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Abstract
Although confidential virtual machines (CVMs) offer strong
isolation in untrusted cloud environments, their attestation
mechanisms are restricted to static boot-time measurements.
This means they cannot capture the detailed post-boot state
necessary for real-world deployments. Modern workloads de-
mand context-specific trust decisions that vary across verifiers,
operational stages and workloads, like software supply chains
or cloud-native workload deployments.

In this paper, we present a flexible policy-driven attestation
and configuration architecture that enables verifier-specific
evidence generation across different stages of a CVM’s lifecy-
cle, without requiring changes to the guest OS or container
workflows as previous approaches. Our system uses eBPF
and Linux Security Module hooks to capture in-guest signals
under dynamic policies, allowing flexible and context-aware
attestation of runtime properties or post-boot configuration
state. We demonstrate its utility in two use cases: (i) attest-
ing confidential build pipelines with cryptographically linked
Software Bill of Materials and artifacts, and (ii) enabling
verifiable post-boot contextualization for multi-tenant CVMs.
Built on AMD SEV-SNP, our prototype achieves low over-
head and seamless integration, offering a practical trust layer
that advances attestation for secure software supply chains
and dynamic cloud workloads.
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1 Introduction
As industry continues its shift towards cloud computing [45],
virtual machines (VMs) have become the de facto abstraction
for infrastructure deployment, offering scalability, workload
isolation, and compatibility with existing software stacks.
This VM-centric model has paved the way for confidential
virtual machines (CVMs), which introduce hardware-enforced
protections that isolate the entire virtual machine, including
its guest OS and applications, from the underlying cloud
platform. CVMs provide a secure execution context that ad-
dresses confidentiality, integrity, and compliance requirements
without requiring significant changes to workload architecture.
Emerging hardware technologies such as AMD SEV-SNP [2],
Intel TDX [29], and ARM CCA [48] bring trusted execution
environment (TEE) capabilities directly to the VM boundary,
allowing a seamless and practical transition to confidential
computing [12, 38] within modern cloud-native deployments.

While CVMs offer strong isolation from the cloud infras-
tructure, they rely on the integrity of the entire guest en-
vironment, including the OS, orchestration layers, and the
stakeholders managing it during runtime. This is particu-
larly problematic in multi-tenant cloud-native deployments,
such as Kubernetes (K8s) clusters running on CVMs, where
containerized workloads often rely solely on standard con-
tainer abstractions for isolation. For example, both Azure
and Google Cloud Platform (GCP) [6, 10] support the deploy-
ment of CVMs as worker nodes in their managed K8s services.
While the VM’s memory is encrypted and integrity protected
against tampering from the cloud provider-controlled host
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Figure 1: Runtime modifications occur outside the TEE’s static
trust boundary, making them invisible to launch-time attesta-
tion. This exposes containers (CN), workloads (W) as well as
the system state to unregulated sidecars injection and poten-
tial tampering (i.e. malicious bare process (BP) execution).

infrastructure, these services do not provide a dedicated con-
fidential control plane or expose integrity metadata for the
confidential clusters or nodes. As a result, the different stake-
holders using such nodes lack verifiable evidence about the
actual runtime state of the workloads and the system. In K8s
environments, for example, workload owners may be unaware
of mutating webhooks that can inject sidecar containers or
alter pod specifications [46, 55]. They also lack visibility into
the configuration of their data plane and the installed system
software. This leaves them vulnerable to potential security
and isolation risks (see Fig. 1).

The foundation of confidential computing is based on veri-
fying –attesting– the integrity of the context loaded into the
TEE and validating the authenticity of the TEE hardware
that provides the isolation and signs the given integrity meta-
data. For CVMs, the attestation evidence is recorded by the
hardware during initialization and usually only reflects the
virtual firmware, or in the case of measured direct boot the
kernel, the initial RAM disk, and the kernel commandline [24]
as well. This leaves a blind spot for dynamically loaded work-
loads and configurations, which are often not covered by
hardware-rooted measurements. For example, applications,
containers, or runtime components started after boot cannot
be verified unless the CVM provides a mechanism to measure
and report them post-launch. This gap could be exploited to
mislead verifiers about the trustworthiness of their deployed
CVMs. Worse, current attestation mechanisms are static and
verifier-agnostic, providing the same evidence to all verifiers
regardless of their policies or risk tolerance. To truly support
secure multi-tenant deployments, attestation must become
contextual, scoped, and adaptable to verifier needs.

The Linux kernel offers several mechanisms to observe
and verify post-boot system state. Two common approaches

are auditd [50], a user-space daemon for collecting security-
relevant system events, and Integrity Measurement Archi-
tecture (IMA) [28], a kernel subsystem that maintains a log
of cryptographic hashes for accessed files. auditd can track
a wide range of activities, including file access, privilege es-
calations, user logins, and system calls, while IMA focuses
on measuring integrity-critical resources, such as executa-
bles, libraries, and configuration files, as they are opened
or mapped into memory. While these tools are valuable for
building an evidence trail, they operate under static, system-
wide policies and do not distinguish between workloads or
stakeholders. In multi-tenant CVMs, this can lead to several
challenges: tenants may have different evidence requirements,
cannot isolate or authenticate the provenance of measure-
ments, and may be unwilling to expose their runtime activity
to others, including co-resident workloads or infrastructure
verifiers. Additionally, current logging systems do not support
verifier-scoped measurement policies, nor are they themselves
attestable or policy-driven, making them ill-suited for fine-
grained, dynamic attestation in cloud-native deployments.

To address this, verifiers must be able to define attestation
policies that specify what evidence should be recorded and
when. Such policies should be loaded at runtime, scoped to
the verifier’s trust assumptions, and enforced within the TEE
boundary—without compromising isolation guarantees for
other tenants. Enabling this form of policy-aware, verifier-
specific attestation is key to making CVMs suitable for mod-
ern, trust-diverse, and cloud-native environments.

In this paper, we present a novel approach to enable
workload-centric runtime attestation that fits the owners and
workloads’ requirements pertaining to the granularity, ab-
straction, and frequency of recording of evidence. To achieve
the dynamic nature of the enforcement of such requirements,
we leverage extended Berkeley Packet Filter (eBPF) pro-
grams along with Linux Security Module (LSM) hooks that
will be loaded during runtime and handle each respective
tenant’s requests pertaining to event recording, access control
and authorization over their workloads. We guarantee the
authenticity of the recorded evidence by leveraging our archi-
tecture as an intermediate Root of Trust (RoT) for reporting
and recording and binding it to the underlying CVM, which
is our hardware RoT leveraging AMD SEV-SNP. To ensure
the integrity of our system’s operations, we render it integrity
protected, incorporate it into the initial CVM’s measured
envelope so that it can be attested, and enforce access control
over its resources leveraging eBPF programs. All of the eBPF
programs that will be later used by the workloads and our
architecture are included in the same measured envelope and
are also integrity-protected. We demonstrate the strength
and versatility of our approach through two key use cases:

(1) a confidential build pipeline, where we (i) attest the
runtime environment and software stack during build
execution, (ii) bind evidence to resulting artifacts and
Software Bill of Materials (SBOM), and (iii) package
the evidence for different verifiers; and
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(2) attestable contextualization of CVMs, where (i) dynamic
post-launch configuration is measured and attested, (ii)
workload owners request fine-grained runtime measure-
ments and policy enforcement logs, and (iii) each attes-
tation and configuration request is authorized against
pre-set certificates to ensure the privacy and integrity
guarantees for each workload.

Finally, we evaluate the performance of our system across
both scenarios, showing that it enables flexible, fine-grained
attestation while maintaining low overhead and seamless
integration with existing architectures.

2 Background
This section introduces the core technologies that underpin
our system. AMD SEV-SNP for confidential VM execution,
and eBPF combined with LSM for fine-grained kernel-level
access control and policy enforcement.

2.1 AMD SEV Secure Nested Paging
AMD’s SEV Secure Nested Paging (SEV-SNP) [2] provides
memory encryption and integrity protection for VMs, shield-
ing them from potentially compromised hypervisors. Each
VM is encrypted with a unique key that is managed by the
AMD Secure Processor (AMD-SP), which also facilitates
remote attestation.

The attestation report includes a cryptographic hash of the
initial state of the VM, allowing remote parties to verify its
integrity. However, basic SEV-SNP reports only reflect the
firmware state. To address this, measured direct boot extends
coverage by including kernel, initrd, and boot parameters,
whose hashes are embedded in the firmware and validated
during boot, resulting in hardware-backed measurements that
better reflect the complete launch state [15, 24].

2.2 eBPF and LSM Hooks
eBPF (Extended Berkeley Packet Filter) [19, 52] is a kernel-
resident, sandboxed runtime that allows dynamically injecting
verified programs into the kernel at various hook points.
Originally used for packet filtering, eBPF now supports a
wide range of tasks including observability, access control,
and policy enforcement.

When integrated with the LSM framework [53], which pro-
vides a set of kernel hooks at sensitive syscall or resource
boundaries, eBPF programs can be attached to enforce cus-
tom security policies dynamically [18, 54]. This enables run-
time, context-aware enforcement without kernel patches or
system restarts, offering greater flexibility than static mecha-
nisms like SELinux or AppArmor [56].

3 Design
This section outlines the objective and threat model of our
system, followed by the key design requirements and the
architectural components that support our goals.

3.1 Objective
The confidential computing threat model, particularly when
applied to CVMs, focuses on protecting against external
threats and malicious actors that have control over the host
platform and its software, including the hypervisor. Assur-
ances for this protection are offered by the hardware in the
form of an attestation report giving proof for the hardware
authenticity and the integrity of the VM’s initial state during
loading time. The CVM and its own software stack are con-
sidered trusted, and so is whoever has ownership or control
over its configuration.

However, in a multi-tenant scenario where multiple stake-
holders are using/deploying workloads on the same CVM,
providing assurances about the initial state of the VM may
not be sufficient for two main reasons: Firstly, the initial
state may not cover critical security configurations that ten-
ants need to verify to establish trust in their workloads. For
example, while the attestation report might measure the vir-
tual firmware and bootloader, it typically does not capture
security policies applied post-boot, such as SELinux or Ap-
pArmor configurations [56], firewall rules, or kernel hardening
settings, which are enforced dynamically via systemd services.
Secondly, the VM’s state may change after initialization with
runtime configuration tools like cloud-init [35], Ansible [16]
or Puppet [43], and similarly, a workload’s configuration can
be modified post-deployment via dynamic runtime policies,
such as Kubernetes NetworkPolicies [17] or service mesh
policies [51] applied on running workloads. For instance, a
Kubernetes workload may initially launch with strict net-
work isolation, but later, a misconfigured or compromised
controller might modify the Istio traffic policies [26], exposing
sensitive workloads to unauthorized access. In both cases, the
new state must be verifiable by tenants whenever necessary.

In this work, we aim to bridge the gap between the static
hardware-based assurances provided by confidential comput-
ing and the dynamic needs of stakeholders who deploy and
manage services on CVMs. Specifically, in multi-tenant envi-
ronments, different stakeholders, including workload owners,
service providers, and end-users, require secure and verifiable
means to configure their workloads both functionally and in
terms of security. They also need access to attestation collat-
eral they can validate to assess if they accurately reflect their
specific trust requirements. To achieve these goals, our ap-
proach focuses on dynamically applying stakeholder-specific
requirements while ensuring verifiable and trustworthy attes-
tation. We achieve this by:

(1) Dynamic Enforcement of Security and Configuration Poli-
cies – Our system enables the secure and flexible ap-
plication of workload-specific security and functionality
requirements at runtime.

(2) Trusted Recording of System Measurements – We intro-
duce a Root of Trust for Recording to securely capture
and store relevant system and workload measurements,
ensuring their integrity.

(3) Trusted Reporting of Attestation Evidence – A Root
of Trust for Reporting is used to generate verifiable
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attestation collateral, allowing stakeholders to assess the
integrity and security state of their workloads.

(4) System Hardening for Root of Trust Protection – We
implement robust security mechanisms to safeguard the
respective Roots of Trust against potential threats, en-
suring that they remain uncompromised.

(5) End-to-End Verifiability – The recorded and reported
measurements are cryptographically verifiable, allowing
stakeholders to establish trust in the system’s state with-
out compromising the confidentiality of other workloads.

3.2 Threat model
Before elaborating on the requirements that our system
should meet to fulfill our goals, it is necessary to describe
the threat model that we assume for the lifetime of a CVM,
namely the provisioning and its occupancy phase.

The main stakeholders we consider using our system are:

∙ Cloud providers: Responsible for the cloud infrastructure,
including the physical hardware, the firmware and the
host operating system.

∙ Service providers: Own the VM instance and are responsi-
ble for the configuration steps that happen post boot, the
application stacks, and ensuring alignment with tenants’
security policies and compliance requirements.

∙ Workload/Container owners: Responsible for the ser-
vice/application deployed within the container boundary
and its configuration.

∙ End-users: Interact with the containerized service de-
ployed on the VM instance or consume the artifacts
offered/produced from it.

3.2.1 Provisioning phase. The provisioning phase encom-
passes the building and the initial configuration of the VM
image before its deployment. This image can still be a generic
one, acting as "base" and awaiting a further configuration
post boot, but its initial ramdisk holds our system compo-
nents and its rootfs as well. In addition to the VM image, the
host platform managed by the cloud provider must also be
provisioned with the appropriate kernel, and hypervisor to
support the TEE. The only components on the host platform
that the rest of the stakeholders regard as inherently trusted
are the CPU hardware and the AMD-SP. The kernel, and
initrd, typically supplied by the service provider as part of
the VM image to the cloud provider, are integrated to launch
the CVM on a TEE-compatible hypervisor with the appro-
priate virtual firmware, but they might have been modified
by either of those two stakeholders to contain malicious code,
vulnerabilities, or disable potential security measures.

3.2.2 Occupancy phase. After the VM boots, it can be con-
figured further and then be ready for workload deployments.
Threats in this phase include unauthorized modifications to
the current VM software stack or a malicious configuration
drift either from the service provider or the cloud-native
orchestration administrators that are responsible for the sub-
sequent workload deployments.

After the workloads are deployed, they can be configured
and used by the owners or end-users. During this step, we
consider the cloud-native orchestration software trusted since
it is protected by the kernel, but the administrators or service
provider may attempt to tamper with the workloads’ policy
enforcement, software stack or security measures. Other VM
co-residents might also attempt to breach their workload
boundary and corrupt other deployments or the underlying
system. Workload owners might also attempt to reach ser-
vices other than their own that are deployed on the same VM,
with the goal of enforcing unauthorized policies or requesting
runtime attestation collateral that could potentially contain
sensitive information. We also consider man-in-the-middle
attacks where an attacker can intercept network traffic be-
tween two parties, spoof or corrupt it (i.e. changes to the
user’s policy), and redirect traffic to a different destination.
A malicious tenant or compromised service can attempt to
forge attestation collateral by spoofing the identity of a le-
gitimate CVM, workload or their by-product. This involves
replaying a stale but valid attestation report to mislead the
verifier about the current state of a CVM or workload. Our
work considers reuse attacks as well, where a stale but valid
attestation report is replayed to mislead the verifier about
the current state of a CVM or workload.

In our threat model, we exclude denial-of-service attacks,
including resource starvation by the cloud provider, host
overcommitment, excessive traffic from tenants, or flooding
the attestation interface with requests. While these vectors
are well known, they are orthogonal to our contribution; in
practice, operators can apply mitigations such as rate limiting,
quotas on evidence growth, or admission throttling to reduce
their impact. Finally, ciphertext- and microarchitectural side-
channel attacks on CVMs [25, 33, 44], as well as rollback and
forking attacks on state continuity [8, 9, 40], are considered
out of scope.

3.3 Requirements
3.3.1 Dynamic and verifiable attestation for system/work-
load trust. Our primary goal is to enable users to es-
tablish trust in deployed applications and systems, post-
configuration. In multi-tenant CVMs, attestation must
ensure that evidence reflects only the tenant’s workload,
enabling reproducibility and excluding co-resident state.
Additionally, the system must support various types of
verifier, ranging from those requiring direct cryptographic
proofs to those relying on intermediaries like auditors, with
varying trust assumptions and capabilities.

Consider an end-user of an open-source service deployed
on a CVM. They may want to verify its integrity, but not the
rest of the system. The attestation process should therefore
produce a digest that reflects only the state of the service,
signed by a trusted entity, allowing direct validation or del-
egation to an auditor. In another case, the workload may
be a build pipeline. The verifier, e.g., the pipeline owner,
might lack expertise to inspect each component but trust
the source repositories. Attestation should therefore include
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signed logs of repository URLs and commit hashes, proving
build provenance without exposing unrelated data.

3.3.2 Unique system & workload identification. Secure at-
testation requires reliable identification of both the attes-
tation signer and the attester (i.e., the system or workload
being attested). This prevents impersonation attacks, where
an adversary could forge evidence or falsely claim the integrity
of a compromised system. While the signer is authenticated
through signature verification, the attester’s identity must
also be verifiable, typically via a public key embedded in
the attestation collateral. Each system or workload must,
therefore, possess a unique cryptographic key pair, either
securely generated during launch or injected after an initial
attestation phase.

This key not only anchors trust in the evidence, but also
enables secure communication (e.g., TLS) with remote veri-
fiers or users. Because compromising this key undermines the
attestation’s security guarantees, the system must protect
its generation, storage, and runtime isolation. If an attacker
compromises the key, they could impersonate a legitimate
workload, forge attestation evidence, or misrepresent the
state of a CVM. To mitigate these risks, our system must
provide attestation evidence covering the entire lifecycle of
key creation, storage and isolation during runtime when the
attack surface is typically broader.

3.3.3 Policy-driven configuration & enforcement. Beyond
verifier-aware attestation, we aim to enable authorized parties
to configure them and enforce their policies. While configu-
ration typically occurs at launch or boot, policy enforcement
may occur dynamically at runtime. To ensure integrity, config-
uration and policy data must be cryptographically measured
and included in the attestation collateral.

Unlike basic hash-based attestation, which may not in-
troduce privacy concerns when revealing workload states to
external verifiers, policy enforcement and configuration oper-
ations require strict authentication to prevent unauthorized
changes on the system/workloads. Thus, authorized actors
must have unique cryptographic keys provisioned securely at
workload launch or during VM configuration.

Furthermore, the components responsible for configura-
tion and policy enforcement must themselves be integrity-
protected and attestable. Any policy or configuration change
must be logged as part of the workload’s attestation collateral
to ensure a verifiable history of enforcement. To maintain the
integrity of these records, associated resources must be iso-
lated, with access restricted via fine-grained control policies
that limit modification to authorized components only.

3.3.4 Trusted recording and reporting. A trustworthy attes-
tation system must ensure the secure collection (recording)
and retrieval (reporting) of integrity measurements. As in
traditional Roots of Trust for Recording and Reporting in
trusted computing [1], our approach is based on hardened
components to capture, store, and serve evidence securely.
The recording mechanism must prevent unauthorized tamper-
ing, maintaining the consistency, integrity and verifiability of

the captured system and workload measurements over time.
The reporting mechanism is responsible for retrieving and
packaging these into signed evidence while sequestering its
private key, ensuring external verifiers can validate the proof
against their trust assumptions.

3.3.5 TCB integrity protection. Establishing trust to the
node, the dynamically launched workloads and their associ-
ated attestation collateral depends on the integrity of the
underlying system components responsible for attestation
and security enforcement. This requires extending the trust
chain from the TEE hardware to these critical components
by ensuring their continuous integrity and verifiability. Since
the system’s attack surface expands significantly after boot,
runtime protections must safeguard the trusted computing
base (TCB) against tampering. Enforcing integrity checks
and access controls on these critical components ensures
that the TCB remains trustworthy throughout the system
lifecycle, providing a reliable foundation for attestation and
workload security.

3.3.6 Scalability & practical deployability. To be viable in
real-world multi-tenant environments, our system must be
scalable and practically deployable. Scalability ensures sup-
port for many workloads and attestation requests with low
overhead, avoiding bottlenecks during evidence recording and
reporting. Practical deployability requires compatibility with
existing confidential computing stacks, virtualization layers,
and orchestration tools, without major architectural changes.

3.4 Architecture
Our design meets the requirements we set out earlier, provid-
ing a secure, scalable and attestable framework for recording,
reporting and verifying workload and system configurations
in CVMs, all while maintaining tenant isolation and trust. To
present its architecture (see Fig. 2), we will give an overview
of the main components and explain their role throughout
each phase of our system’s lifecycle.

3.4.1 Local pre-verifier. The foundation of our system is built
upon a local pre-verifier, which extends the trust chain from
the Hardware Root of Trust (HRoT) to all critical compo-
nents of our architecture. It operates within the initrd and
validates all critical files before the rootfs is mounted. Build-
ing on techniques like Revelio [24], the pre-verifier compares
the measured hashes of the rootfs and selected configura-
tion arguments (e.g., policy files) against expected values
passed via kernel command-line arguments, both of which
are included in the CVM’s initial hardware attestation via
the direct measured boot method. To preserve post-boot
integrity, all architecture components reside on a read-only
rootfs protected by kernel-integrated integrity mechanisms.
This ensures that any unauthorized modification attempts
are either blocked or detectable.

3.4.2 Policy enforcer. The policy enforcer is the component
authorized to apply configuration policies, both at the sys-
tem level and for runtime workload deployments, within the
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Figure 2: Runtime Architecture Overview. The Recorder cap-
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attested CVM boundary. During the initial boot phase, it
operates as a contextualization tool, like cloud-init, apply-
ing system-wide settings such as security hardening, access
control structures, and service configurations. These settings
are defined in a policy that is verified during boot by local
pre-verifier and applied once; subsequent modifications of
the post-configuration state are disallowed, and any attempt
to deviate is detectable through runtime integrity protections.
This ensures that once attestation is performed, workload
owners can rely on a fixed and verifiable system configuration.

Workload-specific policies, by contrast, are dynamic and
can be enforced throughout the CVM’s lifetime. These poli-
cies—submitted during workload deployment—must be au-
thenticated against pre-established authorization credentials.
They may include access restrictions, measurement direc-
tives, or runtime constraints and are enforced in a scoped
manner, tailored to the specific workload, without impacting
co-resident deployments.

To ensure transparency and auditability, all policy-driven
actions taken by the enforcer are monitored and recorded
by the recorder component. This tight coupling ensures that
every authorized modification, whether related to initial con-
textualization or dynamic policy application, is captured
in an integrity-protected and verifiable log. Unauthorized

modifications, or attempts to bypass the enforcer, are also
detectable, as the recorder continuously measures the sen-
sitive interfaces and events tied to configuration and access
control enforcement.

3.4.3 Recorder. To support verifiable attestation across both
system and workload layers, the recorder captures evidence
of the CVM’s state at boot and during runtime. Crucially,
all measurements are scoped to the verifier’s trust boundary,
ensuring they reflect only relevant components and poli-
cies while preserving co-tenant confidentiality. At loading
time, the recorder captures cryptographic hashes of essential
artifacts, such as container images, workload deployment
manifests, and configuration files. These measurements ex-
tend the platform’s initial attestation to include the expected
runtime environment before workloads are deployed. For
runtime monitoring, the recorder employs the following two
complementary strategies.

Event-triggered Logging: Our system observes and records
security-sensitive events (e.g. file access, execution or configu-
ration changes) in real time, using in-kernel instrumentation
mechanisms hooked into relevant execution paths. Each event
is tagged with workload-specific identifiers, enabling account-
ability and verifier-specific filtering. Optionally, system-wide
integrity tracking mechanisms may be included for broader
coverage but require scoping during attestation.

Policy-driven Logging: Events tied to requests by the policy
enforcer, such as access control updates, workload launches,
or service configurations, are recorded in a structured log.
This log reflects verified, intentional changes aligned with
tenant-defined policies.

To ensure log integrity, only the recorder is permitted to
emit evidence, and write access is protected by in-kernel
access control logic. The tight coupling between the policy
enforcer and the recorder ensures that any modification to
system or workload state is either verifiably authorized or
captured as a detectable event.

3.4.4 Reporter. The reporter serves as the final step in the
attestation evidence pipeline, acting as a trusted quoting
component and an intermediary RoT for the remote veri-
fier, responsible for collecting, filtering and signing relevant
measurements based on verifier-specific requests. Upon receiv-
ing an attestation request, which includes a target identifier
(e.g., workload or system component) and a nonce to ensure
freshness, the reporter retrieves corresponding records from
the recorder’s resources, including runtime events, integrity
measurements, or logs. It assembles these into a structured
evidence package scoped to the request. To guarantee authen-
ticity, the reporter signs this package using its private key,
which is cryptographically bound to the platform’s HRoT.
The public key is included in the CVM’s initial attestation
state, ensuring that all subsequent attestations remain verifi-
ably anchored to the system’s original trust foundation. To
ensure freshness and antireplay, the reporter always incor-
porates a nonce provided by the verifier, so that the signed
bundle is both time-fresh and hardware bound.
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Figure 3: Potential attack vectors of the software supply chain
processes during: (1) the development phase, where outdated
or malicious code may be introduced; (2) the build phase,
vulnerable to tampering through compromised credentials or
tools; (3) the artifact/SBOM generation phase, where dis-
crepancies or manipulation of the declared dependencies may
occur; and (4) the deployment phase, where forged or sub-
stituted artifacts and SBOMs may bypass verification. These
attack surfaces motivate our need for runtime, context-aware
attestation mechanisms as supported by our architecture.

3.4.5 Attestation & configuration Server. The server compo-
nent exposes the system’s public interface, offering endpoints
for both attestation and configuration tasks. It facilitates
secure interaction between remote verifiers, workload own-
ers, and the internal components responsible for enforcing
trust. For attestation, the server receives requests contain-
ing a workload or system identifier and a freshness nonce.
It forwards the request to the reporter, collects the signed
evidence, and returns it to the verifier. For configuration, the
server authenticates incoming requests and delegates policy
application to the policy enforcer. Workload policies may also
be passively retrieved from orchestration platforms, such as
the Kubernetes API server, by inspecting deployment mani-
fests. This separation of roles, which exposes interfaces while
delegating sensitive operations, supports a modular and scal-
able architecture capable of handling concurrent attestation
and policy configuration workflows securely.

4 Use cases
Our architecture supports workload-specific attestation tai-
lored to diverse stakeholders, whether users, owners, or output
consumers. To illustrate its flexibility, we present two use
cases: a confidential build pipeline and post-boot contextual-
ization of CVMs. Each highlights different trust requirements
and attestation scopes, with technical details deferred to the
implementation section.

4.1 Confidential build pipeline
Software supply-chain security has emerged as a critical con-
cern [7, 42], with recent incidents underscoring how trusted
build systems can be subverted (Fig. 3). High-profile com-
promises such as SolarWinds [13, 32], XZ Utils [14], and
Codecov [11, 49] showed that attackers can alter source code
and exploit legitimate pipelines to distribute backdoored up-
dates. Because these attacks leverage trusted processes, they
evade traditional review and perimeter defenses, highlighting
the need for verifiable build provenance that captures not
only the artifact but also the build environment, sources,

and enforced policies. An example of a particularly stealthy
and under-addressed attack exploiting this gap is repository
spoofing [27], where a malicious actor mirrors or forks a
trusted repository, while subtly altering the contents.

To counter such attacks, we embed the pipeline in a CVM
where the recorder logs the exact repository URLs and com-
mit hashes retrieved as well as monitors all build-time events,
while the enforcer constrains access so that only declared
sources and tools can be used. The reporter then signs the
collected evidence and binds it to the hardware attestation
report, so verifiers receive fresh, tamper-evident provenance
of both sources and environment. This also covers network-
level attacks such as DNS spoofing or redirection: even if a
malicious mirror is resolved, the evidence gathered will show
if the retrieved repository origin and the content matches the
expected commit hash or digest. In contrast to conventional
CI/CD signing, which attests only to the identity of the
signer and the final artifact, our approach binds artifacts to
the concrete build environment and enforced policies inside
the CVM.

Efforts such as SBOMs [57] aim to improve build trans-
parency, but they are typically generated post-build and dis-
tributed separately from the artifact, leaving room for forgery
or substitution. Moreover, SBOMs are often produced with-
out enforcing the integrity of the SBOM generation process
itself. In contrast, our architecture enforces access control
over SBOM creation by restricting its execution to the trusted
policy enforcer. The SBOM is cryptographically bound to
the built artifact, embedding the artifact hash and optionally
the source commit list used during compilation, all captured
and signed as part of the attestation process.

This design enables downstream consumers and auditors
to trust not just the artifact, but the entire environment and
process that produced it, even in multi-tenant or untrusted
infrastructure, without requiring changes to existing build
toolchains or the adoption of reproducible builds. It estab-
lishes a verifiable and provenance-rich link between source
and binary. This link is rooted in hardware-backed attestation
and runtime measurement.

4.2 Attestable contextualization of a CVM
Post-boot contextualization mechanisms [21], like cloud-
init [35] or container orchestrators, are widely used to
customize VMs dynamically. Instead of manually setting up
networking, installing software, user credentials, or applying
security policies after launching a VM, they automate these
processes and allow for the use of generic base images that
can be tailored to various roles or environments. However
in the context of confidential computing, such changes
occur outside the measured boot boundary and are not
reflected in the CVM’s attestation, leaving a critical trust
gap for stakeholders who rely on runtime policy enforcement,
especially in multi-tenant scenarios.

A common approach to post-boot attestation is through
virtual TPMs (vTPMs), often integrated with the IMA [28].
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However, vTPMs present several issues in the context of confi-
dential computing. First, they are typically emulated outside
the guest, managed by the hypervisor or system firmware,
and are therefore not protected by the CVM isolation model.
This breaks the assumption that the workload is shielded
from privileged infrastructure components. Second, IMA logs
captured by vTPMs are globally scoped, reflecting all file
access or execution events in the system, without regard
to workload ownership. This is problematic in multi-tenant
CVMs [20], where different parties may have distinct trust
boundaries and privacy expectations. Sharing a single, unfil-
tered log across tenants undermines confidentiality and makes
attestation impractical without extensive log sanitization or
post-processing.

Recent proposals for confidential vTPMs [3, 39], such as
those relying on AMD SEV-SNP’s SVSM (Secure Virtual
Secure Mode) [22], aim to relocate the vTPM inside the en-
crypted guest context. While this improves the trust bound-
ary, such solutions currently require non-trivial modifications
to the CVM stack—including enabling SVSM, integrating
new kernel modules, and coordinating with guest firmware.
These dependencies make adoption complex and reduce com-
patibility with standard cloud offerings.

In contrast, our architecture enforces contextualization
policies entirely within the attested guest, using the policy
enforcer to apply authorized changes and the recorder to cap-
ture them in a scoped, workload-specific manner. This allows
tenants to retain control over their own trust domain without
relying on hypervisor-managed components or coarse-grained,
system-wide logs. When remote attestation is requested, the
reporter exposes only the relevant subset of recorded state,
ensuring limited disclosure and verifiable configuration. Our
design preserves the post-boot flexibility needed for modern
cloud-native deployments, while grounding trust in measured,
tenant-aware enforcement rooted in the same TEE that pro-
tects the CVM.

5 Implementation
We built a prototype of our architecture that supports the two
use cases introduced in Section 4: a confidential build pipeline
(UC1) and a contextualized CVM (UC2). Our prototype
runs on AMD SEV-SNP and leverages direct measured boot,
eBPF-based instrumentation, and Linux’s LSM framework.

Portability: While the implementation is AMD SEV-SNP
specific, the approach generalizes to other VM-based TEEs
such as Intel TDX or ARM CCA. Our approach relies on
hardware-rooted initial VM attestation and in-guest Linux
mechanisms, and is thus TEE-agnostic. Intel TDX supports
remote attestation and exposes a 64-byte REPORT_DATA field
(e.g., to carry a nonce or evidence hash) that is included in
the trusted domain (TD) report/quote [30, 36]. Arm CCA
Realms produce an attestation token (EAT profile) that
includes realm measurements and a verifier-supplied chal-
lenge [23]. Both ecosystems run Linux CVMs (TD guests

/ Realm VMs) using KVM [4, 5], so our policy enforce-
ment and evidence recording can remain unchanged; only the
quote/token retrieval and format differ.

Assumptions: The CVM boots using direct measured boot
with pre-measured kernel, initrd, and command-line argu-
ments. The rootfs is stored on a separate read-only partition
and verified at boot. In UC1, we assume non-interactive,
short-lived CVMs executing uniform CI workloads, allowing
us to apply the same logic across all jobs. In contrast, UC2
supports runtime interaction, reconfiguration, and tenant-
scoped attestation.

5.1 Local pre-verifier
The local pre-verifier runs as an initramfs script before mount-
ing the rootfs. It validates cryptographic digests for the rootfs
leveraging dm-verity and of any initial configuration policy
(in UC2) against values passed in the kernel cmdline. This
anchors system integrity in hardware-backed attestation, mit-
igating any loading/boot-time tampering and establishes the
trust chain from HRoT to the runtime components.

5.2 Policy enforcer
The policy enforcer is written in Rust and operates across the
user and kernel space boundary, leveraging eBPF programs
attached via the LSM framework to implement fine-grained
runtime security policies for the protection of our system’s
components and the dynamic workload deployments. The
eBPF programs have been written in C and compiled as
skeletons as part of the same component’s binary leveraging
the libbpf-rs crate, which offers libbpf bindings. To protect
the integrity of our operations, there are two guard programs
that are installed during startup. The first one is attached to
lsm/bpf and intercepts the eBPF management operations.
It ensures that only the policy enforcer’s PID, passed as a
parameter during load time, can list, load or update the eBPF
programs, preventing unauthorized modifications by other
processes. This guard logic on lsm/bpf essentially permits
eBPF management only by the measured enforcer process
and since all programs are shipped in, and loaded from,
the dm-verity–protected read-only rootfs, arbitrary dynamic
loading or tampering by other processes is prevented.

The second eBPF program, attached to the lsm/file_open,
restricts access to a protected workspace on the rootfs that
stores logs, policies, and attestation data. Since eBPF lacks
pathname access, the policy enforcer resolves and stores
inode numbers of protected files and directories in an eBPF
hash map during initialization. At runtime, the program
checks whether the inode of the accessed file, or any parent
up to root, is in the map, and whether the caller matches the
enforcer’s PID. This ensures robust, directory-wide protec-
tion—even across renames—without per-file enumeration. To
ensure persistence, all eBPF programs and their associated
maps are pinned in the bpf fs under sysfs, maintaining
active references and ensuring enforcement continuity across
malicious (or not) process restarts or termination. The
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protected inode entries—including those for the bpf fs
itself—are hardcoded on the policy enforcer’s code.

In UC1, the guards protect the SBOM generation tool
(syft), ensuring evidence is produced under controlled, mea-
surable conditions. In UC2, the enforcer acts as a contextu-
alization agent that applies post-boot system changes (e.g.,
SSH setup, LUKS configuration) by parsing a JSON policy
embedded in the kernel cmdline. Besides that it also ap-
plies per-workload access control over directories assigned to
individual deployments. These directories serve as private
data stores for workload owners and must remain isolated
from co-resident processes. To enforce this, the enforcer dy-
namically registers the inodes of each workload’s directory
into a dedicated eBPF map during deployment. The same
file_open-hooked eBPF program used for protecting the
system workspace is extended to consult this map, allowing
access only when the calling process matches the workload’s
authorized context. This mechanism enables robust and effi-
cient directory-wide protection, resilient to file renames and
mount path changes, and ensures that data belonging to a
workload is never exposed to others within the same CVM.

5.3 Recorder
The recorder is responsible for collecting attestation-relevant
measurements from both the system and workload activ-
ity. It supports modular recording backends and is tightly
coupled with the policy enforcer, ensuring only authorized
changes are recorded and that the evidence remains scoped,
tamper-evident, and verifiable. The collected evidence in-
cludes loading-time measurements (e.g., container images,
manifests, etc.) but also dynamic policy enforcement events,
and runtime behavior associated with specific workloads.

In UC1, the recorder operates passively throughout the
build pipeline’s lifecycle to capture both file integrity and
source provenance. To monitor file-level access, we integrate
IMA with a custom template. This template includes job-
specific metadata, such as CI_PIPELINE_ID, CI_JOB_ID, in-
jected at boot time via the kernel’s ima_template_data pa-
rameter and made available to IMA through environment
variables. IMA records cryptographic hashes of accessed and
executed files (e.g., build scripts, compilers), allowing verifiers
to validate whether only trusted binaries were used during
the build.

To track git repository provenance, the recorder is ex-
tended with an eBPF-based git tracker, attached to the
tracepoint /syscalls/sys_enter_execve hook, intercepting
all execve() calls. It inspects the arguments of each com-
mand to detect git-related operations (e.g., git clone, git
checkout). If a match is found, it extracts the repository
URL and commit hash and associates the event with the cor-
responding pipeline job using environment variables available
in the process context. Events are recorded in a structured
eBPF map using a composite key based on the pipeline and
job ID. These evidence complement IMA logs and provide
verifiable links between build inputs (i.e., source code ori-
gin and version) and the resulting artifact. Recorded logs

and measurements reside in a guarded workspace on the
dm-verity–protected rootfs; write access is mediated by the
file_open LSM program and inode allow-listing along with
the enforcer-PID check, so only the recorder can append
evidence and unauthorized writes/rollbacks are rejected.

In the contextualization use case, the recorder is imple-
mented as an active userspace service that collects evidence
based on structured JSON requests. Currently, it supports
three modular evidence types:

∙ File System: Recursively hashes files or directories and
computes a Merkle root.

∙ Policy: Records user-submitted workload policies.
∙ Commands: Records actions executed by the policy

enforcer, such as configuration steps or access control
changes.

To track post-contextualization changes, the enforcer main-
tains a list of modified or newly created files and requests the
recorder to hash and log them. For workload-centric loading-
time state, the recorder also captures pod and container
metadata, including image and policy hashes. Each recorded
command is tagged with the triggering workload or system
component to ensure auditability and traceability.

5.4 Reporter
The reporter is the quoting authority, which generates at-
testation evidence packages. More specifically, it generates
an ephemeral key pair and includes its public key in the
AMD-SP-signed attestation report anchoring its signatures
to HRoT and mitigating forgery of evidence packages.Upon
request, it gathers evidence from the recorder, structures it
by workload/system scope, signs it, and includes the verifier-
provided freshness nonce.

In the UC1 at build job completion, the reporter signs the
artifact and its SBOM (SPDX-JSON with embedded hash),
as well as the filtered IMA and eBPF logs with embedded job
metadata. This is bound into an attestation report, crypto-
graphically linking the build and its provenance. The SBOM
includes the artifact’s hash as an externalRef, establishing
a cryptographic link between the two. UC2 follows the same
pattern, with signed evidence packages scoped to workload
IDs and filtered by request.

5.5 Attestation & configuration Server
The server component acts as the central interface for attes-
tation and configuration interactions. Implemented in Rust
as an HTTP service, it facilitates both initial system-wide
attestation and runtime workload-specific operations.

In the pipeline scenario, the server is only contacted post-
build to retrieve the attestation deliverable. Access is re-
stricted to pipeline owners authenticated using GitLab-issued
tokens. Pipeline execution itself is bound to these tokens,
ensuring only authorized invocations can request evidence.

In UC2, all server interactions—whether configuration or
attestation—require prior authentication using public key
certificates planted during system contextualization. Each
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HTTP request must carry an Authorization header contain-
ing the user identity and a digital signature. For Kubernetes-
based workloads, this signature is expected within the de-
ployment manifest. We differentiate between system users
(with access to global system configuration and attestation)
and workload users (limited to their assigned workloads).

The server offers the following endpoints allowing the users
to request evidence tied to the system or their workloads.
∙ System-wide Evidence:

– GET /report/initial: Retrieve the initial attestation
report from the CVM boot process.

– GET /report/config: Retrieve the post-contextualization
measurements.

∙ Workload-specific Evidence:
– GET /workload/:id/initial: Fetch initial deployment-

time evidence.
– POST /workload/:id/measure: Request a runtime at-

testation with user-defined scope (e.g., file paths, logs).
∙ Policy Configuration:

– POST /workload/:id/policy – Submit a security policy
for the workload, to be enforced by the policy enforcer.

6 Evaluation
We evaluate the performance impact of our system by mea-
suring the latency introduced during the CVM bootstrapping
process, as well as the runtime overhead of the key archi-
tectural components, responsible for the runtime evidence
recording, access control, and the attestation collateral deliv-
ery. Our analysis spans both use cases. All experiments use
a host machine with an AMD EPYC 7313 16-core processor
and 112GB RAM and Ubuntu 22.04.4 LTS with Linux kernel
6.7.0-rc5 and SEV-SNP support. The CVM runs QEMU 8.2.0
with SNP support, OVMF (UEFI v2.7), and kernel 6.8.0-rc5.

6.1 Bootstrapping latency
We begin by evaluating the initialization latency introduced
by the core components of our architecture during early boot.
This includes the local pre-verifier, system-level access control
enforcement through eBPF+LSM guards, setup of the bpf
fs for persistency, and generation of the reporter’s identity
key. In scenarios where contextualization is applied (UC2),
we also account for file installations and post-configuration
measurements. All measurements were repeated 20 times on
an AMD SEV-SNP-enabled system with a 2641MB rootfs,
and results are reported as averages with standard deviations.

The local pre-verifier, executed during the initramfs stage,
performs rootfs self-verification and policy hash validation
before mounting the rootfs as read-only with dm-verity. On
average, this process takes 2.63s (𝜎 = 0.0545s), while the
total initramfs phase averages 2.7s (𝜎 = 0.533s).

Table 1 breaks down the latency of individual operations
during the initialization phase, averaged over 20 repetitions.
In the system-wide setup, we initialize the directory struc-
ture containing sensitive architectural resources (e.g., logs
and policies), install integrity-protected eBPF guards over
these directories, mount and prepare the bpf fs (38.47𝜇s) for

UC Operation Duration (𝜇s) Std. Dev (𝜇s)
– Setup Directory Structure 46.47 3.34
– Setup Logging 83.29 9.89
– Install eBPF Guards 162.59 30.82
– Setup bpf fs 38.47 11.65
– Inode Resolution 36.19 9.61
– Generate Identity Key 1243.21 66.82

UC1 IMA loading 90021.00 105.32
UC2 Parse Policy 167.50 37.58
UC2 Basic Configuration 81.20 2.39
UC2 Extended Configuration 119.94 24.06
UC2 Measure Config Files 5193.44 109.35

Table 1: Initialization latency breakdown across shared and
use-case-specific operations.

Mean (µs) Std. Dev

BPF Enabled Protected 1053.34 157.19
Unprotected 1125.78 156.88

BPF Disabled Protected 1130.09 168.30
Unprotected 1142.52 163.87

Overhead Protected -76.75 –
Unprotected -16.74 –

Table 2: File access latency with and without eBPF guards.

guard persistence, and resolve the inode entries (36.19𝜇s) re-
quired to enforce access control over our protected workspace.
When contextualization takes place (UC2), a configuration
policy is passed and files, i.e. authorized_keys, are installed
by the policy enforcer’s contextualizer subcomponent. These
files are subsequently measured by the recorder, contributing
significantly to the total initialization time. For UC1, the
loading of IMA incurs negligible overhead (0.09s). In particu-
lar, file integrity measurements dominate the latency, while
other initialization steps remain lightweight.

6.2 Runtime Performance Impact
We now evaluate the runtime cost introduced by the key
components of our architecture after their bootstrapping
and after a potential contextualization (UC2). This includes
enforcement of access control, integrity monitoring, and the
attestation process. While our design is workload-agnostic,
broader application classes such as database services, machine
learning workloads, and long-duration scalability experiments
will be considered as important directions for future work to
further validate the generality of our approach in large-scale
cloud deployments.

6.2.1 Access control with eBPF guards. To assess the im-
pact of our kernel-level policy enforcer, we benchmarked the
latency of file access operations under eBPF+LSM-based pro-
tection. Specifically, we issued repeated open system calls on
both protected and unprotected files, with and without the
eBPF enforcement active. Each configuration was tested over
2000 iterations to ensure statistical significance. As shown in
Table 2, the observed differences in access times are negligible,
indicating that our fine-grained access control mechanism
imposes low overhead on file system operations.
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Figure 4: System-wide logging overhead from IMA-based
recording (A-C) across 1-64 concurrent pipelines.

Figure 5: Latency breakdown of eBPF-based git tracker across
1-64 concurrent pipelines.

6.2.2 Recording Pipeline Events with IMA and eBPF. To eval-
uate the runtime cost introduced by the recorder in our
architecture under UC2, we deployed both IMA and a dedi-
cated eBPF program for git event tracking. No policy-driven
logging was active during this experiment. The purpose of
the evaluation is to demonstrate the cost difference between
a system-wide approach (IMA) and a workload-scoped, light-
weight method (eBPF). We consider three pipeline types:
Type A (simple C calculator), Type B (OpenSSL), and Type
C (Linux kernel).

To emulate parallel workload deployments, we triggered
1 to 64 concurrent GitLab CI pipelines using GNU parallel,
with each request being an HTTP POST to the GitLab API.
The system was rebooted between each test to reset the IMA
measurement list, ensuring isolated and consistent experi-
ments. The reported average pipeline latencies are calculated
as the arithmetic mean of ten repeated runs per configuration.

Fig. 4 illustrates that IMA incurs significant performance
degradation as the number of parallel pipelines increases.
For example, Type B pipelines suffer a 3.4% overhead with
8 concurrent instances, reaching up to 58% at 64. Type
C pipelines show performance degradation even in single
instances (about 5.25%), and the overhead steadily increases,
peaking at 62% when 64 are executed simultaneously. This
is expected, as IMA operates with global scope—recording
system-wide file accesses—causing contention and redundant
logging even for unrelated workloads.

In contrast, our eBPF-based git tracker exhibits low over-
head. It logs git clone and checkout operations in real-time
by updating a map stored in the bpf fs. The program veri-
fies that events are triggered within a pipeline environment

and tracks the repository and commit hash. Fig. 5 shows
the breakdown of latency introduced by the two components:
environment verification and map updates. Across all pipeline
scales, the eBPF solution adds negligible delay, proving its
suitability for fine-grained, per-workload measurement.

6.2.3 Server-Side Attestation Performance. We now evaluate
the latency introduced by our attestation pipeline during
runtime, focusing on verifier-driven evidence requests. This
includes the path from HTTP request reception, through
evidence gathering and signing, to final delivery. To avoid re-
dundancy, we focus our analysis on the /report/initial and
/workload/measure endpoints, as the rest endpoints share
many internal processing stages with these two. This eval-
uation serves to quantify how much overhead is introduced
by evidence generation on demand, retrieval and packaging
during system or workload attestation.

In the case of /workload/measure, the attestation request
targets a workload-specific measurement, composed of a file
tree snapshot (approximately 92KB in total), structured
across 2 nested folders and comprising 12 files ranging in size
from 0KB to 28KiB. Additionally, the response includes the
hash of the workload’s policy and all log entries associated
with the workload identifier up to the moment of the request.

Table 3 breaks down the latency of a request to the
/report/initial endpoint, which is used by verifiers to ob-
tain the boot-time attestation report. The majority of the
time (5308𝜇s) is spent in the actual generation of the report,
performed by the hardware. Other steps such as authorization
and file writing have negligible impact (below 1ms in total),
confirming the feasibility of on-demand integrity reporting.

Step Duration (µs) Std. Dev (µs)
Read Request Information 121.38 16.00
Deconstruct auth 3.00 0.56
Validate auth 305.40 81.56
Generate Initial Report 5308.08 291.23
Build Response 26.93 10.22
Save response to file 50.00 18.77
Write to stream 50.48 11.30
Total 5865.28

Table 3: Response time for /report/initial endpoint

For the dynamic workload-scoped attestation, Table 4
reports timings from the /workload/measure endpoint. Here,
the response includes the on-demand recording of filesystem
integrity metadata, policy hash, and log retrieval, making
it representative of UC2 attestation workloads. During this
workflow path, we also bind the requested evidence to a
hardware-signed report, passing their hash as REPORT_DATA.
The dominant cost (over 6ms) lies in constructing and signing
the complete attestation body, followed by evidence gathering
(550𝜇s for filesystem evidence, 18𝜇s for logs). This confirms
that while the evidence can be rich and diverse, the system
can prepare a complete report in roughly 12ms.

For completeness, Table 5 isolates the performance of our
signature-based authentication scheme, showing that the full
verification of request credentials adds only 60𝜇s overhead,
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Step Duration (µs) Std. Dev (µs)
Read Request Body 3.74 1.61
Check Auth 125.55 63.17
Parse Body 7.47 3.26
Gather FS Evidence 550.45 165.77
Gather Policy Hash Evidence 0.40 0.21
Gather Log Evidence 18.08 19.03
Build Response 6.65 2.13
Get Att. Report 5287.68 1645.17
Build Response body 6162.45 1867.99
Total 12162.47

Table 4: Response time for /workload/measure endpoint

Step Duration (µs) Std. Dev (µs)
Get User File 3.74 1.40
Read authorized_keys 21.33 19.77
Decode authorized_keys 20.84 11.65
Validate Signature 8.89 4.77
Extract Auth Data 4.46 2.62
Create Error 0.03 0.00
Total 59.29

Table 5: Breakdown for signature-based authentication

Figure 6: Response time for concurrent attestation requests

negligible compared to the evidence generation time. To
assess the responsiveness of our attestation pipeline under
concurrent use, we simulated a scenario where multiple users
send up to 128 simultaneous requests to the /report/initial
and /report/config endpoints. As shown in Figure 6, even
under high concurrency (up to 128 parallel requests), the
response time increases linearly but remains bounded below
3.6ms. This suggests that our server is capable of supporting
human-interactive and orchestrated attestation scenarios in
real-world deployments.

7 Related Work
Several recent efforts explore attestation and isolation mech-
anisms for confidential workloads, but differ significantly
from our approach in flexibility, runtime evidence generation,
and verifier-specific policy enforcement. COFUNC by Shi
et al. [47], for example, proposes a split-container model for
serverless CVMs, supporting image-level attestation at load

time. However, it lacks runtime evidence collection and man-
dates custom guest OS and toolchain modifications, limiting
its applicability in multi-tenant environments. In contrast,
our system enables policy-driven runtime attestation without
guest-side changes. GuaranTEE [37] introduces control-flow
attestation for TEEs by splitting execution between two en-
claves: one runs the application and records control-flow, the
other verifies the trace. This design targets Intel SGX and
requires compiler instrumentation of applications. In con-
trast, our work collects workload-scoped runtime evidence
(e.g., provenance and enforced policies) inside CVMs without
additional code changes. TRIGLAV [41] provides runtime
integrity attestation of VMs in public clouds by combining
IMA measurements with a TEE-hosted virtual TPM. Its
evidence is used to create a verified system state like our
work but we additionally enforce fine-grained runtime policies
inside the CVM and produce hardware-anchored provenance
for dynamically launched workloads.

For CVMs, Parma [31] enforces execution policies via a cus-
tom agent and relies on initial attestation of container groups.
Its policy model is static and confined to startup, whereas
we support continuous policy enforcement and attestation
throughout workload execution. VERISMO [59] introduces a
formally verified module operating at VMPL0, securing run-
time memory validation and attestation extensions. However,
it requires modifications to the guest software and a rigid
interface to the privileged runtime. Our system, by contrast,
maintains modularity and policy awareness without altering
the guest OS.

From a logging and enforcement perspective, saBPF [34]
presents container-scoped audit logging using eBPF and LSM
hooks. While valuable for post-mortem analysis, saBPF lacks
integration with attestation flows or verifier-specific scopes.
We instead use eBPF and LSM to enforce real-time access
control and generate runtime attestation collateral. Finally,
CloudMonatt [58] offers an attestation-as-a-service model us-
ing TPM-based monitoring through a privileged VM. While
it supports on-demand reporting, it relies on a centralized
trust anchor and enforces uniform verification policies across
workloads. Our work enables scoped and policy-specific at-
testation paths that align with diverse verifier trust models.

8 Conclusion
In this work, we presented a modular attestation architec-
ture for confidential workloads in multi-tenant CVMs. Our
system enables dynamic, policy-driven trust establishment
aligned with stakeholder-specific needs. By combining fine-
grained access control, context-bound recording, and secure
evidence reporting, without modifying guest OS or orchestra-
tion tools, our architecture supports runtime verifiability and
mitigates real-world threats such as supply chain compro-
mise and post-boot misconfiguration. Through practical use
cases, we demonstrated how our system enables reproducible,
enforceable, and scoped attestation, advancing the integrity
and transparency of confidential cloud deployments.



Full Trust Alchemist: Reforging Attestation for Cloud-based Confidential Workloads Middleware ’25, December 15–19, 2025, Nashville, TN, USA

References
[1] 2020. PC Client Platform TPM Profile for TPM 2.0, Version

1.04 Revision 37. Technical Report. Trusted Computing
Group (TCG). https://trustedcomputinggroup.org/wp-
content/uploads/PC-Client-Specific-Platform-TPM-Profile-for-
TPM-2p0-v1p04_r0p37_pub-1.pdf Describes TPM-based roots
of trust, including Root of Trust for Measurement (RTM) and
Reporting (RTR).

[2] Advanced Micro Devices. 2020. AMD SEV-SNP: Strength-
ening VM Isolation with Integrity Protection and More.
https://www.amd.com/content/dam/amd/en/documents/epyc-
business-docs/white-papers/SEV-SNP-strengthening-vm-
isolation-with-integrity-protection-and-more.pdf

[3] Anonymous. 2023. CoCoTPM: Trusted Platform Modules
for Virtual Machines in Confidential Computing Environ-
ments. (2023). https://www.researchgate.net/publication/
366017444_CoCoTPM_Trusted_Platform_Modules_for_
Virtual_Machines_in_Confidential_Computing_Environments

[4] Arm Limited 2025. Arm CCA Reference Software
Stack: Guest Linux in Realm. Arm Limited. https:
//developer.arm.com/documentation/den0127/latest/Arm-
CCA-reference-software-stack/Guest-Linux-in-Realm DEN0127;
Accessed: 2025-09-14.

[5] Arm Limited 2025. Arm CCA Reference Software
Stack: KVM Support for Arm CCA. Arm Limited.
https://developer.arm.com/documentation/den0127/300/Arm-
CCA-reference-software-stack/KVM-support-for-Arm-CCA
DEN0127/300; Accessed: 2025-09-14.

[6] Microsoft Azure. 2024. Deploy confidential containers on Azure
Kubernetes Service. https://learn.microsoft.com/en-us/azure/
aks/deploy-confidential-containers-default-policy

[7] Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Barbara Russo. 2023. Challenges of Producing Software Bill of
Materials for Java. IEEE Security & Privacy 21, 2 (2023), 82–88.
https://doi.org/10.1109/MSEC.2023.3302956

[8] Marcus Brandenburger, Christian Cachin, Matthias Lorenz, and
Rüdiger Kapitza. 2017. Rollback and Forking Detection for
Trusted Execution Environments Using Lightweight Collective
Memory. In 2017 47th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN). 157–168.
https://doi.org/10.1109/DSN.2017.45

[9] Samira Briongos, Ghassan Karame, Claudio Soriente, and Annika
Wilde. 2023. No Forking Way: Detecting Cloning Attacks on Intel
SGX Applications. In Proceedings of the 39th Annual Computer
Security Applications Conference (Austin, TX, USA) (ACSAC
’23). Association for Computing Machinery, New York, NY, USA,
744–758. https://doi.org/10.1145/3627106.3627187

[10] Google Cloud. 2023. Confidential Kubernetes. https://kubernetes.
io/blog/2023/07/06/confidential-kubernetes/

[11] Codecov. 2021. Post-Mortem / Root Cause Analysis (April 2021).
https://about.codecov.io/apr-2021-post-mortem/

[12] Confidential Computing Consortium. 2024. The CIA Triad for
Confidential Computing. https://confidentialcomputing.io/2024/
04/10/the-cia-triad-for-confidential-computing/

[13] Cybersecurity and Infrastructure Security Agency. 2020. Emer-
gency Directive 21-01: SolarWinds Orion Code Compromise.
https://cyber.dhs.gov/ed/21-01/

[14] NVD National Vulnerability Database. 2024. CVE-2024-3094:
Backdoor in XZ Utils. https://nvd.nist.gov/vuln/detail/CVE-
2024-3094

[15] Decentriq. 2024. Swiss cheese to cheddar: securing AMD SEV-SNP
early boot. https://www.decentriq.com/article/swiss-cheese-to-
cheddar-securing-amd-sev-snp-early-boot Accessed on February
02, 2025.

[16] Ansible Documentation. 2023. Security Best Practices — Ansible
Tower Administration Guide. https://docs.ansible.com/ansible-
tower/latest/html/administration/security_best_practices.html
Accessed: 2025-03-13.

[17] Kubernetes Documentation. 2024. Network Policies. https:
//kubernetes.io/docs/concepts/services-networking/network-
policies/ Accessed: 2025-03-13.

[18] eBPF Top. 2024. Practical Guide to LSM BPF. https://www.
ebpf.top/en/post/lsm_bpf_intro/ Accessed: 2025-03-10.

[19] eBPF.io. 2024. What is eBPF? An Introduction and Deep Dive
into the eBPF Technology. https://ebpf.io/what-is-ebpf/ Ac-
cessed: 2025-03-10.

[20] eSecurity Planet. 2023. Multi-Tenancy Cloud Security: Definition
& Best Practices. (2023). https://www.esecurityplanet.com/
cloud/multi-tenancy-cloud-security/

[21] David Espling, Johan Tordsson, and Erik Elmroth. 2015. Contex-
tualization: Dynamic Configuration of Virtual Machines. Journal
of Cloud Computing 4, 1 (2015). https://doi.org/10.1186/s13677-
015-0042-8

[22] Peter Fang, Chuanxiao Dong, and Jiewen Yao. 2024. Intel TD Par-
titioning and vTPM on COCONUT-SVSM. Linux Plumbers Con-
ference 2024. https://lpc.events/event/18/contributions/1918/
attachments/1632/3406/02-lpc2024_mc_tdp_vtpm.pdf Presen-
tation.

[23] Simon Frost, Thomas Fossati, and Giridhar Mandyam. 2025.
Arm’s Confidential Compute Architecture Reference Attesta-
tion Token. Internet-Draft draft-ffm-rats-cca-token-02. IETF.
https://datatracker.ietf.org/doc/draft-ffm-rats-cca-token/ Work
in Progress; Expires 2026-03-06.

[24] Anna Galanou, Khushboo Bindlish, Luca Preibsch, Yvonne-Anne
Pignolet, Christof Fetzer, and Rüdiger Kapitza. 2023. Trustwor-
thy confidential virtual machines for the masses (Middleware

’23). Association for Computing Machinery, New York, NY, USA,
316–328. https://doi.org/10.1145/3590140.3629124

[25] Stefan Gast, Hannes Weissteiner, Robin Schröder, and Daniel
Gruss. 2025. CounterSEVeillance: Performance-Counter Attacks
on AMD SEV-SNP. https://doi.org/10.14722/ndss.2025.241038

[26] Noah H. 2024. Kubernetes Network Security: Exploring Cilium
& Istio. https://medium.com/@noah_h/on-kubernetes-
network-security-exploring-cilium-and-istio-implementations-
ba687b685d26 Accessed: 2025-03-13.

[27] Daniel Hugenroth, Mario Lins, René Mayrhofer, and Alastair
Beresford. 2025. Attestable builds: compiling verifiable bina-
ries on untrusted systems using trusted execution environments.
arXiv:2505.02521 [cs.CR] https://arxiv.org/abs/2505.02521

[28] IMA Documentation. 2025. IMA and EVM Concepts. https:
//ima-doc.readthedocs.io/en/latest/ima-concepts.html Accessed:
2025-03-10.

[29] Intel Corporation. 2022. Intel® Trust Domain Exten-
sions. https://cdrdv2-public.intel.com/690419/TDX-
Whitepaper-February2022.pdf

[30] Intel Corporation. 2023. Intel Trust Domain Extensions (TDX)
Architecture Specification. https://www.intel.com/content/
www/us/en/developer/articles/technical/intel-trust-domain-
extensions.html. Accessed: 2025-09-14.

[31] Matthew A. Johnson, Stavros Volos, Ken Gordon, Sean T. Allen,
Christoph M. Wintersteiger, Sylvan Clebsch, John Starks, and
Manuel Costa. 2024. Confidential Container Groups. Com-
mun. ACM 67, 10 (Sept. 2024), 40–49. https://doi.org/10.1145/
3686261

[32] Antigoni Kruti, Usman Butt, and Rejwan Bin Sulaiman. 2023.
A Review of the SolarWinds Attack on Orion Platform using
Persistent Threat Agents and Techniques for Gaining Unautho-
rized Access. arXiv preprint arXiv:2308.10294 (August 2023).
https://arxiv.org/pdf/2308.10294

[33] Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li, and Yue-
qiang Cheng. 2021. CIPHERLEAKS: Breaking Constant-time
Cryptography on AMD SEV via the Ciphertext Side Chan-
nel. In 30th USENIX Security Symposium (USENIX Security
21). USENIX Association, 717–732. https://www.usenix.org/
conference/usenixsecurity21/presentation/li-mengyuan

[34] Soo Yee Lim, Bogdan Stelea, Xueyuan Han, and Thomas Pasquier.
2021. Secure Namespaced Kernel Audit for Containers. In Pro-
ceedings of the ACM Symposium on Cloud Computing (Seattle,
WA, USA) (SoCC ’21). Association for Computing Machinery,
New York, NY, USA, 518–532. https://doi.org/10.1145/3472883.
3486976

[35] Linode. 2023. Use Cloud-Init to Automatically Configure and
Secure Your Servers. https://www.linode.com/docs/guides/
configure-and-secure-servers-with-cloud-init/ Accessed: 2025-03-
13.

[36] Linux Kernel. 2024. TDX Guest Attestation Documentation.
https://docs.kernel.org/virt/coco/tdx-guest.html. Accessed: 2025-
09-14.

[37] Mathias Morbitzer, Benedikt Kopf, and Philipp Zieris. 2023.
GuaranTEE: Introducing Control-Flow Attestation for Trusted
Execution Environments. In 2023 IEEE 16th International
Conference on Cloud Computing (CLOUD). 547–553. https:
//doi.org/10.1109/CLOUD60044.2023.00073

https://trustedcomputinggroup.org/wp-content/uploads/PC-Client-Specific-Platform-TPM-Profile-for-TPM-2p0-v1p04_r0p37_pub-1.pdf
https://trustedcomputinggroup.org/wp-content/uploads/PC-Client-Specific-Platform-TPM-Profile-for-TPM-2p0-v1p04_r0p37_pub-1.pdf
https://trustedcomputinggroup.org/wp-content/uploads/PC-Client-Specific-Platform-TPM-Profile-for-TPM-2p0-v1p04_r0p37_pub-1.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.researchgate.net/publication/366017444_CoCoTPM_Trusted_Platform_Modules_for_Virtual_Machines_in_Confidential_Computing_Environments
https://www.researchgate.net/publication/366017444_CoCoTPM_Trusted_Platform_Modules_for_Virtual_Machines_in_Confidential_Computing_Environments
https://www.researchgate.net/publication/366017444_CoCoTPM_Trusted_Platform_Modules_for_Virtual_Machines_in_Confidential_Computing_Environments
https://developer.arm.com/documentation/den0127/latest/Arm-CCA-reference-software-stack/Guest-Linux-in-Realm
https://developer.arm.com/documentation/den0127/latest/Arm-CCA-reference-software-stack/Guest-Linux-in-Realm
https://developer.arm.com/documentation/den0127/latest/Arm-CCA-reference-software-stack/Guest-Linux-in-Realm
https://developer.arm.com/documentation/den0127/300/Arm-CCA-reference-software-stack/KVM-support-for-Arm-CCA
https://developer.arm.com/documentation/den0127/300/Arm-CCA-reference-software-stack/KVM-support-for-Arm-CCA
https://learn.microsoft.com/en-us/azure/aks/deploy-confidential-containers-default-policy
https://learn.microsoft.com/en-us/azure/aks/deploy-confidential-containers-default-policy
https://doi.org/10.1109/MSEC.2023.3302956
https://doi.org/10.1109/DSN.2017.45
https://doi.org/10.1145/3627106.3627187
https://kubernetes.io/blog/2023/07/06/confidential-kubernetes/
https://kubernetes.io/blog/2023/07/06/confidential-kubernetes/
https://about.codecov.io/apr-2021-post-mortem/
https://confidentialcomputing.io/2024/04/10/the-cia-triad-for-confidential-computing/
https://confidentialcomputing.io/2024/04/10/the-cia-triad-for-confidential-computing/
https://cyber.dhs.gov/ed/21-01/
https://nvd.nist.gov/vuln/detail/CVE-2024-3094
https://nvd.nist.gov/vuln/detail/CVE-2024-3094
https://www.decentriq.com/article/swiss-cheese-to-cheddar-securing-amd-sev-snp-early-boot
https://www.decentriq.com/article/swiss-cheese-to-cheddar-securing-amd-sev-snp-early-boot
https://docs.ansible.com/ansible-tower/latest/html/administration/security_best_practices.html
https://docs.ansible.com/ansible-tower/latest/html/administration/security_best_practices.html
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://www.ebpf.top/en/post/lsm_bpf_intro/
https://www.ebpf.top/en/post/lsm_bpf_intro/
https://ebpf.io/what-is-ebpf/
https://www.esecurityplanet.com/cloud/multi-tenancy-cloud-security/
https://www.esecurityplanet.com/cloud/multi-tenancy-cloud-security/
https://doi.org/10.1186/s13677-015-0042-8
https://doi.org/10.1186/s13677-015-0042-8
https://lpc.events/event/18/contributions/1918/attachments/1632/3406/02-lpc2024_mc_tdp_vtpm.pdf
https://lpc.events/event/18/contributions/1918/attachments/1632/3406/02-lpc2024_mc_tdp_vtpm.pdf
https://datatracker.ietf.org/doc/draft-ffm-rats-cca-token/
https://doi.org/10.1145/3590140.3629124
https://doi.org/10.14722/ndss.2025.241038
https://medium.com/@noah_h/on-kubernetes-network-security-exploring-cilium-and-istio-implementations-ba687b685d26
https://medium.com/@noah_h/on-kubernetes-network-security-exploring-cilium-and-istio-implementations-ba687b685d26
https://medium.com/@noah_h/on-kubernetes-network-security-exploring-cilium-and-istio-implementations-ba687b685d26
https://arxiv.org/abs/2505.02521
https://arxiv.org/abs/2505.02521
https://ima-doc.readthedocs.io/en/latest/ima-concepts.html
https://ima-doc.readthedocs.io/en/latest/ima-concepts.html
https://cdrdv2-public.intel.com/690419/TDX-Whitepaper-February2022.pdf
https://cdrdv2-public.intel.com/690419/TDX-Whitepaper-February2022.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://doi.org/10.1145/3686261
https://doi.org/10.1145/3686261
https://arxiv.org/pdf/2308.10294
https://www.usenix.org/conference/usenixsecurity21/presentation/li-mengyuan
https://www.usenix.org/conference/usenixsecurity21/presentation/li-mengyuan
https://doi.org/10.1145/3472883.3486976
https://doi.org/10.1145/3472883.3486976
https://www.linode.com/docs/guides/configure-and-secure-servers-with-cloud-init/
https://www.linode.com/docs/guides/configure-and-secure-servers-with-cloud-init/
https://docs.kernel.org/virt/coco/tdx-guest.html
https://doi.org/10.1109/CLOUD60044.2023.00073
https://doi.org/10.1109/CLOUD60044.2023.00073


Middleware ’25, December 15–19, 2025, Nashville, TN, USA Anna Galanou, Florian Lubitz, Hajeong Jeon, Christof Fetzer, and Rüdiger Kapitza

[38] Dominic P. Mulligan, Gustavo Petri, Nick Spinale, Gareth Stock-
well, and Hugo J. M. Vincent. 2021. Confidential Computing—a
brave new world. In 2021 International Symposium on Secure
and Private Execution Environment Design (SEED). 132–138.
https://doi.org/10.1109/SEED51797.2021.00025

[39] Vikram Narayanan, Claudio Carvalho, Angelo Ruocco, Gheorghe
Almasi, James Bottomley, Mengmei Ye, Tobin Feldman-Fitzthum,
Daniele Buono, Hubertus Franke, and Anton Burtsev. 2023. Re-
mote attestation of confidential VMs using ephemeral vTPMs. In
Annual Computer Security Applications Conference (ACSAC
’23). ACM, 732–743. https://doi.org/10.1145/3627106.3627112

[40] Jianyu Niu, Wei Peng, Xiaokuan Zhang, and Yinqian Zhang.
2022. NARRATOR: Secure and Practical State Continuity for
Trusted Execution in the Cloud. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications
Security (Los Angeles, CA, USA) (CCS ’22). Association for
Computing Machinery, New York, NY, USA, 2385–2399. https:
//doi.org/10.1145/3548606.3560620

[41] Wojciech Ozga, Do Le Quoc, and Christof Fetzer. 2021. TRIGLAV:
Remote Attestation of the Virtual Machine’s Runtime Integrity
in Public Clouds. In 2021 IEEE 14th International Conference
on Cloud Computing (CLOUD). 1–12. https://doi.org/10.1109/
CLOUD53861.2021.00013

[42] Eric O’Donoghue, Ann Marie Reinhold, and Clemente Izurieta.
2024. Assessing Security Risks of Software Supply Chains Using
Software Bill of Materials. In Proceedings of the 2024 IEEE
International Conference on Software Analysis, Evolution and
Reengineering - Companion (SANER-C). IEEE, 134–140. https:
//doi.org/10.1109/SANER-C62648.2024.00023

[43] Puppet. 2024. How to Enforce Linux OS Security with Less
Effort. https://www.puppet.com/blog/linux-security Accessed:
2025-03-13.

[44] Benedict Schlüter, Christoph Wech, and Shweta Shinde. 2025. Her-
acles: Chosen Plaintext Attack on AMD SEV-SNP. In Proceedings
of the 2025 on ACM SIGSAC Conference on Computer and
Communications Security (CCS ’25). Association for Computing
Machinery.

[45] Felix Schuster, Michael Peierls, and Marcus Peinado. 2020. Toward
Confidential Cloud Computing. ACM Queue (2020). https:
//queue.acm.org/detail.cfm?id=3456125

[46] Michiel Sebrechts, Simon Borny, Tim Wauters, Bruno Volck-
aert, and Bart Dhoedt. 2021. Service Relationship Orchestra-
tion: Lessons Learned from Running Large-Scale Smart City
Platforms on Kubernetes. IEEE Transactions on Network
and Service Management 18, 3 (2021), 3564–3577. https:
//doi.org/10.1109/TNSM.2021.3110532

[47] Jiacheng Shi, Jiongyi Gu, Yubin Xia, and Haibo Chen. 2025.
Serverless Functions Made Confidential and Efficient with
Split Containers. In Proceedings of the 33rd USENIX Se-
curity Symposium (USENIX Security ’25). USENIX As-
sociation. https://www.usenix.org/system/files/conference/
usenixsecurity25/sec25cycle1-prepub-121-shi-jiacheng.pdf

[48] Mark Shinwell and David Chisnall. 2024. Enabling Realms
with the Arm Confidential Compute Architecture. USENIX
;login: (2024). https://www.usenix.org/publications/loginonline/
enabling-realms-arm-confidential-compute-architecture

[49] Nimrod Stoler. 2021. Breaking Down the Codecov Attack: Finding
a Malicious Needle in a Code Haystack. CyberArk Blog (April
2021). https://www.cyberark.com/resources/blog/breaking-
down-the-codecov-attack-finding-a-malicious-needle-in-a-code-
haystack

[50] SUSE. 2024. Security and Hardening Guide | Understanding Linux
audit. https://documentation.suse.com/de-de/sles/15-SP6/html/
SLES-all/cha-audit-comp.html. Accessed on February 7, 2025.

[51] Tetrate. 2023. Simplify Kubernetes Security with the Service
Mesh. https://tetrate.io/blog/simplify-kubernetes-security-with-
the-service-mesh/ Accessed: 2025-03-13.

[52] The Linux Kernel Documentation. 2025. BPF Documentation -
The Linux Kernel Documentation. https://docs.kernel.org/bpf/
Accessed: 2025-03-10.

[53] The Linux Kernel Documentation. 2025. Linux Security Modules:
General Security Hooks for Linux. https://docs.kernel.org/
security/lsm.html Accessed: 2025-03-10.

[54] The Linux Kernel Documentation. 2025. LSM BPF Programs -
The Linux Kernel Documentation. https://docs.kernel.org/bpf/
prog_lsm.html Accessed: 2025-03-10.

[55] Mert Turhan, Gabriele Scopelliti, Clemens Baumann, and Eddy
Truyen. 2021. The Trust Model for Multi-tenant 5G Telecom Sys-
tems Running Virtualized Multi-component Services. Technical
Report. KU Leuven. https://lirias.kuleuven.be/retrieve/702952

[56] TuxCare. 2024. Leveraging SELinux and AppArmor for Optimal
Linux Security. https://tuxcare.com/blog/leveraging-selinux-
and-apparmor-for-optimal-linux-security/ Accessed: 2025-03-13.

[57] Nusrat Zahan, Elizabeth Lin, Mahzabin Tamanna, William Enck,
and Laurie Williams. 2023. Software Bills of Materials Are Re-
quired. Are We There Yet? IEEE Security & Privacy 21, 2 (2023),
82–88. https://doi.org/10.1109/MSEC.2023.3237100

[58] Tianwei Zhang and Ruby B. Lee. 2015. CloudMonatt: an archi-
tecture for security health monitoring and attestation of virtual
machines in cloud computing. In Proceedings of the 42nd An-
nual International Symposium on Computer Architecture (Port-
land, Oregon) (ISCA ’15). Association for Computing Machinery,
New York, NY, USA, 362–374. https://doi.org/10.1145/2749469.
2750422

[59] Ziqiao Zhou, Anjali, Weiteng Chen, Sishuai Gong, Chris Haw-
blitzel, and Weidong Cui. 2024. VeriSMo: A Verified Secu-
rity Module for Confidential VMs. In 18th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI
24). USENIX Association, Santa Clara, CA, 599–614. https:
//www.usenix.org/conference/osdi24/presentation/zhou

https://doi.org/10.1109/SEED51797.2021.00025
https://doi.org/10.1145/3627106.3627112
https://doi.org/10.1145/3548606.3560620
https://doi.org/10.1145/3548606.3560620
https://doi.org/10.1109/CLOUD53861.2021.00013
https://doi.org/10.1109/CLOUD53861.2021.00013
https://doi.org/10.1109/SANER-C62648.2024.00023
https://doi.org/10.1109/SANER-C62648.2024.00023
https://www.puppet.com/blog/linux-security
https://queue.acm.org/detail.cfm?id=3456125
https://queue.acm.org/detail.cfm?id=3456125
https://doi.org/10.1109/TNSM.2021.3110532
https://doi.org/10.1109/TNSM.2021.3110532
https://www.usenix.org/system/files/conference/usenixsecurity25/sec25cycle1-prepub-121-shi-jiacheng.pdf
https://www.usenix.org/system/files/conference/usenixsecurity25/sec25cycle1-prepub-121-shi-jiacheng.pdf
https://www.usenix.org/publications/loginonline/enabling-realms-arm-confidential-compute-architecture
https://www.usenix.org/publications/loginonline/enabling-realms-arm-confidential-compute-architecture
https://www.cyberark.com/resources/blog/breaking-down-the-codecov-attack-finding-a-malicious-needle-in-a-code-haystack
https://www.cyberark.com/resources/blog/breaking-down-the-codecov-attack-finding-a-malicious-needle-in-a-code-haystack
https://www.cyberark.com/resources/blog/breaking-down-the-codecov-attack-finding-a-malicious-needle-in-a-code-haystack
https://documentation.suse.com/de-de/sles/15-SP6/html/SLES-all/cha-audit-comp.html
https://documentation.suse.com/de-de/sles/15-SP6/html/SLES-all/cha-audit-comp.html
https://tetrate.io/blog/simplify-kubernetes-security-with-the-service-mesh/
https://tetrate.io/blog/simplify-kubernetes-security-with-the-service-mesh/
https://docs.kernel.org/bpf/
https://docs.kernel.org/security/lsm.html
https://docs.kernel.org/security/lsm.html
https://docs.kernel.org/bpf/prog_lsm.html
https://docs.kernel.org/bpf/prog_lsm.html
https://lirias.kuleuven.be/retrieve/702952
https://tuxcare.com/blog/leveraging-selinux-and-apparmor-for-optimal-linux-security/
https://tuxcare.com/blog/leveraging-selinux-and-apparmor-for-optimal-linux-security/
https://doi.org/10.1109/MSEC.2023.3237100
https://doi.org/10.1145/2749469.2750422
https://doi.org/10.1145/2749469.2750422
https://www.usenix.org/conference/osdi24/presentation/zhou
https://www.usenix.org/conference/osdi24/presentation/zhou

	Abstract
	1 Introduction
	2 Background
	2.1 AMD SEV Secure Nested Paging
	2.2 eBPF and LSM Hooks

	3 Design
	3.1 Objective
	3.2 Threat model
	3.3 Requirements
	3.4 Architecture

	4 Use cases
	4.1 Confidential build pipeline
	4.2 Attestable contextualization of a CVM

	5 Implementation
	5.1 Local pre-verifier
	5.2 Policy enforcer
	5.3 Recorder
	5.4 Reporter
	5.5 Attestation & configuration Server

	6 Evaluation
	6.1 Bootstrapping latency
	6.2 Runtime Performance Impact

	7 Related Work
	8 Conclusion
	References

