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Abstract—Retrieval-Augmented Generation (RAG) addresses
the limitations of Large Language Models (LLMs) when provid-
ing responses to domain-specific questions. Graph-based RAG
approaches, such as GraphRAG, enhance retrieval by capturing
semantic relationships within knowledge graphs (KGs).

While the FAIR principles (Findability, Accessibility, Interoper-
ability, and Reusability) are becoming prevalent for scientific data
management, especially in complex domains such as medicine,
existing RAG approaches lack a structured FAIRification of the
underlying knowledge resources. This lack limits their potential
for FAIR information retrieval in these domains. To address
this gap, we introduce FAIR GraphRAG, a novel framework
that integrates FAIR Digital Objects (FDOs) as the fundamental
units of a graph-based retrieval system. Each graph node repre-
sents an FDO that incorporates core data, metadata, persistent
identifiers, and semantic links. We leverage LLMs to support
schema construction and automated extraction of content and
metadata from data sources. The framework was co-designed by
physicians and computer scientists to ensure technical and clinical
relevance. We apply FAIR GraphRAG to a biomedical dataset
in gastroenterology, demonstrating its applicability to single-cell
data. Beyond ensuring adherence to the FAIR principles, FAIR
GraphRAG significantly improves question answering accuracy,
coverage, and explainability, particularly for complex queries
involving metadata and ontology links. This work shows the
feasibility of combining FAIR data practices with graph-based
retrieval techniques. We see potential for applying our approach
to other specialized fields such as education and business.

Index Terms—retrieval-augmented generation, FAIR data
principles, FAIR Digital Object, knowledge graph construction,
large language model

I. INTRODUCTION

Imagine a clinician asking: “Does the patient’s diagnosis
require dose adjustment for prescribed medication?” — a
query that requires integrating patient records with standard-
ized drug databases. In practice, patient diagnoses often use
custom terms, while drug information relies on standardized
vocabularies such as SNOMED CT1. Without linking patient

1https://www.nlm.nih.gov/healthit/snomedct/index.html

data to standard ontologies, even advanced AI systems fail
to match diagnoses to correct dosing recommendations. This
mismatch leads to incomplete or incorrect results and can
compromise patient care.

Addressing such challenges requires sophisticated methods
for extracting and connecting knowledge from different data
sources. Recent advances in Large Language Models (LLMs)
within natural language processing have revolutionized the
extraction of information from diverse sources such as text
and tabular data [1]. These advancements impact various fields
including healthcare, finance and education [2], [3]. However,
despite their capabilities, LLMs lack domain-specific knowl-
edge, when it is not part of the LLMs’ training corpus. This
knowledge gap can lead to hallucination or factually incorrect
outputs [2], [4].

This is why recent studies have focused on Retrieval-
Augmented Generation (RAG) [2], [3], [5], which supplements
LLMs with external knowledge to improve response accuracy.
RAG integrates domain-specific sources, such as datasets,
enhancing the retrieval of factual information and reducing
hallucination. In medicine, RAG systems can answer questions
by retrieving linked records such as patient diagnoses, disease
terms, and their relationships to medication guidelines. The
performance of RAG systems is highly dependent on the qual-
ity and relevance of the retrieved information, underscoring the
importance of the underlying knowledge source.

Knowledge Graphs (KGs) are semantically rich, intercon-
nected structures designed to represent relationships between
entities in a machine-readable format [6]. This data structure
facilitates understanding and discovering underlying patterns,
making KGs particularly useful in domains requiring an orga-
nized, comprehensive view of complex information. Moreover,
KGs enable the integration of diverse data sources, making
them well-suited for complex analytical tasks [3]. A RAG sys-
tem that retrieves relevant information from graph databases
can be seen as a subcategory of RAG called GraphRAG [2].
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While KGs provide factual knowledge, LLMs remain essential
for interpreting complex queries and generating context-aware
answers [3].

Returning to the opening example, fully answering clinical
queries requires a standardized way to incorporate all relevant
information—such as ontology links—into the underlying
knowledge resources, ensuring accurate and interoperable re-
trieval. The FAIR principles offer widely recognized guide-
lines for effective data management [7]. While initial efforts
have produced FAIR KGs that include rich metadata, standard
vocabularies, persistent identifiers (PIDs), and provide human-
and machine-accessible interfaces [8]–[11], to our knowledge,
there is no comprehensive solution for the structured FAIRi-
fication of the knowledge underlying RAG systems. As the
opening example illustrates, addressing this gap is critical
to ensure that information from heterogeneous sources can
be efficiently discovered, linked, accessed, and reused in AI-
driven systems.

Building on prior work in GraphRAG and FAIR KGs, we
introduce a novel FAIR GraphRAG framework that uses FAIR
Digital Objects (FDOs), visualized in Fig. 1, as the core
knowledge units within the retrieval system. Each node in
our graph represents an FDO that fully aligns with the FAIR
principles by incorporating in its ”shells” a data artifact at the
core, metadata describing the artifact, and a PID identifying
it uniquely. While implementing GraphRAG-based data explo-
ration, the framework itself is also LLM-based — we evaluate
the usage of LLMs for the creation of FAIR KG construc-
tion, including tasks such as schema design and automated
extraction of entities and metadata from datasets. We use the
term dataset for structured and unstructured data collections.
Our main contributions are as follows: (1) we introduce the
FAIR GraphRAG framework and formalize a FAIR KG model
based on FDOs; (2) we develop an end-to-end pipeline for
constructing FAIR KGs; and (3) we demonstrate the practical
value of our approach through implementation and evaluation
on a biomedical dataset. The framework was developed in
collaboration by physicians and computer scientists.

The paper is structured as follows. In Section II, we intro-
duce the FAIR principles and the concept of FDOs, and discuss
state-of-the-art GraphRAG approaches, highlighting the lack
of structured FAIRification in existing methods. In Section III,
we formalize, construct, and implement a FAIR KG based
on FDOs within a FAIR GraphRAG framework. Section IV
presents an evaluation of our approach on a biomedical dataset,
demonstrating its applicability. Finally, Section V summarizes
our contributions and outlines directions for future work.

II. RELATED WORK

This section gives an overview of concepts and recent
developments relevant to our work. We begin by discussing
the FAIR principles and examine their application to digital
objects in the form of FDOs. Next, we review approaches
to construct KGs adhering to the FAIR principles, including
efforts to integrate FDOs as semantically meaningful units
within graph structures. We highlight recent progress in using
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Fig. 1. A High-level FAIR Digital Object model. Adopted from Wittenburg
et al. [12]

LLMs for KG construction and note that existing methods do
not yet incorporate the FAIR principles or FDOs. Finally, we
discuss the emergence of RAG and its extension to graph-
based retrieval, with a focus on domain-specific applications.

A. FAIR Digital Objects

The FAIR principles were introduced to improve the man-
agement, sharing, and reuse of scientific data, making the data
Findable, Accessible, Interoperable, and Reusable [13]. To
implement these principles, the concept of FDOs was devel-
oped [14]. An FDO is a standardized digital entity designed to
be understandable and actionable by humans and machines [7].
It brings together all the information and functionalities needed
to work with digital data objects in a consistent way. As
illustrated in Fig. 1, an FDO consists of several core elements,
shown here on the example of a published research article:

• Bit sequence: The core data in digital format (e.g., the
PDF file of the article).

• Metadata: Information describing the data, such as title,
authors, publication date, and journal name.

• Operations: Standardized, machine-readable actions
inspired by object-oriented programming (e.g.,
get_metadata, download).

• Persistent Identifier (PID): Permanent unique
identifier for reliable access (e.g., doi:10.2345/
article123).

By packaging data in this way, FDOs support automation, re-
producibility, and interoperability, making scientific data more
valuable and reusable. Their practical relevance is demon-
strated by applications in organizational data governance [15],
[16] and biomedical domains [17].

B. FAIR Principles and Knowledge Graphs

Constructing high-quality KGs from heterogeneous data re-
mains a foundational challenge [18]. Several publications have
addressed the creation of graph structures that adhere to the
FAIR principles, ranging from FAIR biological knowledge net-
works, over a FAIR COVID-19 KG, to a FAIR graffiti KG [8]–
[10]. While these works focus on making the entire KG FAIR
by assigning a PID, metadata, and standardized access, they
leave open the challenge of identifying and FAIRifying seman-
tically meaningful subunits within the graph. Such subunits
enable fine-grained access control, efficient data integration,
automated discovery and reuse by machines, increasing the
utility and interoperability of KGs. Some approaches further
(1) structure KGs into semantic subgraphs [19] or (2) link
metadata for FDOs [17]. While creating KGs based on FDOs
has been explored [19], existing work focuses mainly on linked



metadata and semantic units, without addressing aspects such
as linking core content, ontology term mapping, or the use of
LLMs for graph construction.

C. LLMs for Knowledge Graph Construction

Recent advances demonstrate the use of LLMs for con-
structing knowledge graphs from heterogeneous and unstruc-
tured data sources [20]–[22]. Approaches range from building
unified KGs across dataset types to incremental and schema-
flexible construction directly from text. LLMs are leveraged
for key tasks such as schema design, entity and relation
extraction, and automated enrichment of graph content. How-
ever, current LLM-driven KG construction approaches do not
address the FAIR principles or the use of FDOs. Closing
this gap is crucial, as ensuring KGs are FAIR enhances
data findability, accessibility, interoperability, and reusability,
making KGs more useful for both humans and machines.

D. Graph-Retrieval Augmented Generation

RAG improves response generation by retrieving relevant
information from available data sources [5]. When using
LLMs, the relevant information is added to the LLM context
window, which is the span of text the LLM can process
at once, along with the original user question, enabling
the LLM to generate a more informed answer. Hence,
RAG allows the retrieval of domain-specific information,
minimizing issues such as hallucination or factually incorrect
outputs [2], [4]. However, traditional RAG often overlooks
the inherent relationships within the underlying retrieved
text, failing to represent its interconnected structure [2].
Retrieving knowledge from graph structures (e.g., nodes and
their interconnections) allows us to consider the semantic
relationships between concepts or entities mentioned in
the text, enhancing their ability to produce context-aware
and factually accurate responses [2]. KG-based LLM
summarization techniques can be used to answer global
questions over an entire text corpus, such as “What are the
main themes in the dataset?”. This approach consistently
outperforms traditional RAG in comprehensiveness and
diversity, as shown by evaluation in two datasets [23]. A
core innovation is the construction of multiple subgraphs
by grouping closely-related entities into communities and
introducing multiple levels [23]. In domain-specific settings
such as medicine, GraphRAG approaches address the
unique challenges posed by the volume, complexity, and
sensitivity of heterogeneous medical data, including structured
formats (such as lab values), unstructured text (such as free-
text clinical notes), and imaging or genomic data. This
diversity complicates data integration and semantic mapping.
Recent frameworks link user-provided data to controlled
vocabularies, external biomedical knowledge sources, as
well as to ontologies such as the Unified Medical Language
System (UMLS) 2 [15], thereby also supporting the FAIR
principles.

2https://www.nlm.nih.gov/research/umls/index.html

Existing RAG approaches incorporate elements that enhance
FAIRness, such as multi-level graph structures [23] to improve
findability and accessibility, and the integration of ontologies
or controlled vocabularies [8] to support interoperability and
reusability. Additionally, some efforts in the literature have
focused on constructing FAIR KGs, with some of them lever-
aging linked FDOs as basic units within graph structures [17],
[19]. However, these approaches have limitations: none have
investigated the automated construction of FAIR KGs, nor
have they proposed a systematic FAIRification of the underly-
ing data resources of RAG frameworks. This leaves a gap in
FAIR KG construction and the potential for enhanced retrieval
quality within RAG pipelines.

As demonstrated with the opening example, linking data
to standard ontologies as part of FAIRification leads to mea-
surable improvements in information retrieval performance.
Systematically integrating FAIR concepts holds significant
potential for the development of more transparent, reusable,
and reliable RAG systems. Building on these observations, we
introduce a framework that systematically applies the FAIR
principles and leverages LLMs for KG construction and user
interaction via natural language. The following section details
the methodology of our FAIR GraphRAG framework.

III. METHODOLOGY

We propose a novel FAIR GraphRAG framework based
on a KG of FDOs for analyzing domain-specific datasets, as
visualized in Figure 2. Most of the existing FAIR KGs [8]–
[10] are only FAIR if they are considered as a whole. In
our approach, each node itself is FAIR as it is modeled as
an FDO, i.e., the KG consists of interconnected FDOs. We
go beyond existing approaches that explore the idea of an
FDO network [11], [17] by (1) linking metadata or core data
of FDOs, (2) connecting FDOs to existing ontologies, (3)
including multiple node types, (4) supporting the construction
of FAIR KGs based on FDOs with LLMs, and (5) enhancing
accessibility by using an LLM to answer questions in natural
language. In the following, we derive a formal model of a
FAIR FDO KG, describe its construction process, and discuss
its integration into a GraphRAG framework.

?

Question
Query Relevant 

Information

Question LLM
Generate
Answer !

Answer

ConstructLLM
Dataset FDO Graph

Fig. 2. Overview of the FAIR GraphRAG framework. The underlying
knowledge graph is composed of nodes, each representing a FAIR Digital
Object.
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 Dataset FDO
 PID: 10.526/zenodo.365
 Description:  "Dataset ..."
 Metadata: ...
 ...

 Patient FDO
 PID: 20.5281/270014
 Diagnosis:  "MASLD"
 Metadata: ...
 ...

 Disease FDO
 PID: 20.4789/375022
 Label: "MASLD"
 Ontology Link: "https://..."
 ...

Fig. 3. A FAIR knowledge graph representation with FDOs as nodes and
relationships indicating similarities between nodes such as a matching disease
(highlighted in yellow). Each disease and patient respectively comprises a
node.

A. Formal Model

Our KG is based on the idea of representing nodes as
FDOs, as shown in Fig. 3. Each node contains key informa-
tion such as a PID and rich metadata, which are technical
prerequisites to achieve FAIRness [24]. The PID allows for
resource identification and retrieval, while rich metadata pro-
vides contextual information that enhances data discoverability
and interoperability. Relationships between nodes indicate
interrelations between the FDOs’ core data or metadata. The
FAIR KG always contains a central dataset node that provides
an overview and metadata describing the entire dataset. The
entity nodes, such as disease or patient nodes (see Figure 3),
are user-defined. This flexible approach allows the user to
guide the graph construction process and decide which entities
in the dataset should be realized as nodes in the KG.

For our KG, we adopt a property graph model. Nodes
and relationships can be labeled and have properties that
describe them. We decide for a property graph instead of
an RDF-based graph, as the property graph structure aligns
well with LLM outputs such as JSON-like structures, and
the concept of graph properties allows efficient metadata
integration. To better support FDOs and enable a direct
mapping from the dataset and entity representations to the
graph nodes, we adapt the formal definition of a property
graph data model [25], modifications are highlighted in blue:

Let L be an infinite set of labels, P an infinite set of
property names, V an infinite set of atomic values, and T
a finite set of datatypes. For a set X , we define SET+(X)
as the set of all nonempty finite subsets of X . Formally, our
FAIR property graph is defined as a tuple:

G = (F ,E, ρ, λ, σ, ϕ)

where:

• F is a finite set of FDOs represented as nodes;
• E is a finite set of edges;
• R = {dataset, entity} is the set of node types;
• ρ : E → F × F associates each edge with a pair of

FDOs;

• λ : (F ∪ E) → SET+(L) associates each FDO with
a finite set of labels;

• σ : (F ∪E)×P → SET+(V ) associates each FDO
with property keys (e.g., metadata), where each property
key has a finite set of values.

• ϕ : F → R assigns a node type to each FDO.
In this model an FDO f ∈ F with ϕ(f) = dataset represents
an entire dataset, an FDO f ∈ F with ϕ(f) = entity
belongs to user-defined semantic types (e.g., patient, disease).
Edges (u, v) ∈ E can be used to represent relationships.
The formal model serves as the foundation for our FAIR
KG, specifying how FDOs, their properties, and relationships
are represented within a property graph framework. In the
following, we outline the pipeline used to construct such a
KG from a dataset. This process involves several stages, from
schema definition and information extraction to FAIRification
and integration into the graph database, as visualized in Fig. 4.

B. Construction of a FAIR Knowledge Graph

Our construction pipeline is based on existing KG con-
struction approaches [21]–[23], but is adapted to the FAIR
principles in stages 3 to 6. In the following, we describe each
stage, starting with the schema, which guides the information
extraction process.

1) Schema: The schema is constructed based on a fixed,
basic JSON schema that is applicable to different use-cases.
Users provide an input dataset, specify the number and type
of entities (e.g., patient, disease), and add brief descriptions
through a simple interface. Using few-shot prompting, an LLM
then extracts relevant entity features for each user-defined
entity (e.g., name, sex for entity patient) from the dataset to
complete the initial schema. The schema aligns naturally with
LLM capabilities, as it can be generated iteratively and adapted
to the dataset at hand. The resulting schema acts as a blueprint,
guiding the LLM to identify and extract semantically relevant
information from the dataset.

2) Extracted Information: We follow a schema-guided
knowledge extraction approach, producing structured and con-
sistent output and allowing the user to guide the information
extraction process by defining relevant entities. Depending

Dataset

Schema

Extracted Information  FDOs

FDOs & Relations

FAIR Knowledge Graph

iterative keyword extraction
and definition of entities

information extraction
based on schema

addition of PIDs, meta-
data and ontology matching

relation extraction  
and embedding

graph integration

FAIRification

Extraction

Fig. 4. Graph construction stages: Based on an input dataset, a FAIR
knowledge graph is constructed. The first three stages follow a schema-guided
information extraction approach, while stages 3 to 6 incorporate FAIRification
actions.



User

Prepare Prompt
context + question

graph schema as context

Context

Prompting

return natural language

Graph Retrieval
Engine

LLM
GPT-4o-mini, Llama-
3-70B-Instruct etc.

run query against database

Graph
Database

Graph
Database

Which gene has the
 highest fold change
between poor and

good prognosis
groups?

Gene TNMD.

Fig. 5. Graph retrieval process: The prompt is prepared based on the user question and the knowledge graph schema. The graph retrieval engine prepares
the prompt, invokes the LLM to generate a database query, and executes the query against the database. Finally, the answer is returned in natural language.

on the nature of the source data, schema filling is handled
computationally or with LLM assistance. For structured data,
we use a rule-based approach that makes use of structured data
formats, maps data to schema fields and populates the schema
directly. For unstructured data, the LLM is provided with the
predefined schema and one document of the document col-
lection (or dataset) at a time. The LLM is one-shot prompted
to extract the relevant information from the document, fill the
schema and return a filled valid JSON schema including JSON
objects for each entity instance.

3) FAIR Digital Objects: The extracted information is then
transformed into FDOs, making use of the structured nature of
the filled JSON schema. For each filled schema, a dataset FDO
is created containing metadata describing the entire dataset.
The metadata are identified by an LLM, which receives
metadata files and is prompted to return them in a structured
format, following domain-specific metadata standards. Each
entity instance (e.g., the disease “pCCA”) then results in a
separate entity FDO. The conversion into an FDO includes
three steps:

• PID Generation: Each entity instance and dataset is
assigned a PID to ensure its findability and accessibility.

• Metadata Extraction: Using a schema-guided approach.
• Ontology Term Mapping: The schema entries are

mapped to domain-specific ontology terms, enhancing
interoperability.

Mapping entries to ontology terms is essential for integrating
knowledge and ensuring FDO and KG interoperability. We use
a flexible approach, leveraging repository APIs such as Bio-
Portal,3 which provides access to more than 1,200 biomedical
ontologies.

4) FAIR Digital Objects and Relations: To enable richer
knowledge representations, we extend the concept of FDOs by
establishing semantic relations between them. These relations
can be based on metadata similarities or core data similarities,
such as the matching disease in Figure 3. Relations can be
within a single dataset (inner-dataset) or across datasets (cross-
dataset), allowing for flexible linking of related entities. Once
identified, the relations are added to the schema, resulting in
an enriched representation that captures both the content and
the connections between FDOs.

3https://bioportal.bioontology.org

5) FAIR Knowledge Graph: The final step is the integration
of the FDOs and their relations into a graph representation,
forming the FAIR KG. Each FDO becomes a node and
each relation becomes an edge connecting related nodes.
Every node in the graph has a set of properties, including a
PID, associated metadata, ontology terms, and other domain-
specific attributes. Due to the structured nature of FDOs,
KG integration is a computationally straightforward mapping
process. The resulting KG is stored in a property graph
database, which enables efficient querying, exploration, and
integration of knowledge. The use of a standardized graph
query language (e.g., Cypher or SPARQL) ensures that the
data can be accessed [8], supporting a wide range of analytical
and semantic use cases.

C. FAIR Graph Retrieval-Augmented Generation

The graph retrieval process is visualized in Fig. 5. To re-
trieve graph data, the graph guides the retrieval task, including
information about nodes, edges, and their properties. A prompt
is prepared incorporating the context (graph schema) and the
user question. The prompt is injected to an LLM to generate
a graph database query in a graph database language such as
Cypher 4 or SPARQL 5. In comparison to embedding-based
similarity searches for data retrieval, query-based retrieval
allows for high flexibility and can be easily adopted to various
use cases. The database results are interpreted and translated
into natural language, which is then returned to the user. In
addition to an answer in natural language, the original graph
database query and the retrieved FDOs are shown to the user,
including a PID and full metadata.

IV. EXPERIMENTS AND RESULTS

We evaluate FAIR GraphRAG on a biomedical dataset to
show the advantages of our approach compared to a Non-FAIR
GraphRAG approach.

A. Experimental Settings

1) Dataset: The RNA sequencing data reported in this
study have been deposited in the Gene Expression Omnibus
(GEO) under accession GEO Series GSE280797 6 (Peking

4https://neo4j.com/docs/getting-started/cypher/
5https://www.w3.org/TR/sparql11-query/
6https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
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TABLE I
FAIR COMPLIANCE ASSESSMENT OF THE DATASET ACCORDING TO FAIR INDICATORS F1 TO R1.3.

FAIR Indicator Criterion FAIR-aware Baseline
F1 (Meta)data are assigned a globally unique and persistent identifier. Yes No
F2 Data are described with rich metadata. Yes No
F3 Metadata clearly include the identifier of the data they describe. Yes No
F4 (Meta)data are registered or indexed in a searchable resource. Yes Partial
A1 (Meta)data are retrievable by their identifier using a standardized communication protocol. Yes Yes
A1.1 The protocol is open, free, and universally implementable. Yes Yes
A1.2 The protocol allows authentication and authorization, where necessary. Yes Yes
A2 Metadata are accessible even when the data are no longer available. Yes No
I1 (Meta)data use a formal, accessible, shared language for knowledge representation. Yes Partial
I2 (Meta)data use vocabularies that follow FAIR principles. Yes No
I3 (Meta)data include qualified references to other (meta)data. Yes No
R1 (Meta)data are richly described with relevant attributes. Yes No
R1.1 (Meta)data are released with a clear and accessible data usage license. No No
R1.2 (Meta)data are associated with detailed provenance. Yes No
R1.3 (Meta)data meet domain-relevant community standards. Yes Partial

University Cancer Hospital and Institute, submitted October
31, 2024; last updated January 30, 2025). These data cor-
respond to the study “Screening and molecular mechanism
research on bile microRNAs associated with chemotherapy
efficacy in perihilar cholangiocarcinoma” [26]. The data is
derived from bile samples of patients with the rare liver
cancer perihilar cholangiocarcinoma (pCCA). Samples were
collected from 8 patients prior to chemotherapy treatment, as
part of a retrospective clinical study. We used processed data
in a tabular format, including gene annotations, expression
values (FPKM), fold changes, and statistical significance. GEO
enforces MIAME 7 compliant metadata to ensure consistency
across platform, sample, and experiment annotations. The
dataset contains MIAME compliant metadata on the dataset
and its samples.

2) Evaluation Metrics: We evaluate the adherence to the
FAIR principles by assessing each of the four dimensions
findability, accessibility, interoperability, and reusability an-
swering questions F1 to R1.3 as taken from [13] on each
dimension, listed in Table I. Furthermore, we assess accuracy,
coverage, and explainability. Accuracy and coverage metrics
ensure that the system reliably returns correct answers across a
set of representative queries. The query set includes 22 general
questions (e.g., “Which gene shows the largest difference in
expression (fold change) between Group A and Group B?”),
10 metadata-specific questions (e.g., “What is the sequencing
instrument used for this study?”), and 10 ontology-related
questions (e.g., “Provide the GO-BP ontology term linked
to the gene CFLAR.”). While LLMs are used for graph
construction and graph database query generation, limiting
the system’s explainability, we assess whether the system
supports tracing back data sources, identifiers, and provenance
details. In our use case, a fully explainable answer contains:
(1) the Cypher query used, (2) the graph nodes returned, and
(3) FAIR features (PID, metadata, ontology links). Criteria
are weighted equally in the evaluation. While our evaluation
focuses on technical performance and FAIR compliance, we
do not include clinical evaluation criteria such as validation by

7https://www.ncbi.nlm.nih.gov/geo/info/MIAME.html

medical experts, as this is outside the scope of this technical
proof of concept.

3) Baseline: We introduce a Non-FAIR GraphRAG ap-
proach, with an underlying Non-FAIR KG that was con-
structed following our KG construction pipeline. FAIRification
steps, such as assigning PIDs, metadata, and ontology terms,
were skipped.

4) Implementation Details: We construct the KG using both
OpenAI’s gpt-4o-mini and Meta’s open-source model Llama-
3.3-70B-Instruct, and observe that both produce the same KG.
Model inference is performed via Azure Services, protecting
the data from proprietary use. To fit the LLM context window
and minimize cost, we use the first 80 rows of the RNA
sequencing dataset. We define pathway and GO-BP as sep-
arate user-defined entities, modeling them as nodes to enable
semantic linking across genes. To make PIDs resolvable, we
simulate dataset registration in the Zenodo Sandbox8, as we
are not the dataset owners and cannot register data at the main
Zenodo repository9. The resulting KG (1038 nodes: 1 dataset,
80 gene, 854 GO-BP, 103 pathway nodes) is stored in Neo4j10.
For RAG, we use LangChain11 to generate Cypher queries
from the KG schema, as shown in Fig. 5. The source code is
available as open-source on GitHub [27], [28].

B. Main Results

1) FAIR Results: We assess FAIR compliance by answering
questions F1 to R1.3, the results are summarized in Table I.
Our GraphRAG approach meets all FAIR criteria except
criterion R1.1, as the dataset lacks licensing information. The
baseline approach shows poor results for findability, interoper-
ability, and reusability criteria due to missing PIDs, metadata,
and ontology term mapping. Both approaches are accessible
through HTTP(S) and Bolt protocols, and support authen-
tication and role-based access, as the underlying KGs are
stored in Neo4j. These results demonstrate that our GraphRAG

8https://sandbox.zenodo.org/
9https://zenodo.org/
10https://neo4j.com/
11https://www.langchain.com/
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TABLE II
COMPARISON OF ACCURACY ON DIFFERENT QUESTION CATEGORIES

Model System General Acc Metadata Acc Ontology Acc Overall Acc
gpt-4o-mini FAIR-aware 95.45% 90% 90% 92.86%
Llama-3.3-70B FAIR-aware 45.45% 20% 20% 33.33%
gpt-4o-mini Baseline 81.82% 0% 0% 42.86%
Llama-3.3-70B Baseline 36.36% 0% 0% 19.05%

TABLE III
COMPARISON OF ANSWER ACCURACY, COVERAGE, AND EXPLAINABILITY

Model System Acc. (%) Cov. (%) Expl. (%)a
gpt-4o-mini FAIR-aware 92.86% 92.86% 100%
Llama-3.3-70B FAIR-aware 33.33% 35.71% 100%
gpt-4o-mini Baseline 42.86% 42.86% 66.66%
Llama-3.3-70B Baseline 19.05% 21.43% 66.66%
aCypher queries are generated by an LLM, preventing full explainability.

approach achieves significantly better FAIR compliance than
the baseline, as reflected in Table I.

2) Question Answering Performance: The performance re-
sults are summarized in Table II and Table III. Our FAIR
GraphRAG approach, when used with gpt-4o-mini, achieves
the highest overall accuracy (92.86%), coverage (92.86%) and
explainability (100%) in all types of questions. The same
model applied to the Non-FAIR KG achieves an overall
accuracy and coverage of 42.86%, with reduced explainability.
Similarly, Llama-3.3-70B demonstrates improved performance
in the FAIR setting compared to the Non-FAIR baseline, but
still lags behind gpt-4o-mini. The Non-FAIR system fails to
answer metadata and ontology-specific questions, resulting in
0% accuracy in these categories (Table II). For both models,
the FAIR KG improves the system’s ability to answer complex
queries, especially when involving metadata and ontology
links. The results demonstrate that a FAIR-aligned KG en-
hances the quality of answers in this biomedical question
answering use case.

C. Experiment Analysis

As shown in Table I, our GraphRAG approach meets all
FAIR criteria except licensing by including Zenodo PIDs, a
shared vocabulary and links to biomedical ontologies. The
metadata is MIAME-compliant and exceeds the detail offered
by general metadata vocabulary such as Dublin Core Metadata
Terms (DCMT) 12. Table II reports accuracy by question
type. The FAIR system using gpt-4o-mini demonstrates robust
performance on all question types, with rare failures on
complex questions (e.g., exceeding the token limit). The base-
line system achieves lower accuracy, especially for metadata
and ontology questions, due to missing KG properties and
links. Llama-3.3-70B underperforms on both systems, often
generating invalid Cypher queries, which return no results.
For FAIR and Non-FAIR settings, gpt-4o-mini’s accuracy
matches its coverage, indicating that it only answers when
confident, with no incorrect results. Explainability is highest

12https://www.dublincore.org/specifications/dublin-core/dces/

in the FAIR system, as in addition to Cypher queries and node
data, it provides ontology links, shared vocabulary, and PIDs,
facilitating full provenance and traceability. In contrast, the
Non-FAIR system lacks this semantic richness. Fig. 6 shows
the chat interface with an example question, a Cypher query
and dataset FDO. The resolvable PID is demonstrated using
Zenodo Sandbox.

V. CONCLUSION

In this work, we introduce FAIR GraphRAG, a novel
approach that integrates FAIR Digital Objects into graph-based
RAG, advancing both the FAIRification and semantic inter-
operability of domain-specific knowledge graphs. Leveraging
LLMs, FAIR GraphRAG supports schema construction and
automated extraction of content and metadata. Our experi-
ments on biomedical data demonstrate that FAIR GraphRAG
significantly improves findability, interoperability, reusabil-
ity, and explainability over baseline approaches, as seen in
both FAIR compliance and question-answering metrics. By
employing standardized metadata, PIDs, and ontology term
mapping, FAIR GraphRAG achieves transparent and accurate
results. The approach is adaptable to other fields, supporting
the broader adoption of FAIR data principles in retrieval-
augmented generation systems. Our framework supports both
open-source and proprietary LLMs, enabling flexible and
privacy-conscious deployment that complies with ethical and
regulatory standards. In future work, we will further explore
automated FAIRification and enhancing semantic interoper-

Home How It Works FAIR GraphRAG About Contact

Chat with your data

👋 Welcome! Feel free to ask me anything about your uploaded dataset.

On what date was this dataset last updated in GEO?

The dataset was last updated in GEO on January 30, 2025.

Cypher Query

▸ FAIR Digital Object Data 

PID: 10.5281/zenodo.270013

Labels: [FAIR_Digital_Object, Dataset]

Neo4j 👆

Fig. 6. Chat Interface: The chat interface enables knowledge graph querying
in natural language and provides details on the relevant Fair Digital Object.

https://www.dublincore.org/specifications/dublin-core/dces/


ability with both internal and external resources. This will
involve advancing methods for improved metadata linking and
ontology term mapping.
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