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Abstract—Match-action programmable switches enable high-
performance custom packet processing without custom hardware.
However, these switches are expensive and cannot currently be
reasonably shared between multiple tenants since a switch provider
cannot guarantee a share of the switch resources such as SRAM
or TCAM for each tenant. Each match-action pipeline executes
only a single program, and merging P4 source code from multiple
tenants into a combined program gives no guarantee that the
combined program fits onto the pipeline. We want to overcome this
by showing how to divide the resources of an RMT-based match-
action pipeline into slices which can be rented out individually.
The resource usage of a program is checked if it matches the slice
to enable safe composition with other programs. By giving shared
access to most of the PHV, our approach allows for large numbers
of programs on a shared pipeline. We implemented our approach
for the Tofino programmable switch and successfully limited the
resource usage of real P4 programs. Our evaluation shows that
slicing often results in the same (and sometimes even higher)
number of programs that can be accommodated on a switch,
compared to merging P4 programs without resource guarantees.
Additionally, our approach significantly reduces the computation
time to determine that a composition does not fit onto a switch.

Index Terms—match-action pipeline, multitenancy, slicing
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Programmable switches bring the freedom of custom for-
warding and packet manipulation while providing high through-
put. Applications range from high-speed firewalls [1]–[3],
custom load-balancing [4], and custom routing schemes [5]
to offloading parts of application processing [6]–[8]. The
match-action pipeline, introduced with reconfigurable match
tables (RMT) [9] and available as Tofino, provides the needed
throughput guarantees for such on-path packet processing.

Many applications require only a part of the resources, such
as SRAM or TCAM, of the expensive match-action pipeline
devices. They can be more economically used by putting
multiple applications on a shared switch or by sharing a switch
between multiple tenants, e.g., in the cloud or at an IXP. Sharing
a programmable switch would make their benefits available
without each tenant paying for their own programmable switch.

A match-action pipeline, such as shown in Figure 1, has mul-
tiple match-action stages, each consisting of several different
components [9]. The individual components are configured to
perform the same operation for each packet but can be skipped
through branching (if else). Therefore, when configuring
a match-action pipeline for multiple programs, each pipeline
component can only be used by one of the programs.

Existing work for sharing switch resources either proposes
a slightly modified hardware architecture [10]–[12] or merging
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Fig. 1. A simplified example of dividing a match-action pipeline into two
larger (A, B) and two smaller (C ,D) slices.

individual P4 programs into a combined P4 program, which is
then treated as a single program during compilation [13]–[16].
The difficulty in compiling P4 is fitting all program parts onto
the pipeline components under the constraints imposed by the
program structure [17]. In case a combined program does not
fit onto the pipeline, no individual program can be blamed,
and it is not obvious which tenant should modify its program.

Consider two programs that require the same amount of
memory but have a vastly different shape: (1) a long program
with many small dependent tables that need to be executed
in series and, therefore, need to be distributed to all stages of
the pipeline, and (2) a single-stage program with a large table
that cannot be split to multiple stages and, therefore, takes the
entire memory of a single stage. These two programs cannot
be placed together on the same pipeline, but each of them can
be combined with many other programs. When compiling a
combined P4 program without any resource guarantees, one
tenant may submit one of those two programs to the switch
provider, but if another tenant additionally submits the other
program, the compilation of the combined program will fail.

Tenants should know in advance about the acceptable
resource usage and program shape. Therefore, we propose
to divide match-action pipelines into non-interfering slices, as
exemplified in Figure 1. The tenant gets guaranteed match-
action resources and then can choose and modify its program
independently of other tenants as long as it stays within its
limits. As shown in Figure 2, the switch provider divides the
pipeline resources into slices and then checks if the tenant
program stays within its slice. Since the resource usage of a
program is decided during compilation, we propose to compile
tenant programs individually and check the resource usage of
compiled programs. Programs from multiple tenants that all
stay within their slice can then safely be combined into a joint
program that is guaranteed to fit onto the pipeline.

1 main implemantation: https://github.com/johannes-krude/switch-slicing
modified p4c: https://github.com/johannes-krude/p4c-slicing

backup: https://zenodo.org/records/15188076
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Fig. 2. The switch provider divides the pipeline into slices, checks compiled
programs, and then combines them, whereas the tenant has to adapt and
compile the program to fit into the slice.

To show that our approach is applicable to contemporary
programmable switches, we analyze how an unmodified RMT-
based [9] pipeline can be divided into slices. Although some
switch resources (e.g., SRAM/TCAM) must be divided into
non-overlapping parts, each assigned to a single slice, we show
that this is not the case for all resources. In particular, since,
at most, one tenant program is active for each packet, parts
of the packet header vector (PHV) can be safely shared. We
introduce a PHV sharing scheme that gives shared access to a
huge part of the PHV and fits more programs onto a switch
than the sum of the individual resource usage would suggest.

We implemented1 our slicing approach to check and combine
real programs on an unmodified Tofino switch and evaluate by
comparing the number of coexisting programs to compiling an
unchecked merged P4 program. For many programs, dividing
the switch into equally-sized and -shaped slices allows to fit
as many instances of the same program onto the pipeline as
compiling a merged P4 program. For PHV-limited programs,
our slicing approach even increases the number of coexisting
programs since a huge part of the PHV can be used by
all programs. However, programs that do not fit well with
the chosen slice shapes result in fewer coexisting programs.
Additionally, our approach significantly reduces compile time
in case the program composition does not fit onto the switch
since far fewer table placement variations must be assessed
when compiling a single program for only a part of the switch.
Contributions.

• An analysis of the benefits and requirements for multite-
nancy resource isolation on programmable switches.

• A resource-slicing approach for match-action pipelines
with resource guarantees while sharing most of the PHV.

• An evaluation on a real switch with realistic programs.
Structure. Section II discusses related work before we analyse
multitenany in Section III. Then, Section IV explains slicing
of individual pipeline resources, followed by a discussion in
Section V on useful program and slice shapes. How slicing can
be applied to a Tofino 1 is presented in Section VI followed by
an evaluation in Section VII and a conclusion in Section VIII.

II. RELATED WORK

Slicing the resources of existing pipelines has been deemed
impossible [10] until now, but important steps have been made.
Resource Checking. Wang et al. [15] count the overall number
of resources used by a tenant program without considering how

resource usage is spread over the pipeline stages. The P4 source
of checked programs is merged, and the combined program is
again compiled. With two programs of an incompatible shape
(e.g., a long program and a wide program), the resource checks
would individually succeed, but compiling a combined program
would fail. Our approach guarantees resources at individual
pipeline stages and combines compiled programs to ensure
resource usage does not change after checking.
Hardware Modification. In a subsequent work, Wang
et al. [10] claim that resource isolation is impossible on existing
hardware and propose a modified RMT architecture. Each
packet is assigned a program identifier, and pipeline parts,
such as match-crossbars and the deparser, execute different
instructions for different program identifiers. This allows for full
access to the PHV, which is usually too small to be effectively
divided between tenants. MTPSA [11] and P4VBox [12] go
even further by proposing a separate pipeline for each tenant
program. We show that resource isolation is possible on existing
RMT-based [9] hardware by introducing a PHV sharing scheme
that still allows for separate deparser validity bits.
P4 based Approaches. P4Weaver [13], P4Bricks [16], and
P4Visor [14] compose programs on a P4 level without giving
resource guarantees. Hyper4 [18] and HyperVDP [19] emulate
P4 within P4 with an impractically huge overhead, whereas
ActiveRMT [20], SwitchVM [21], and P4runpro [22] emulate
a simpler instruction set with a reduced expressiveness. With
our approach, a program is natively executed on the hardware
but gets access to only a subset of the pipeline.

III. MULTITENANCY ON MATCH-ACTION PIPELINES

Sharing a programmable switch may be beneficial at any
networking infrastructure where multiple tenants are present,
such as in the cloud or at an IXP. Through cooperation with
DeCIX, we are familiar with a real-world use case that we use
to illustrate the benefits and requirements of switch sharing.
Use Case: Virtual Edge Routers at an IXP. From a technical
viewpoint, an IXP is essentially a big distributed switch that
interconnects many edge routers from different IXP customers.
Each customer places a physical edge router on the premise
of the IXP and then connects it to an IXP switch. The edge
router makes the routing decisions, encapsulates packets for the
customer’s internal network (e.g., MPLS), and filters unwanted
packets. By moving from separate physical devices for each
customer to virtualized edge routers on a shared programmable
switch, IXP customers would save on their physical devices.

DeCIX proposed [5] to replace bloated fixed-function
switches at IXPs with programmable switches to save space
and energy. Since IXP packet forwarding is relatively simple,
the switches have plenty of resources left that can be rented
out to IXP customers. Virtualizing multiple edge routers on a
shared IXP switch vastly reduces the number of devices and
needed space. Sharing the costs of programmable switches
between the IXP and its customers has the potential to benefit
both sides. Instead of placing a physical router on the IXP
premise, the IXP customer then uploads a switch program and
becomes a tenant on the switch provided by the IXP.
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Fig. 3. A simplified program structure for virtualized edge routers at an IXP.

Sharing Common Routines. Although each IXP customer may
need a different edge router adapted to the customer’s network,
some tasks are performed similarly by each virtualized edge
router. Since all IXP customers can reach the same networks
at the IXP, the content of their routing table is mostly the
same, except when an IXP customer has some special routing
policies for selected destinations. The routing table takes up a
major part of the edge routers’ memory and, therefore, provides
an opportunity to reduce resource usage by sharing common
entries. More generally, if the IXP provides common routines,
edge routers only need to implement the functionality that
differs between customers. Providing common routines reduces
the resource usage of tenant programs, but which common
routines are suitable depends on the use case.
Safely Composing Programs. Executing programs from
multiple tenants on a shared switch bears the risk of unwanted
or malicious interaction between the tenants. The switch
provider should prevent access to other tenants’ packets or
memory and should ensure that tenant programs are isolated
from each other. On a match-action pipeline, each packet is
separately processed, and due to the lack of pointers, memory
cannot be arbitrarily accessed. Therefore, as already proposed
by others [13]–[16], access to packets and allocated memory
can be isolated through control flow. With control flow starting
in a base program from the switch provider, tenant programs
can be selectively embedded at predefined extension points [13].

Figure 3 shows an exemplary program structure for safely
composing IXP forwarding with virtual edge routers. For each
incoming packet, the ingress part of only one virtual edge
router is called, giving no access to this packet for other
customers. Then, optionally, the shared routing table is applied,
followed by the IXP forwarding the packet to the egress part
of another edge router. Each edge router may arbitrarily parse
customer-specific headers and perform customer-specific packet
processing but only for packets from or to its own network.
Resource Isolation. The computational resources on a match-
action pipeline, such as memory and action slots, are limited
and distributed over the individual stages of the pipeline.
These resources are allocated during compilation and cannot
be changed while the switch processes packets. Resource
allocation is local to stages, resulting in a compiled program
having a shape, i.e., how resource usage is distributed over the
stages. The shape of a program is not rigid since the compiler
has some freedom in fitting program parts onto pipeline stages.
When combining the base program with the tenant programs
on a P4 source code level, as is done in related work [13]–[16],
the resulting shape of individual programs depends on other
tenants’ programs since the compiler searches for a resource

allocation that accommodates all parts of the combined program.
In such a scenario, a tenant program can only be included in a
combination if it is compatible with the sizes and shapes of all
the other tenant programs. If a tenant has to know the other
tenants’ programs, it becomes difficult to construct a program.

We propose that each tenant should get a guaranteed slice
of the pipeline resources. Resource isolation is provided by
dividing the pipeline resources into non-interfering slices and
checking whether tenant programs stay within their slice.

IV. SLICING PIPELINE RESOURCES

We want to isolate resource usage on programmable switches
based on the RMT [9] architecture by slicing their match-action
pipeline. The slices should enable to reason about the resource
usage of each tenant program individually while allowing
resource-safe composition of the tenant programs.
The Pipeline. As shown in Figure 4, each packet processed by
the pipeline is first deconstructed by the parser, is then modified
by multiple match-action stages, and finally reconstructed by
the deparser. To accommodate packets with different headers,
the parser is a finite state machine that acts upon previously
extracted headers and stores the extracted headers into fields
of the packet header vector (PHV). After being modified by
the match-action stages, the PHV finally reaches the deparser,
which concatenates a list of fields from the PHV to reconstruct
the packet. Each packet passes through the pipeline twice, once
to select the output port (ingress) and again after the output
port is selected (egress).
Tables and Control-Flow. Each match-action stage is split
into a limited number of logical tables executed in parallel. A
table uses a subset of the crossbar to extract the match key
from the PHV, optionally hashes the key, and matches the key
against a subset of the SRAM or TCAM to select a single
action, which modifies some PHV fields.

Most importantly, tables provide control flow through the
next-table mechanism. The matched entry specifies the table
to be executed next, and all tables between the current and the
next table are skipped. The next table can be in the same stage
as the current table, but only if the current action does not
modify any PHV fields used in the next table’s match key [17].
For additional control flow, each table can have a gateway that
checks some PHV fields, similar to a restricted if condition,
to select another next-table, thereby skipping the current table.
Partitioning Pipeline Resources. Most parts of the pipeline
are configured to always perform the same operation and this
configuration can only be changed with downtime. E.g., a
crossbar byte always extracts the same PHV field for each
packet, and an SRAM cell is always allocated to the same
logical table even if the table is skipped for a packet. This
kind of resource cannot be shared between multiple tenants
and, therefore, needs to be partitioned between the slices.

As shown in the example in Figure 4, each tenant gets a
subset of the parser transitions, crossbar bytes, SRAM and
TCAM cells, action slots, and deparser entries. The partitioning
can vary between stages, as in this example, the tenants get
fewer resources in the first and last match-action stages since
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Fig. 4. Most resources are partitioned among tenants A, B, and C and the providers base program, but most of the PHV is sharedly usable by all tenants.

the provider’s base program also needs resources to implement
tables that pass control flow to the correct tenant and may
provide common routines such as a shared routing table.
Shareable Pipeline Resources. Pipeline resources that have no
configuration have the potential to be jointly used by multiple
tenants. This includes buses that transport data within the
pipeline, the most important of which is the packet header
vector (PHV). Fields in the PHV are assigned by the parser
and actions and are consumed by the match crossbar, actions,
and deparser. If, at most, one tenant program is called for each
packet, no conflict exists between multiple tenant programs
reading and writing the same PHV fields.
PHV Validity Bits. However, the deparser is not part of the
control flow provided by the next-table mechanism and always
interprets all PHV validity bits for each packet, complicating
PHV sharing. The deparser is configured with a list of PHV
fields, which are concatenated to produce the output packet,
with each entry being guarded by a bit from a PHV field called
the validity bit. If one tenant program sets a PHV bit used
as a validity bit in another program’s deparser, the deparser
will output fields from the wrong program. Therefore, PHV
fields used for validity bits by one program cannot be used for
headers or validity bits of other programs.

We propose to divide the PHV into a shared and an exclusive
part. All tenants get access to all of the shared part, but the
exclusive part is partitioned between the slices. Each tenant
program can use both the shared part and its exclusive part of
the PHV, but it is not allowed to use the shared part as validity
bits since this would interfere with other programs’ deparsers.
The example in Figure 4 shows that multiple tenants have their
header data in the same PHV fields for the ingress deparser,
but the validity bits are exclusive.
Takeaway. We have to partition the parser, deparser, and
match-action stages since they store tenant-specific configura-
tion. The packet header vector (PHV) can be mostly shared
between tenants since it is only indirectly used by the other
components. Only the validity bits in the PHV cannot be shared

since this would break isolation between tenants’ deparsers.

V. SLICE- AND PROGRAM SHAPES

By checking if each individual program stays within its slice,
the switch provider can ensure that programs are composable
without resource conflicts. Since resources are stage-local, the
provider must check if the shape, i.e., how resource usage is
distributed over stages, matches the allocated slice.
Compile Programs Individually. How a program is fitted to
the stages is decided by the compiler, which respects the re-
source limits of individual stages and the dependencies between
tables. Tenant programs, therefore, need to be individually
compiled for their slice, and the provider checks and composes
the compiled programs. Fitting a program into a small slice may
require manual modifications, and the tenant can more freely
change the program while preserving the intended functionality.
Choosing Slice Shapes. A program can only be fitted into a
slice if the shape of the slice is compatible with the program.
A slice with few large stages allows for large tables, but more
smaller stages allow for longer dependency chains. Splitting the
PHV into more or less shared and exclusive fields influences
the amount of possible headers, metadata, and validity bits.

A switch provider may individually negotiate a slice shape
with each tenant or divide a pipeline into identical slices.
Offering only a few slice shape options may make it easier
to rent out all resources and move tenant programs between
switches but restricts the possible program shapes.
Reordering Undivided Stages. Slice shapes can be made more
flexible by giving a tenant a mix of undivided and divided
stages. Since an undivided stage is not used by any other
tenant, it can be reordered to any position in the pipeline
without affecting other tenants. Changing the order between
undivided and divided stages in a slice allows tenants to use
the larger undivided stage where it brings the most benefit.
However, this reordering is possible only in the special case
of undivided stages but not between differently divided stages
since all other tenants using the same stages would also have
to reorder their stage usage. E.g., if a tenant’s slice contains



1/2 of a stage followed by 1/3 of a stage and the tenant would
reorder them, then other tenants would also have to reorder
their stage usage since a table using 1/2 of a stage cannot be
relocated into 1/3 of a stage.
Using Multiple Pipelines or Switches. To gain longer slices or
increase flexibility, a slice could span over match-action stages
from multiple pipelines or switches. As mentioned in related
work [23]–[28], a program can be split between pipelines by
serializing all PHV fields into a packet and reconstructing the
PHV on another pipeline that continues processing with the
next virtual match-action stage. Splitting a program oblivious to
the tenant, however, requires solving new consistency problems
for stateful programs, as it is now possible that packets get
lost or reordered between match-action stages.
Takeaway. The chosen slice shapes vastly influence which
tenant programs are possible. Flexibility can be increased by
reordering undivided stages or combining multiple pipelines.

VI. SLICING THE TOFINO

We show that our approach is applicable to existing hardware
by applying it to the pipeline of the most popular RMT-
based [9] programmable switch, the Tofino 1. We analyzed
how the pipeline components can be sliced and implemented
an automated toolchain to check Barefoot Assembly (.bfa) files
whether they stay within their slice and then compose them
with other Assembly files for joint execution on real hardware.
The Tofino Pipeline. A Tofino ASIC has up to four identical
pipelines, each of which can execute a separate program.
We, therefore, separately slice each pipeline. Each pipeline
is connected to 16 ports of 100 GbE, which, in the IXP use
case from Section III, could each be rented out to a different
tenant if we achieve to divide the pipeline into 16 slices. We
form functionally identical slices so that a tenant program can
be compiled independently of the slot assigned for execution.
PHV. The Tofino 1 PHV consists of 224 fields of different
sizes (64· 8 bit, 96· 16 bit, 64· 32 bit), which are organized into
groups of 16 fields. Actions can only combine fields within a
group, and a group can only be divided into halfs (8+8 fields)
between ingress and egress processing, which is done in parallel
on the same pipeline. When executing a single program on the
pipeline, the PHV can be split between ingress and egress in
a way suitable for this program. However, when combining
multiple tenant programs, the PHV split for shared PHV fields
has to be the same for all programs since the parallelly handled
ingress and egress packets might belong to different tenants.

We slice the PHV by allocating most of the PHV half-
groups to shared ingress or shared egress, with a few additional
individual fields reserved for exclusive usage as validity bits.
Therefore, the Tofino PHV can be divided into up to 48 equally-
sized PHV slices with then each slice consisting of 16 ingress
validity bits, 16 egress validity bits, and 128 shared PHV fields
divided between ingress and egress. This slicing exceeds the
goal of 16 tenant programs, and each tenant program can
process up to 16 ingress and 16 egress headers, which fits all
but one of our example programs (see Table II). With fewer
number of slices, more per-slice validity bits are possible.

TABLE I
THE NUMBER OF SLICES WHEN DIVIDING THE 12 MATCH-ACTION STAGES
OF THE TOFINO 1 INTO FUNCTIONALLY IDENTICAL SLICES. E.G., DIVIDING

INTO SLICES OF 6·1/2 STAGES, RESULTS IN 4 SUCH SLICES.

Number of Stages per Slice
12 6 4 3 2 1

Stage
Division

1/1 1 2 3 4 6 12 Number
of

Slices
1/2 2 4 6 8 12 24
1/3 3 6 9 12 18 36

12·1/1 = 6·1/2 = 2·1/3 =

Parser and Deparser. The 256 parser states and 192 deparser
entries of the Tofino can be arbitrarily partitioned since there are
no dependencies between parser states and between deparser
entries. They do not limit the possible number and shapes of
slices, as other switch resources are far more constrained.
Match-Action Stages. Each of the 12 identical match-action
stages of the Tofino consists of many different resources. Mem-
ory is organized in rows, 8 SRAM rows and 12 TCAM rows,
which can be independently allocated to different slices. The
match crossbars for SRAM and TCAM are many bytes wide,
but the individual bytes have slightly different constraints and
cannot be arbitrarily exchanged for one another. We identified
only three blocks of ternary crossbar bytes with identical
constraints and, thus, can partition them into, at most, three
interchangeable slices with ternary match capabilities. Hash
distribution units can only be divided into two independent
blocks, but most of the examined programs do not use hash
distribution units. We divide the resources in a match-action
stage of the Tofino 1 into functionally identical slices containing
1/2 or 1/3 of the resources, but some resources are lost in the
division as they are not exactly dividable by two or three.

Dividing the 12 match-action stages of the Tofino 1 into
identically sized slices with the same amount of resources in
each stage results in slices spanning 12, 6, 4, 3, 2, or 1 stage(s)
with 1/1, 1/2, or 1/3 of the per-stage resources as shown in
Table I. Up to 36 slices are possible, but each such slice
consists of only one-third of a single stage. When targeting, for
example, 4 slices, this can be achieved with slices of 6·1/2 stages,
or 3·1/1 stages. Other combinations exist but result in uneven
or non-interchangeable slices. Since all the non-match-action
stage resources can be divided into more slices, a Tofino 1
pipeline can be divided into up to 36 slices.
A Minimal Base Program. We constructed a minimal base
program for Tofino that passes control to placeholders for
tenant programs but could be extended to, e.g., include a shared
routing table or complex forwarding logic. Our minimal base
program does not consume any bytes from the packet but only
peeks at the input port and calls a different tenant program for
each port. It also has no deparser or tables of its own and allows
the tenant programs to set the egress port. To avoid an additional
program selection table, an if else chain of gateways is
used to pass control to the first table of tenant programs. This
base program is lightweight as it consumes only 2 PHV fields



and per-tenant additionally 2 parser transitions, 2 crossbar bytes,
and 2 gateways, one for ingress and one for egress, respectively.
This base program provides tenant programs with the same
environment as if they were solely executed, but depending
on the use case, more interaction between base and tenant
programs could be implemented.
Checking and Composing Barefoot Assembly. Our automated
resource checker and program composer implementation works
on programs compiled to Barefoot Assembly files. Since the
Tofino supports no indirection, such as pointers, all used
resources are specified in the Barefoot Assembly file as
concrete addresses. Resource checking is done by comparing
the addresses to resources allocated to the slice, and the program
can be relocated to another functionally identical slice by
replacing all addresses with an equivalent address from the
target slice. Well-formed programs that match their slice are
safely composed by concatenating their parser, match-action
tables, and deparser to the base program. Control flow in the
base program’s parser and match-action stages is adapted to
point to the tenant programs instead of the placeholders. No
adjustment to the deparser is needed, as it has no control flow.
Testing for Correctness. To check if the relocation or
composition affects the correct behavior of programs, we
executed some of the programs from Table II on a Tofino 1
switch. We generated test packets through symbolic execution
on the P4 source code of the individual programs, similar to
p4pktgen [29], and confirmed that the programs still behave
the same in a composition on the switch.
Throughput, Control Plane, Stateful Programs. Several
additional mechanisms would be necessary when using our
implementation in a real deployment. The Tofino 1 guarantees
to process packets at a fixed rate, but if a tenant manages to
occupy a large portion of the guaranteed bandwidth with its own
packets, other tenants won’t receive many packets. The switch
provider should, therefore, suppress excessive recirculation and
routing loops through his routing mechanism [11], [15]. Our
implementation only deals with the data plane, but programs are
usually accompanied by a control plane program that reads and
modifies the table entries stored in SRAM and TCAM. Control
plane programs are executed on a general-purpose CPU, can be
virtualized with well-established operating system virtualization
techniques, and should be given access to only a tenant’s own
data plane tables, as described in [11], [15]. Loading a program
onto the Tofino 1 incurs a downtime of up to 50 ms [30],
and all stateful elements, such as counters and registers, lose
their state [31], [32]. Several existing works [31]–[36] propose
solutions for changing a single or multiple programs, and future
work could investigate whether they are applicable to slicing.

VII. EVALUATION

The evaluation investigates if slicing results in useful
resource utilization on the Tofino 1. The main metrics are
the size of the needed slices and how many programs can
share a pipeline. Additionally, we compare compilation times.
Example Programs. We evaluate our approach by fitting the
realistic P4 programs shown in Table II into a subset of the

TABLE II
THE EXAMPLE P4 PROGRAMS USED IN THE EVALUATION.

Program Lines Tables Min
Stages

Validity
Bits

Most Used
Resource

(except PHV)

single table 99 1 1 0+0 table
IXP routing 452 13 4 1+0 SRAM
MPLS 212 4 1 1+2 deparser
VXLAN 461 9 3 2+6 deparser
chord 419 11 4 19+0 parser
firewall simple 245 4 1 4+0 deparser
accelerator [37] 477 16 4 1+1 table
aes [38] 722 30 5 7+0 checksum
conquest baseline [39] 347 5 2 4+4 checksum
flowlet [40] 345 5 2 3+0 deparser
RTT [41] 779 20 10 5+0 hashing
speedtest [42] 895 1 1 5+0 deparser
advanced tunnel [43] 261 2 2 3+0 registers
calc [43] 302 2 1 2+0 deparser
ecn [43] 228 3 1 2+2 deparser
firewall [43] 413 13 5 3+0 hashing
multicast [43] 212 2 1 2+1 deparser
qos [43] 314 3 1 2+0 deparser
source routing [43] 245 4 1 11+0 deparser

pipeline resources. When necessary, we ported the programs
to the P4 Tofino Native Architecture and normalized them
by putting implicit actions into tables without a match key.
To show the different shapes of the programs, we list the
number of tables and the minimum number of needed stages,
which corresponds to the longest match-action dependency
chain. The programs vary in their resource bottleneck, as can
be seen by their most used non-PHV resource. We built the
single table program as an intentionally small program to
showcase the capabilities of our approach. For the IXP use
case, we implemented IXP routing, which is the shared routing
table from Figure 3 and two possible edge routers: MPLS and
VXLAN. Two programs, chord and firewall simple, were built
by students in a P4 class. The remaining programs were taken
from public repositories or published papers. We investigated
some additional programs [17], [44]–[46] but excluded them
from the evaluation since they use too many pipeline resources
to be applicable to switch sharing.
Overview. At first, we evaluate resource checking and compo-
sition using a slice-unaware compiler to investigate the case of
a compiled program not fitting into the slice. We then continue
with several slice-aware compilers to asses how many program
instances can be fitted onto a shared switch.

A. Resource Checking & Composing

Using the existing slice-unaware Tofino P4 compiler, we
compile each example program independent of any slice and
then check for each of the slicings from Table I if the resources
used by the compiled program are within the slice or can be
relocated into the slice. If the compiled program does fit into a
slice, we then take multiple instances of the compiled program
and combine them with the base program for joint execution.

Although a compiled program may use less than the number
of resources allocated to a slice, the slice-unaware compiler



TABLE III
SLICES INTO WHICH THE EXAMPLE PROGRAMS WERE SUCCESSFULLY

RELOCATED. FOR EACH PROGRAM, THE SLICE WITH THE FEWEST
RESOURCES IS HIGHLIGHTED.

Number of Stages

Program 1/1 Stages 1/2 Stages 1/3 Stages

single table 1–12 1–12 1–12
IXP routing 12
MPLS 1–12 1–12
VXLAN 3–12 3–12
chord 6–12
firewall simple 1–12 2–12
accelerator 4–12
aes 6–12
conquest baseline 2–12 4–12
flowlet 2–12 2–12
RTT 12
speedtest 2–12 4–12 6–12
advanced tunnel 2–12
calc 1–12 1–12 2–12
ecn 1–12 2–12
firewall 6–12
multicast 1–12 2–12
qos 1–12 2–12
source routing 2–12 3–12

speedtest
fits into
each of:

2·1/1, 3·1/1,
4·1/1, 6·1/1,

12·1/1,
4·1/2, 6·1/2,

12·1/2,
6·1/3, 12·1/3

does not respect slice boundaries and may use a mix of
resources assigned to different slices. We, therefore, extended
our implementation with heuristics that align a compiled
program to a single slice: PHV fields are rearranged into
the shared and exclusive part based on whether they are used
as validity bits. Match-action resources (e.g., match crossbar
bytes) are moved to entities with identical behavior.

Table III lists for each program all the slices into which we
could relocate the compiled program. Whenever a program
fitted into a slice, we also successfully composed the program
with additional program instances, relocated to the remaining
slices, without causing resource conflicts. This shows that slice
checking, relocation, and composition work as intended.

For each program, the slice with the fewest number of
resources is highlighted. If multiple slices are highlighted for
a program, this program has its resource bottleneck not in the
match-action stages but in the parser, deparser, or PHV. E.g.,
speedtest, needs a 1/6th of the deparser entries and therefore
only fits into slices that include at least that amount. Slices
of 2·1/1, 4·1/2, and 6·1/3 stages all come with a 1/6th of the
deparser entries and are, therefore, the smallest possible slices
for speedtest, although it actually uses only two stages.

Although we manually optimized the P4 source code of
IXP routing to fit into 4·1/1 stages, the slice-unaware compiler
chooses a shape incompatible with relocation. Similarly, relocat-
ing programs into slices of 1/3 stages failed for most programs.
Our resource checker correctly identifies if a compiled program
stays within a slice, but a slice-unaware compiler may choose
a program shape that does not match the targeted slice.
Takeaway. With our approach, checking programs for resource
isolation and resource-safe composition is applicable to an
unmodified Tofino 1 pipeline. However, the slice-unaware Tofino
P4 compiler is not good at fitting programs into small slices.

B. Program Density

Slicing guarantees tenants the availability of resources even
when their program does not use them all. If a tenant program is
not well-adapted to the provider-chosen slice shape, resources
remain unused and cannot be reallocated to another tenant.
To investigate the usefulness of slicing pipeline resources for
switch sharing, we evaluate how many programs can share a
sliced pipeline without manually optimizing the programs for
the slices. We compare this number to merging programs on
a P4 source code level, which is not restricted by the slice
boundaries and can more freely allocate resources. Compiling
a combined P4 program can result in more programs on a
shared switch but gives no resource guarantees for any of the
programs in case a single program changes.
Compiling for a Slice. For a useful comparison, we try to
maximize resource utilization with a compiler that fits programs
into small slices. Since the source code of the Tofino P4
compiler was recently made available [47], we modified the
compiler to target a slice instead of the complete pipeline. We
developed two additional approaches that utilize an unmodified
compiler and allow for fitting into a wider range of slices.
1. Modifying the Tofino P4 Compiler (p4c). We made the
Tofino P4 compiler slice-aware by making several resource
constants runtime-configurable, such as the number of SRAM
and TCAM rows, crossbar groups, and logical table ids. Since
the compiler was not intended to be used for less than a
complete pipeline, more complicated slice constraints can not
be easily implemented. Instead of making the compiler aware
of PHV shared and exclusive usage, we relocate PHV fields
in the resulting Barefoot Assembly. Additionally, the compiler
uses the same number of match-action resources for each stage,
which makes this approach applicable to only uniform slices.
2. SMT-based @stage Annotations. As an alternative
approach for non-uniform slices, we used the Z3 SMT solver
to compute a placement of tables into match-action stages. The
resulting table placement is then added to the P4 source as
@stage annotations to instruct the Tofino P4 compiler to place
the annotated tables into the specified stages. We generate SMT
constraints similar to Jose et al. [17] and made it applicable
to real hardware by respecting conditional dependencies to
properly describe the next-table mechanism. This approach
works with an unmodified compiler, can target non-uniform
slices, and can reorder between undivided and divided stages.
3. Generate Additional Tables for Forbidden Resources.
A third approach generates tables annotated to occupy the
resources outside the slice. The compiler, therefore, has to find
a fit where the tenant program uses the remaining resources,
and our implementation afterward removes the generated tables
from the Barefoot Assembly. This allows for non-uniform slices
but does not support stage reordering. For some programs, this
approach yields the smallest fit, perhaps because the heuristics
of the Tofino P4 compiler are optimized for a complete pipeline.

Table IV shows for each example program how many
program instances we could jointly execute on a Tofino 1
pipeline. The number of program instances in the Slicing



TABLE IV
COMPARISON OF HOW MANY PROGRAM INSTANCES FIT ONTO A TOFINO 1
PIPELINE WHEN COMPILING A COMBINED P4 PROGRAM OR INDIVIDUALLY

COMPILING FOR SLICES.

Max. Prog. Instances

Program P4 Merge Slicing Smallest Slice(s)
Achieved By

Compiler

single table 36 = 36 1·1/3 p4c, SMT, gen
IXP routing 3 = 3 4·1/1 gen
MPLS 32 ≈ 24 1·1/2 p4c, SMT, gen
VXLAN 6 < 8 3·1/2 p4c, SMT, gen
chord 7 > 3 4·1/1, 12·1/3 SMT, gen
firewall simple 12 = 12 1·1/1, 2·1/2, 3·1/3 p4c, SMT, gen
accelerator 9 > 6 4·1/2 p4c
aes 3 = 3 12·1/3 p4c
conquest baseline 6 = 6 2·1/1, 4·1/2 p4c, SMT, gen
flowlet 13 ≈ 12 2·1/2 p4c, SMT
RTT 2 > 1 12·1/1 p4c, SMT, gen
speedtest 6 = 6 2·1/1, 4·1/2, 6·1/3 p4c, SMT, gen
advanced tunnel 12 = 12 2·1/2 p4c
calc 24 = 24 1·1/2 p4c, SMT, gen
ecn 21 ≈ 18 2·1/3 p4c, SMT
firewall 4 > 2 6·1/1, 12·1/2 p4c, SMT, gen
multicast 15 < 24 1·1/2 gen
qos 21 ≈ 18 2·1/3 p4c, SMT
source routing 10 ≈ 9 4·1/3 SMT

< > = More, less, or, the same number of program instances
≈ Same number impossible, achieves the next possible number

column results from the smallest slice we could fit the program
into. For most programs, all three compiling approaches achieve
the same number of program instances, but each compiling
approach outperforms the others for at least one program.
We compare this to naı̈vely merging the P4 source code of
up to 36 program instances with the P4 base program and
then compiling the combined program (P4 Merge column in
Table IV). This number sometimes falls between the number of
possible slices, e.g., for MPLS, the Tofino P4 compiler can fit
32 instances onto a pipeline, but we cannot divide the pipeline
into any number between 24 and 36 equally-sized slices. The
next possible number of slices for MPLS is, therefore, 24, and
we can compile MPLS into a 1·1/2 stages slice, which results in
the same number of 24 coexisting program instances. Slicing
achieves the same or a higher number of instances for 10 of
the 19 programs, and for 15 of the programs, it achieves the
same or higher number of instances when rounding down to
the next possible number.
Improved Density due to PHV Sharing. For two programs,
VXLAN and multicast, slicing results in more programs on the
pipeline than merging P4 programs. Both of these programs
have a high PHV usage, and our PHV sharing approach makes
a huge part of the PHV available to all tenants.The Tofino P4
compiler, without knowledge of the separation into individual
programs, does not achieve the same amount of PHV sharing.
IXP Switch Densitiy. If we look at the programs for the IXP
use case from Section III, we see that the IXP routing table
fits into 4 stages, leaving 8 stages for the edge routers of the
IXP customers. These 8 stages can accommodate 16 MPLS or
4 VXLAN instances, and maybe even more if a programmer
manually adapts the program to the shape of the rented slice.

Non-Uniform Slice Shapes. To accommodate programs with
a non-uniform shape, a pipeline can also be divided into
slices that mix stages of different sizes. E.g., chord can be
compiled into a slice of 1·1/1 + 4·1/2 stages using our SMT-
based approach. Since the pipeline can be divided into 4 such
slices, this is an improvement compared to the uniform slicing
shown in Table IV, which only allows for 3 instances.
Takeaway. Although resource guarantees may result in
unused resources, for most of the example programs, our
slicing approach achieves or exceeds the next-possible number
of program instances when compared to naı̈vely merging
P4 programs. For PHV-limited programs, our PHV-sharing
approach can increase the number of coexisting programs on a
shared switch. In a realistic scenario, a tenant may also adapt
his program for the slice, resulting in fewer unused resources.

C. Composition & Compile Time

Fitting a program onto a match-action pipeline is an NP-hard
problem [48] and can, therefore, result in long compilation
times. Especially when a program does not fit, the compiler
exhaustively tries all table placement variations before it
gives up. We observed up to 33.0 hours of compilation time
on a Ryzen 7 5800X processor when trying to compile
a combined P4 program consisting of 36 instances of the
IXP routing program. When compiling combined programs,
a switch provider has to recompile everything whenever a
new composition is needed, and it can take up to multiple
hours until the switch provider gets feedback on whether
this composition is possible. In contrast, with our approach,
the switch provider only needs to check resource usage and
compose compiled programs, and we observed a maximum total
time for checking and composing of 6.4 seconds. Compiling
programs individually for slices, therefore, not only provides
resource isolation but also speeds up the composition task.

With our approach, the tenant program still has to be
compiled, but this is done individually by each tenant. Since the
tenant compiles only a single program for its slice, the problem
solved by the compiler is vastly smaller, and we observed only
up to 6.5 minutes for compiling a single program to a slice.
Takeaway. Compiling programs individually deconstructs the
compilation into smaller chunks, leading to faster compilation
times. Most of the remaining compilation effort can be moved
to tenants. The switch provider can, therefore, quickly compose
programs within seconds.

VIII. CONCLUSION

Slicing of match-action resources enables resource isolation
since each tenant gets the guarantee that its data plane program
can use all resources from its slice. A switch provider only
checks whether a tenant program stays within its slice and then
combines it with other tenant programs for joint execution on a
switch. Although most pipeline resources have to be partitioned
between slices, we show that large parts of the PHV can safely
be shared. Our evaluation shows that a Tofino 1 pipeline can
be divided into up to 36 slices, each holding a separate tenant
program. We fitted 19 example programs into slices of varying



sizes and showed that for most programs, the same program den-
sity can be reached when compared to compiling a combined
P4 program without resource guarantees. For PHV-limited
programs, we even improve the program density since our
slicing approach improves the PHV sharing between mutually
exclusive programs. Additionally, our approach significantly
reduces the computation time to determine that a composition
does not fit onto a switch.
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