the attribute types and their
realization (precise vs. approximated) differs greatly. The
most commonly-used attribute types (Boolean and Enum)
perform best, while range and distance attributes introduce
longer runtimes and require more memory.

5.3.4. Attribute Type Comparison. After focusing on the
overall performance and having established a satisfactory
performance for practical, real-world application in health-
care, we now investigate the differences between the attribute
types and their realizations (precise vs. approximated). In
Figure 7, we show the processing time per attribute type
for the client and the discovery server. The pre-processing
for the approximated variants at the client is negligible,
with less than 2ms for a single attribute. In contrast, the
discovery server’s processing times merit attention since,
despite batching improvements, execution is required for
each indexed patient. Overall, approximated variants (except
Enum) compute faster than precise ones, with Range and
Distance attributes taking significantly longer to process than
Boolean and Enum types.

A brief look at the consumed memory and storage
across the different attribute types confirms the moderate
requirements, as Figure 8 shows. The discovery server’s
memory usage is higher than the client’s usage. Again,
the rather uncommon attribute types (Range and Distance)
exhibit larger memory needs. The storage needs per attribute
type are mostly on par; only the approximated distance type
introduces a six-fold increase. These numbers confirm our
conclusions on end-to-end performance (cf. Section 5.3).

5.4. Security Discussion

PATDISCOVER operates on the foundation of secure
cryptographic primitives, their correct configuration, and
TLS-authenticated communication. We further assume that



no entity has been compromised by a third party, i.e., entities
do not act maliciously beyond the capabilities defined in
the semi-honest attacker model (cf. Section 2). Having this
situation in mind, we now assess how PATDISCOVER fulfills
the privacy-preservation aspects C1 captures.

We have designed PATDISCOVER to reliably protect
sensitive patient data in settings with semi-honest adversaries.
Given this threat model, it addresses the outlined privacy
requirements, provided that no collusion takes place. In
medical settings, the required non-collusion assumption
holds as (a) institutions, practitioners, and researchers are
well-known and authenticated at all times, and (b) their
reputation and law-abidance are crucial to their operations.

Privacy Preservation. Given that all entities are au-
thenticated, a curious key manager or discovery server
could analyze meta information like access patterns. As a
countermeasure, data custodians and clients could, in theory,
index dummy data or submit dummy queries, respectively.
The discovery server is further aware of the mapping between
uploaded ciphertexts and their origin, i.e., the respective data
custodian. However, we consider corresponding insights to
be marginal as they do not compromise any patient data.

» Data Privacy. In line with its intended purpose, clients
can query for “similar” patients across institutions by com-
paring relevant attributes. By design, all sensitive patient
data is recorded in abstracted attributes, which are only
processed and queried in an encrypted form. Thus, PATDIS-
COVER ensures data privacy. For stronger, long-term privacy
guarantees, the discovery server could periodically apply
proxy re-encryption to update the underlying encryption key,
mitigating the impact of using a persistent key.

» Query Privacy. Just like searchable encryption [76],
PATDISCOVER’s underlying design is also prone to revealing
statistical information: While the precise configuration of
attributes in the query is homomorphically encrypted, the
queried attributes are visible for the discovery server, opening
a side channel. Hence, it may record and analyze the
frequency of queried attributes, attribute combinations, or
query composition (i.e., the query trees). However, the exact
values are hidden from the server. Nonetheless, the discovery
server could track which attributes are queried by a specific
client, i.e., an institution, identifying its main focus area. In
terms of more complex queries that make use of operators,
the discovery server can further observe frequent combina-
tions of operators and attribute types, indicating potential
(inter)dependencies. Consequently, given the exposed side-
channel information, PATDISCOVER does not ensure “query
privacy” to the fullest extent. However, this minor limitation
is compliant with the discussed privacy requirements of our
setting (cf. C1) because the exposed side-channel information
does not reveal detailed insights into the query’s origin and
goals due to the low number of alternatives, even over time.

» Result Privacy. Since all computations depend on HE,
they conceal control flows, while results remain encrypted
and indistinguishable, accessible only via a client-specific
authenticated key. With clients’ reputations at stake, there is
no incentive to share keys. Thus, PATDISCOVER adequately
protects sensitive results.

Data Injection and Extraction. As all indexed patient
attributes and queries are homomorphically encrypted, insti-
tutions could potentially submit irrelevant or misleading data.
However, false-data injection by data custodians would be
noticed during Step @ when clients initiate the out-of-band
information exchange. In this case, the data custodian may
learn information about the query, i.e., queried attributes and
their composition (cf. Section 4.4), slightly impairing the
query privacy. Nonetheless, we consider the likelihood (and
profits) of such an attack on PATDISCOVER to be low.

In contrast, a client submitting garbage (false) queries
has little appeal and little impact as well. First, clients
most likely have to pay for queries, thus misuse is a costly
endeavor. Second, returned results do not reveal any patient
information or details beyond the attribute “matches”. Hence,
a client could only learn a rough distribution and mapping of
patients and specific attributes across institutions. Thus, the
respective client’s misbehavior adds little value. However,
excessively submitting clever-crafted queries will eventually
reveal, potentially more insightful, frequency statistics about
specific attributes of indexed patients. If required by the
data custodians, the discovery server could implement a
rate-limiting mechanism to mitigate such frequency attacks.

Entity Misbehavior. Within the semi-honest attacker
model, entities will stick to protocols. However, given the
sensitive data involved, we briefly discuss the implications
of potential misbehavior and show that no direct privacy
breaches are to be expected. In addition to these institution-
specific attack vectors, the key manager and discovery server
could misbehave (apart from colluding; cf. Section 2.2).
However, such behavior would not reveal any insights for
them. On the one hand, misbehavior by the key manager
would either break computations at the discovery server
or interfere with the client-side decryption of the results.
Apart from adding no incentive for the key manager, such
actions are detectable. Entities would thus experience a loss
of reputation. On the other hand, incorrect computations by
the discovery server are most likely noticeable as well. While
returning false positives is trivially detectable in Step @),
false negatives are not. However, if local patient data is
returned with inaccuracies or when known information about
indexed patients changes over time while revealing semantic
discrepancies, clients will also notice such misbehavior.
Given that the discovery server cannot learn anything from
these manipulations, we consider the attack likelihood as very
low. Lastly, the construction of our approximated attribute
types exposes an attack vector, which could, in theory, enable
the retrieval of sensitive patient data, as we elaborate on
in Section C. Fortunately, precision losses in HE schemes
render practical attacks unlikely.

Server Operators. For the key manager, we envision
a public health association—funded through membership
fees—running this service. Its operation barely introduces
any computational load (limited to the generation of a key-
switching key per client; Step ) or storage requirements.
Only its HE key material (for each attribute type) must be
stored permanently. The cumulative sum of both types of
keys yields 0.59 GB (precise) and 1.2 GB (approx.).



The operation of the discovery server could be funded
through fees for querying or dedicated subscription models.
By design, apart from observing some minor query insights
(see above), it cannot learn anything due to not having access
to any sensitive patient information (it only processes HE
ciphertexts). Hence, any third party could take over the
computations. However, in a setting where collusion is a
reasonable threat (contradicting our threat model), a more
reputable third party should be considered, as we discuss next.
One example could be a government-operated deployment.

Implications of Collusion. In settings with colluding
entities (contradicting our healthcare scenario), some lim-
itations apply. »Discovery Server and Key Manager. This
collusion would enable decryption of all indexed attributes—
—an inherent limitation of distributing competencies. Two
independent, reputable operators might mitigate this risk,
although PATDISCOVER cannot prevent it. Still, detailed
patient data is only locally available at the data custodians.
» Discovery Server and Client. They could also decrypt
arbitrary data and, seemingly legitimately, trigger Step .
Moving proxy re-encryption (Step ®) to the key manager
would mitigate this threat at the cost of overhead. »Other
Collusions. Collusion between the discovery server and data
custodians, or the key manager and any institution, poses
minimal threats as they lack direct access to encrypted data.

This short assessment explains why PATDISCOVER is
not suitable for settings with stronger adversaries that are
absent in our considered scenario. As we also indicate in
Table 2, in light of its features (expressiveness, availability,
and performance), our design offers competitive privacy
preservation compared to related work.

Takeaway. Our assessment of PATDISCOVER demon-
strates a privacy-preserving approach with promising perfor-
mance and scalability (C4). Its resource requirements match
what is reasonably available at the involved institutions. Our
security discussion confirms our design choices. Participating
parties can only deduce minor (insensitive) details, indicating
fulfillment of the targeted privacy preservation (CI). Thus, we
conclude that PATDISCOVER is readily available to privacy-
preservingly discover “similar” patients across institutions.

6. Discussion and Future Work

After focusing on the technical dimension, we assess
the bigger picture, i.e., PATDISCOVER’s contribution to the
targeted setting of healthcare treatment and research.

Impact. Most importantly, our novel privacy-preserving
design for cross-institutional patient discovery opens the door
for healthcare improvements. Current data sharing [77], [78]
is limited by privacy concerns [30] and difficulties implement-
ing solutions compliant with data protection laws [11], [17].
Our work addresses these shortcomings by enabling queries
on pre-processed patient data without storing unprotected
sensitive information globally, elegantly decoupling patient
discovery from subsequent sharing of (rich and unfiltered)
data. Revised consent forms [79] could immediately establish
the corresponding legal foundation for such a practice. By
focusing on patient attributes extracted from comprehensive

clinical letters rather than just EHRs or billing reports,
PATDISCOVER might even reduce biases inherent in ICD
codes, which often fail to capture nuances needed for
individualized treatment [29], [80], [81]. Especially when
dealing with a disease that is grouped in a coarse ICD code,
this situation is highly problematic.

While this paper emphasized application in rare dis-
eases, our prototype’s performance indicates scalability to
broader settings, such as patient recruitment for drug trials.
PATDISCOVER could also contribute to establishing more
diverse clinical trial cohorts without compromising privacy,
introducing significant benefits. Nonetheless, its application
is not restricted to the domain of healthcare.

Research Challenges. Looking at the outlined chal-
lenges (cf. Section 2), PATDISCOVER complies with the
majority. It provides a sensible indexing approach (C1)
without sacrificing any of the other aspects. Arguably in
the setting of rare diseases, query privacy is only secondary
to patients who urgently require treatment. They commonly
favor the prospect of treatment over privacy preservation.
Hence, real-world deployments can even tolerate minor
privacy leaks in such contexts. Moreover, subtleties in the
expressiveness (cf. C2) of queries require evaluation in field
studies. Given that FHE can compute arbitrary functions,
future enhancements might be able to address this aspect,
i.e., it is not a limitation of PATDISCOVER’s design. Lastly,
computational performance (C4) is eventually a use case-
and deployment-specific matter. However, since approaches
that do not account for the confidentiality requirements and
sensitivity of patient data cannot be put to real-world use, we
consider this challenge as secondary. Future developments in
the area, like ASIC-based hardware acceleration [82], further
promise to invalidate this building block-specific aspect.

Optimizing for Performance or Network Traffic.
Based on our evaluation (cf. Figures 4 and 5), precise and
approximated attribute types yield identical results despite
minor precision differences (Fig. 6). Consequently, operators
can thus optimize for performance (approximated types) or
reduced data transfer (precise types), with the optimal choice
depending on the environment.

Counterintuitive Performance. Our evaluation also
highlights that the approximated Enum attribute type does not
add any benefits over its precise counterpart. At comparable
runtime, it merely introduces larger ciphertexts, additional
memory requirements, and less precision (cf. Section 5.3).
Hence, interestingly, and different from the other attribute
types, the precise variant is generally to be preferred when
utilizing the Enum attribute type.

Limitations. Despite its outlined benefits, we see two
main limitations. First, PATDISCOVER currently cannot
merge results from different attribute types at the discovery
server. Clients are thus required to carefully craft queries
and handle post-processing. Second, it lacks data quality
guarantees, allowing potential indexing of arbitrary informa-
tion by malicious actors, wasting meaningful resources until
misbehavior becomes apparent in Step @—though this risk
is minimal given our setting with reputable institutions.

For applications beyond healthcare, the query privacy



side channels we identified (cf. Section 5.4) may become
an issue in contexts with differing privacy requirements. We
consider addressing these limitations as orthogonal research,
since our targeted healthcare setting does not require them.
Future Work. Diverse research could build upon our
work. First, design improvements could include merging
different attribute types, pre-filtering results before returning
them to clients, and adding homomorphic signatures [83]
or verifiable computations [84] for data integrity. Second,
(minor) implementation-specific improvements might explore
adaptations like optimizing rescaling [61] for better level
consumption, though they would likely yield only modest
gains. Third, extending support for other attribute types
beyond numerical values, such as image data [85], would
enhance functionality. Fourth, real-world exploration by de-
ploying PATDISCOVER across institutions, including an eval-
uation of downstream processes while also considering data-
sharing policies, audit trails, and consent frameworks, would
enable researchers to study clinical impact, usability, and
suitable business models. Fifth, legal scholars should assess
regulatory compliance, i.e., check whether PATDISCOVER
conforms to cross-institutional collaboration regulations as
well as general legislation and data protection laws. Finally,
exploring applications beyond healthcare could leverage our
FHE-based approach in other privacy-sensitive domains.
Takeaway. PATDISCOVER has the potential to unlock
significant benefits and bring amenities to the healthcare
domain. It promises to broadly improve patient treatment
and research activities alike by enhancing patient discovery

7. Conclusion

The global discovery of patients and their data, especially
across institutions, is particularly challenged by privacy
requirements, driven both by expectations and legislation.
Despite the expected potential for (immediate) patient treat-
ment and research, in today’s medical landscape, institutions
cannot simply discover “similar” patients, primarily due to
a lack of privacy-preserving approaches. Promising designs
from related work, unfortunately, feature shortcomings in
terms of query expressiveness, performance, and/or privacy
preservation. Our novel design, PATDISCOVER, tackles this
research gap and enables attribute-based cross-institutional
patient discovery in a privacy-preserving manner. Since we
strive for real-world practicability, we opted for simplicity in
our design. That is, we focused on satisfying the lower limit
privacy requirements for the setting at hand and considered
differing needs to be orthogonal work. Building on FHE-
based operators, we are able to efficiently support various
attribute types, which may also be combined to express
complex queries for practical, real-world deployments. Our
extensive evaluation builds on real-world patient data from
nuclear medicine and thus mimics a distributed setting with
multiple institutions and thousands of patients. Its results
highlight that PATDISCOVER is indeed practical, even beyond
the use case of discovering patients with a “similar” rare
disease. We look forward to the impact PATDISCOVER may
have on healthcare in the long run.
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Appendix A.
Real-World Patient Data and Deployment

Our evaluation of PATDISCOVER features a real-world
use case from the area of nuclear medicine that builds on
mimicking patient data. Thus, we also need to discuss both
ethical and deployment considerations.

Ethics Statement. A medical practitioner identified
relevant attributes (cf. Table 3) in a small set of 10 real-
world patient letters from a university hospital. The patients
consented to their information being used for research.
To account for the sensitivity of the data, we decided to
implement a synthetic attribute generator, which generates
realistic patient data, i.e., attributes. Since our approach
does not depend on statistical distributions in the data, we
disregarded this dimension and only focused on semantic
correctness on a patient level. Consequently, we did not
require additional consent or IRB approval to conduct our
research. No sensitive data was ever disclosed to third parties.

Deployment Considerations. While we tested PATDIS-
COVER on real-world data, putting PATDISCOVER into prac-
tical deployment on a global scale involves ethical, legal, and
regulatory considerations. Although we provide the technical
groundwork, addressing these broader issues is beyond our
scope. Still, we want to briefly discuss deployment-related
considerations in the following.

From a technical standpoint, data updates and modifica-
tions need to be handled. In PATDISCOVER, institutions can
update existing records anytime by re-encrypting and retrans-
mitting the relevant data batches to the server. Likewise, new
records can be dynamically appended. Another important
consideration concern erroneous records and heterogeneity
caused by data collection systems. By combining the SUM
and less-than operators, PATDISCOVER supports query flex-
ibility, permitting slight errors in specific attributes within
multi-attribute queries. Nevertheless, input data heterogeneity
remains a broader, orthogonal issue relative to our discovery
approach. Lastly, competing data standardization initiatives
exist, including ICD [29] or LOINC [59] for general health
records. In radiology, radiomics approaches extract numeric
metrics from images and reports suitable as attributes for PAT-
DI1sCOVER. However, standardization within these radiomics
methods is currently lacking, as the relevant communities
have yet to establish consensus.

Appendix B.
Further Details on Applied Operators

To complement our design overview (Section 4.3), we
briefly elaborate on the operators that we use while designing
our required attribute types.

Precise Less-Than Operator. As detailed in Section 4.2,
we use the following univariate interpolation of the less-than
function by Iliashenko and Zucca [60] on a finite field F,,
for an odd prime p:

_p+1

p—2
(@=b""+ > ci-(a—b"

i=1,0dd

LT(a,b)

where ¢; = Z;:Tl gri=t,

Minimax Approximations of the Sign Function. For
the approximated Enum attribute type, we use a composite
polynomial of degrees 3, 5, 7, 7. For the approximated Range
attribute type, we select a composite polynomial of degrees
7,7, 7, 13 and finally chain the precision boost, as described
in Section 4.2. For the approximated Distance matching, we
apply a composite polynomial of degrees 7, 7, 7, 7, 9, 9,
15. By relying on this configuration, we end up with a sign
approximation with sufficient precision.

Discarded Scheme-Switching Approach. As mentioned
in Section 4.3, we also experimented with an alternative
scheme-switching approach to realize the precise attribute
types. In this alternative approach, we first computed all
calculations up to the less-than operators in CKKS [55] and
then switched the CKKS ciphertext to many FHEW [66]
ciphertexts (one per packed plaintext). On the FHEW cipher-
texts, we then conducted the large-precision sign function
evaluation proposed by Liu et al. [67]. Once the sign
function evaluation concluded, we switched the FHEW
ciphertexts back into one CKKS ciphertext and completed
the computation and aggregation operations in CKKS.

Although the approach is embarrassingly parallel, it
unfortunately does not scale well to large patient numbers.
Our evaluation of the corresponding implementation revealed
that queries on around 4000 patients already took about one
hour to process, i.e., far longer than our reported runtimes
(Section 5.3). Therefore, we discarded this scheme-switching
approach and replaced it with the discussed large polynomial
evaluation in BFV [53], [54] (Section 4.3).

Appendix C.
Exploiting Approximated Attribute Types

The chosen construction of our approximated attribute
types introduces a (theoretical) attack vector to PATDIS-
COVER. Specifically, a malicious client—the attacker—can
exploit his knowledge of how the sign function is approxi-
mated in our design to submit well-crafted queries during
patient discovery. By querying values outside the normalized
range ([0, 1]), he may infer original patient data from the
approximated sign function. The attack builds on applying
the inverse of the approximation function to the discovery
server’s computed result. Fortunately, the inherent loss of
precision when computing complex arithmetic operations in
CKKS complicates the extraction of accurate patient data
in practice. Hence, the HE scheme’s peculiarities render the
attack unlikely in practice.

The described attack vector only manifests in the approx-
imated attribute types. The precise variants are robust.
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