
P4Ward: Fine-Grained Behavioral Policy
Enforcement for Industrial Networks

Ina Berenice Fink∗, William Köhler∗, Martin Serror§, and Klaus Wehrle∗
∗Communication and Distributed Systems, RWTH Aachen University, Germany

§Fraunhofer FKIE, Germany
{fink, koehler, wehrle}@comsys.rwth-aachen.de · martin.serror@fkie.fraunhofer.de

© IEEE, 2025. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: TBD

Abstract—Industrial Control Systems (ICS) are increasingly
targeted by cyber-attacks, yet often lack cryptographic protections
due to legacy devices and protocols. Network-based defenses—
particularly the enforcement of behavioral policies—offer an
effective means of reducing the attack surface. However, such
approaches must support industrial protocols and payload
inspection while maintaining scalability and low-latency overhead.
In this paper, we present P4Ward, a framework that leverages
Manufacturer Usage Description (MUD) for scalable, device-
specific policy specification and uses P4-programmable hardware
switches to enforce these policies at line rate, in conjunction with
authentication where feasible. We implement a proof-of-concept
supporting multiple industrial protocols, including Modbus and
OPC UA, and evaluate its performance and security impact.
Our results show that P4Ward achieves latency comparable
to industrial-grade switches while enabling precise enforcement
of flexible access control rules—such as validating application
layer fields (e.g., function codes) and explicitly restricting write
operations to authorized endpoints.

Index Terms—P4, MUD, ICS, access control, behavioral policy

I. INTRODUCTION

Industrial Control Systems (ICS) were originally air-gapped
and not designed with cybersecurity in mind, but they are
increasingly interconnected and exposed to external networks.
Still, running systems often operate legacy devices and
protocols that lack encryption and introduce vulnerabilities
exploitable by attackers. Consequently, there is an urgent
need for non-intrusive security solutions that mitigate these
inherent weaknesses and ensure the safe operation of ICS
environments [1], [2]. One promising direction is the use of
network security controls, such as firewalls and behavioral
policies tailored to the unique characteristics of ICS and
industrial protocols [3]. Indeed, the predictable and well-defined
communication patterns of ICS [4] allow the narrow and precise
definition of access control policies [5]. However, their effective
use also requires performant and scalable methods for policy
distribution and enforcement.

The IETF’s Manufacturer Usage Description (MUD) stan-
dard [6] aims to restrict connections of Internet of Things
(IoT) devices to their designated behavior as defined in
device-specific MUD files. The similar characteristics and
deterministic behavior of industrial devices suggest that MUD is
equally promising for the use in ICS [2], which is highlighted
by recent publications [7]–[10]. In particular, these works
demonstrate the potential of Software-Defined Networking

(SDN) to allow for flexible and scalable enforcement of MUD.
However, they are based on OpenFlow [11], which limits their
processing capabilities, and restricted to basic policies without
consideration of industrial protocols. While P4-programmable
hardware switches allow for flexible, protocol-independent, and
performant policy enforcement, including (limited) payload
inspection [12]–[14], respective solutions are missing.

To close this gap, we extend MUD to support industrial
protocols, including application layer information (e.g., function
codes), and propose P4Ward: a framework that combines MUD
and authentication with P4-programmable hardware switches
to allow for flexible enforcement at line rate, satisfying the
stringent communication latency requirements in industry and
critical infrastructure. We demonstrate the feasibility of our solu-
tion by implementing P4Ward on an Intel Tofino 1, with support
for Modbus, OPC UA, Ethernet/IP, and GOOSE. We evaluate its
effectiveness against network reconnaissance, Denial of Service
(DoS), sniffing, and tampering attacks through theoretical
analysis and proof-of-concept implementations.
Contributions. Our main contributions are as follows:
• We assess the characteristics and attack vectors in ICS, the

potential of network-based security controls to mitigate them,
and derive requirements for respective solutions in ICS.

• We extend MUD files to support industrial protocols and
design P4Ward to meet the identified requirements.

• We show the P4Ward’s feasibility through a proof-of-concept,
and thoroughly evaluate its performance and effectiveness.

Open Science Statement. We will open-source our implemen-
tation [15] under the GPLv3 license.

II. ARCHITECTURE AND SECURITY OF ICS

In this section, we provide an overview of communication
networks in ICS, including typical architectures, performance
requirements, and protocols. We then examine prevalent
security vulnerabilities and network-based security in ICS.

A. Overview of Industrial Control Systems

ICS enable the automation, monitoring, and control of
industrial processes in domains such as manufacturing plants,
water treatment plants, and smart grids. These systems rely
heavily on communication networks to connect components and
facilitate the exchange of control and status information [16].
Network Architecture. Despite differences in scale and
implementation across facilities, ICS operation principles



are generally similar [16] and follow a layered architec-
ture defined by the ISA-95 standard [17]: At the lowest
layers (L0–L1) field devices such as sensors and actuators
interact with control devices such as Programmable Logic
Controllers (PLCs) or Intelligent Electronic Devices (IEDs)
via fieldbuses, increasingly based on Ethernet. These control
devices exchange data over local networks and connect to
Human-Machine Interfaces (HMIs) and Supervisory Control
and Data Acquisition (SCADA) systems (L2) for operator
supervision. In remote deployments, Remote Terminal Units
(RTUs) may relay communication to central systems via wide-
area networks [18]. Higher layers (L3–L4) manage operation
and business processes.
Communication Characteristics. Depending on their applica-
tion, communication networks in ICS must transmit specific
data while meeting stringent performance requirements [3],
[19]. Unlike traditional IT networks and the Internet, ICS com-
munication is typically time-critical and demands low latency,
high reliability, and deterministic behavior. The transmitted
data often consists of sensor values and function or error codes,
rather than large files or multimedia content. Consequently,
communication patterns are usually predictable and repetitive—
such as periodic reading and writing of values or codes—and
rely on specialized network protocols.
Network Protocols. Industrial network protocols are specifi-
cally designed for enabling efficient and reliable automation
and control in ICS [3]. These protocols typically include well-
defined code fields (e.g., to indicate read or write operations,
or status and error codes), and data fields for transmitting
values. However, they operate at different ICS layers. For
instance, Modbus/TCP is used for communication at L0–L2,
i.e., between PLCs, RTUs, HMIs, and SCADA systems, while
OPC UA primarily operates at L2–L4, but is also supported
by modern PLCs and RTUs.
Protocol Security. ICS were originally designed as closed,
isolated networks, and security was overlooked in early
protocol design. With increasing digitalization, many ICS
protocols were adapted to support Ethernet and IP-based
communication, thereby increasing their exposure to security
threats [3]. While newer protocols—or updated versions of
existing ones—support encryption and authentication, they are
often not deployed in practice due to compatibility issues with
legacy devices or increased communication overhead, which
compromises stringent latency requirements. Moreover, these
security features do not necessarily prevent lower-layer attacks,
such as reconnaissance and DoS, requiring complementary
security measures. Finally, the effectiveness of protocol-based
security relies on proper implementation and configuration,
which is frequently lacking in real-world deployments [20].

To understand the concrete security risks faced by ICS, we
subsequently examine their most common attack vectors.

B. Attack Vectors in ICS

Attackers typically begin with reconnaissance to gather
information about the target network and its topology, which

they can later exploit to disrupt services, extract sensitive data,
or tamper with system functionality.
Network Reconnaissance Attacks. Reconnaissance commonly
involves IP and port scanning. Tools such as ARP-scan and
ICMP ECHO requests (e.g., via Nmap [21]) are used to discover
active hosts and their IP addresses. TCP SYN and UDP scans
reveal open ports and the services running on target devices.
Although reconnaissance itself has no immediate consequences,
it lays the foundation for more impactful follow-up attacks.
DoS. DoS attacks can target any layer of the network stack but
are most often executed at the transport layer or above. Attack-
ers may use flooding techniques with TCP, UDP, or HTTP to
exhaust bandwidth or processing resources, disrupting device
or service availability. Vulnerabilities in specific protocols can
also be exploited—for example, malformed packets that trigger
crashes. Historical examples include zero-length messages
that crash DNP3 protocol drivers [22], or malicious Modbus
function codes (e.g., 0x5A) that cause PLCs to freeze [23].
DoS attacks can result in production downtime, equipment
damage, or even pose risks to human safety [24], [25].
Sniffing and Tampering. To guess passwords and gain
access to devices, attackers may use dictionary or brute-
force techniques. Man-In-The-Middle (MITM) attacks—such
as MAC, ARP, or DNS spoofing—enable them to eavesdrop
on communications and intercept credentials. With captured
or guessed credentials, attackers can gain unauthorized control
over devices and manipulate industrial processes. Without cre-
dentials, MITM attacks still enable disruption or manipulation
of communication by injecting, modifying, or replaying packets
to alter function codes or sensor data. Such tampering can have
severe consequences [25]—as demonstrated in the 2021 Florida
water treatment plant incident, where attackers temporarily
altered the chemical composition of the water supply [26].

Due to the prevalence of legacy devices and protocols lacking
built-in security in ICS, alternative mitigation mechanisms are
urgently needed. In particular, defending against DoS and tam-
pering attacks requires security solutions that support industrial
protocols—enabling, e.g., validation of message lengths, data
values, or function codes. Network-based security controls offer
a promising approach to address these challenges [27].

C. Network-based Security Controls

Network-based security controls are promising and widely
used for complementing and retrofitting security in ICS as
they can be deployed independently of legacy field and control
devices. Common examples include firewalls, access control,
and Intrusion Detection and Prevention Systems (IDPS) [28].
Firewalls restrict external traffic at network boundaries, while
access control can limit both user and device communication
to predefined policies, e.g., based on their roles, identities, or
functional behavior. In ICS, behavioral policies are especially
effective [5] as they reflect the deterministic and predictable
communication patterns of field and control devices. Thus, they
help reduce the attack surface without impairing functionality.
In addition, IDPS offer deeper inspection and anomaly detection
but may introduce unacceptable latency or false positives.



State-of-the-Art. While software-based solutions often lack the
required performance for ICS, dedicated commercial appliances
like Belden’s Tofino Security Appliance already offer protocol-
specific access control [29]–[32]. However, they are limited
in throughput (1000 pps depending on the protocol [30], [31]),
require per-connection deployment, and rely on manual rule
configuration, making them less scalable. Also, protocol support
is currently limited to GOOSE, Modbus, and Ethernet/IP [29].
This reveals a gap in flexible (ideally protocol-independent),
efficient solutions for scalable access control enforcement in
ICS—an issue we address in the remainder of this paper.
Takeaway: ICS depend on specialized devices and protocols
to operate critical processes. Yet, the limited deployment of
secure protocols leaves them exposed to potentially severe
attacks. While network-based controls offer mitigation, current
solutions fall short in performance and flexibility.

III. TOWARDS NETWORK-BASED SECURITY WITH
PROGRAMMABLE SWITCHES AND MUD

Subsequently, we present the considered attacker model,
and derive three key requirements for network-based secu-
rity deployments in ICS. We then examine the potential of
programmable switches and MUD, and review related work.

A. Attacker Model

Besides increasing exposure to the Internet and other
external systems, ICS are sometimes deployed in environments
with Bring-Your-Own-Device (BYOD) policies. Additionally,
insiders with access to critical components may act with
malicious intent or fall victim to social engineering attacks
such as phishing. Given these circumstances, we assume that
attackers can gain initial access to the network and connected
devices, either remotely or through physical means. Based
on the Dolev-Yao attacker model [33], such adversaries are
capable of intercepting, modifying, and injecting messages
within the compromised environment, enabling both passive
and active attacks on the local network. While the Dolev-Yao
model assumes that attackers cannot break modern crypto-
graphic methods, we additionally consider that attackers may
specifically target deployed systems and protocols, exploiting
known and unknown vulnerabilities alike.

B. Requirements

The following principles are recommended to strengthen ICS
security [16], [19]:

• Isolation: Segment networks to separate services and
reduce cross-segment access.

• Zero Trust: Deny all communication by default unless
explicitly permitted by policy.

• Least Privilege: Grant users and services only the
permissions necessary for their tasks.

• Least Route: Limit network access of nodes strictly to
what is required for their function.

• Defense in Depth: Layer different security controls to
enhance protection.

Combining above recommendations with the significance of
industrial protocols and the stringent performance requirements
of ICS (cf. Sec. II-A), industrial network-based security
solutions should fulfill:
RQ1) Fine-grained filtering of communication patterns and

payloads, including industrial protocol support.
RQ2) Scalable deployment and policy management.
RQ3) Transparent, low-latency operation to preserve system

availability.
Recent works [34], [35] suggest that P4-programmable, off-

the-shelf switches can offer flexible and efficient access control.
In parallel, IETF’s MUD standard provides a structured way
to define and manage behavioral policies. We explore both
approaches as potential enablers for practical ICS network
security, then investigate related work.

C. The Potential of Programmable Switches and MUD

Programmable Switches. Switches with programmable
Application Specific Integrated Circuits (ASICs), such as Intel’s
Tofino series [36], enable flexible, high-speed packet processing
using the P4 language [37]. P4’s architecture [38] comprises a
programmable data plane (on the ASIC) that processes packets,
while a control plane (on a CPU) configures the data plane.
Thanks to TCAM, which allows for fast lookups, programmable
ASICs are well-suited for high-performance packet matching,
such as access control enforcement. However, to maintain
deterministic processing, P4 introduces strict constraints (e.g.,
no loops or division [38]), and Tofino imposes additional
limitations compared to virtual P4 switches [39] to sustain
line-rate speed. Nonetheless, Tofino has proven capable of
advanced tasks, including limited payload inspection and
stateful connection tracking [14], [40].
MUD. MUD was standardized by the Internet Engineering Task
Force (IETF) [6] and defines device-specific, whitelist-based
behavioral profiles (MUD files). MUD files are fetched from
servers via corresponding MUD URLs and contain Access
Control Entries (ACEs) to restrict network communication of
IoT devices to only what is necessary for device function.
While native support is limited to basic protocols (IP, TCP,
UDP, ICMP), MUD allows for extensions to accommodate
custom use cases. Notably, MUD does not prescribe how
policies should be enforced, making it compatible with SDN
as demonstrated by related work (cf. Sec. III-D).

D. Related Work

We review existing efforts in tailoring network-based security
to ICS and enforcing MUD, then discuss current gaps.

1) Retrofittable Network-based Security for ICS: Several
researchers recognized the security gaps in ICS and imple-
mented specific solutions. Ndonda et al. [41] implemented a
two-staged Modbus-aware Intrusion Detection System (IDS)
in P4, while Hu et al. [34] focused on DNP3 inspection in
combination with hashing, encryption, and filtering. These
works highlight the importance and potential of considering
industrial protocol payload in security applications. However,
they lack policy-based, protocol-independent access control and



rely on virtual BMv2 switches, which are not compatible with
P4-programmable hardware switches (cf. Sec. III-C). Other
works address security via behavior-based IDS [42] or hard-
coded filters [43], but lack flexibility and, as implemented
in software, performance. Last, different authentication and
access control schemes were developed for smart grids [44]–
[46] and resource-constrained devices [47] as well as other
non-ICS-specific P4-based solutions for authentication [48]
and link protection [49]. However, all of them lack support for
behavioral policies and industrial protocols.

2) Manufacturer Usage Description: MUD has been widely
explored for IoT security, with several works demonstrating
scalable enforcement via programmable switches [12], [35],
[50]–[53]. In the industrial domain, Krishnan et al. [7]
developed attestation and authentication of industrial devices
with MUD. Garcı́a et al. [8] proposed secure retrieval of MUD
files for resource-restricted devices in industrial networks, while
Matheu et al. [9] added enforcement of channel protection and
through MUD files and authentication. Garcı́a et al. [10] further
allowed the configuration of security settings and vulnerabilities.
However, these works rely on OpenFlow and do not address
industrial protocols or payloads.
Discussion. While prior work demonstrates the potential
of programmable switches for securing ICS and efficiently
enforcing MUD files, no solution yet combines both to enforce
behavioral policies on programmable hardware. In particular,
it is still unclear whether complex MUD files that account
for industrial protocols and payloads can be enforced on
programmable hardware switches. In the following, we explore
how such an approach could look and perform in practice.
Takeaway: Solutions for behavioral access control in ICS must
fulfill stringent performance and functional requirements, which
are not met by existing approaches.

IV. SCALABLE ACCESS CONTROL FOR ICS USING
P4-PROGRAMMABLE SWITCHES AND MUD

We propose combining the flexible and performant process-
ing capabilities of P4-programmable switches with the MUD
standard to create P4Ward—a scalable framework for fine-
grained access control in ICS, which satisfies RQ1-RQ3. Below,
we overview P4Ward’s key components and features.

A. Overview

First, we extend MUD files with access control rules
that allow matching against industrial protocol headers and
significant payload fields (cf. RQ1). We then design P4Ward,
a framework that automatically manages and processes MUD
files (cf. RQ2) and enforces the rules on the data plane of
P4-programmable switches (cf. RQ1, RQ3). To follow the
defense in depth paradigm (cf. Sec. III-B) and minimize the
attack surface, P4Ward also includes device authentication and
enforcement of secure protocol configurations, e.g., of OPC
UA. By integrating both into P4Ward, we can also reflect
authentication and encryption in the ACEs of our MUD files—
e.g., allowing only authenticated and encrypted communication
between capable endpoints. Intrusion detection is out of the

(1) Device Management & Authentication

(3) Access Control (4) F/R

(2) Policy Management

(1) Auth. (3) Access Control (4) F/R

Fig. 1: Modular Architecture of P4Ward

scope for our design but could be integrated into the control
plane in future work.
P4Ward Architecture. Due to P4’s architecture, we divide
P4Ward into data and control plane modules (cf. Sec. III-C),
assigning time-critical functionality to the data plane to meet
RQ3. Overall, P4Ward integrates four modules:

1 Device Management and Authentication: Tracks (man-
ually) registered devices, and authenticates and re-
authenticates them periodically if supported by the device.

2 Policy Management: Parses MUD files to extract device
information and ACEs for management and access control.

3 Access Control: Validates and filters incoming packets.
4 Forwarding and Routing: Handles packet forwarding

within and routing across networks.
Subsequently, we describe the individual modules in detail.

B. Device Management and Authentication

P4Ward enforces a zero trust approach, i.e., all endpoints
are denied access to the network by default. To gain access,
devices must either authenticate themselves or, to support legacy
devices, be manually registered by an administrator. The MUD
URL is then either provided by the authentication server or
statically configured by the administrator during registration. In
either case, the MUD URL is passed to the policy management
module to fetch the MUD file from a local server and parse it.
Device Management. Device management operates on the
control plane and tracks registered (i.e., whitelisted) devices,
including their MAC and IP addresses, and hardware ports.
It additionally assigns each device a set of identifiers derived
from its MUD URL and MUD file, i.e., unique device, group,
manufacturer, and model IDs, which are used for abstract
addressing in MUD ACEs. The device information remains
static from the point of authentication/registration and is used
to configure the access control module to validate source and
destination information in packets, restricting spoofing attacks.
Authentication. P4Ward enables authentication via standard
protocols, e.g., EAP, supporting security features in modern
devices and protocols. This allows tight integration with the
enforcement of MUD files, which may use authentication as a
validity feature. While EAP-based authentication architectures
typically include an authenticator that collects authenticating
data—e.g., using EAPOL—and sends it to an authentication
server for validation [54], our design integrates the authenticator
into the switch. Consequently, to avoid blocking authentica-
tion, our access control module must support the EAPOL
protocol and permit EAPOL exchange between endpoints
and authenticator. The server can be integrated as well or



hosted externally, serving multiple switches. Implementing
standard cryptographic algorithms like AES-256 on the data
plane of modern programmable hardware switches remains
underexplored and poses challenges [55] due to processing
restrictions (cf. Sec. III-C). Thus, complex methods like EAP-
TLS are not trivial on the data plane and likely require control
plane or external server implementation. However, simpler
mechanisms, e.g., using pre-calculated hashes such as EAP-
OTP [56], may be feasible on the data plane and offer a practical
compromise for ICS environments needing low latency.
Guest Devices. We assume that local devices are well known,
permanently deployed, and statically configured, making them
easy to whitelist. However, to support BYOD policies (e.g., in
less critical network segments), P4Ward also supports unknown
guest devices, which would otherwise be blocked by default.
Administrators can define a default MUD file with restrictive
policies (e.g., communication limited to specific subnets) to
be applied automatically to guest devices. To reference guest
devices in MUD files of registered devices, they can also be
assigned with a shared guest group ID. External endpoints are
not considered guest devices and are referenced directly by IP
address or domain name in the MUD files of local devices to
allow valid communication.

C. Policy Management

The policy management runs on the control plane and parses
MUD files to extract device information and ACEs. Extracted
device information is returned to the device management
module, while the ACEs are passed to the access control
modules. Our extended MUD files support two types of ACEs:

• Connection-based ACEs specify which connections are
generally allowed. MUD allows endpoint specification
via abstract identifiers (e.g., manufacturer IDs), MAC,
or IP addresses. At the transport layer, MUD supports
TCP/UDP port matching and can restrict the direction of
TCP connection initiation. Extensions also allow defining
flow rate limits (e.g., packets per second or burst size).

• Protocol-based ACEs enabled via MUD extensions,
impose further restrictions based on protocol metadata
and payloads—e.g., allowing only specific TCP flags or
function codes. Furthermore, they may specify the use of
encryption for capable protocols, e.g., (D)TLS, for which
an official MUD extension exists [57], or OPC UA.

D. Access Control

To enforce least privilege and least route principles, every
packet must be validated against device information and MUD
ACEs. However, this must not introduce noticeable latency in
ICS, which could disrupt time-sensitive operations. To address
this, the access control module uses the control plane to
generate match-action entries and install them on the data
plane for fast filtering, following a three-step process:

1) Device Validation: Ensures the source and destination of
a packet belong to authenticated devices. Validates MAC
and IP addresses and hardware port to prevent spoofing.
Per-device rate limiting is also applied.

2) Connection Validation: Matches source and destination
information and connection initiation direction against the
ACEs from the MUD file.

3) Protocol Validation: Checks protocol-specific attributes
such as message and field lengths, handshake metadata, or
function codes to enhance security, block invalid access,
and mitigate known attacks.

E. Forwarding and Routing

The forwarding and routing module processes packets that
have passed access control and ensures they reach their
destination with minimal delay. Again, the control plane creates
match-action rules that are installed in data plane lookup
tables, enabling line-rate processing. Since ICS environments
utilize L2 and L3 protocols, P4Ward supports local MAC-based
forwarding and IP-based routing between networks. ARP is
also integrated to resolve IP addresses to MAC addresses.
Takeaway: We propose extending MUD with ACEs that specify
valid values of industrial protocol fields and introduce P4Ward,
a framework for managing and enforcing MUD files on the
data plane of programmable switches.

V. PROOF-OF-CONCEPT IMPLEMENTATION

To demonstrate the feasibility of P4Ward and enable practical
evaluation, we developed a proof-of-concept [15] targeting the
Intel Tofino 1. We implemented the data plane in P4 and
the control plane in Python3. Although Intel has discontinued
production of its Tofino ASICs, they have open-sourced its
architecture and development tools [58]. Furthermore, Intel’s
Tofino remains the gold standard in programmable switching
hardware, making it a strong platform for research and
prototyping. However, the modular design of P4Ward can
be easily adapted to other programmable switch architectures.

Device and policy management are largely handled in the
control plane, while forwarding and routing in the data plane
pose few challenges. Therefore, we omit these aspects in the
following and instead focus on the implementation of access
control and authentication. We then discuss current limitations.

A. Implementing Access Control and Authentication

The most demanding aspects of our access control module
involve its support for custom industrial protocols and payload
field validation in the data plane. To date, we have implemented
support for Modbus, OPC UA, Ethernet/IP, and GOOSE, along
with corresponding MUD extensions. We also implemented
a partially data plane-based authentication with EAP-OTP to
demonstrate the feasibility and advantages of tightly coupling
authentication with P4Ward.

1) Access Control: We detail the implementation of device,
connection, and protocol validation, as well as string parsing.
Device Validation. We use match-action tables to verify
source and destination information, distinguishing between
local (MAC-based) and external (IP-based) destinations. To
enforce rate limits, we employ Intel Tofino’s two-rate three-
color meter, which drops packets on threshold excession.
Connection Validation. Additional match-action tables validate
source and destination addresses, ports, protocol, and (for TCP)



the initiation direction. To block packets from connections with
invalid initiation direction, we use register-based Bloom filters
to track active and valid TCP connections. TCP packets lacking
the SYN flag are checked against these filters and dropped
if the connection is unrecognized. Bloom filters are cleared
through the control plane when connections close via FIN flags
or timeouts, i.e., operations that are not time-critical.
Protocol Validation. Protocols up to the transport layer
are parsed in the ingress. If applications use only default
or hardcoded TCP/UDP port numbers, the corresponding
application layer protocol can also be parsed in the ingress.
However, to support greater flexibility, we use custom port
numbers defined in the MUD ACEs. To this end, we identify
the corresponding protocol in the ingress and parse the protocol
fields in the egress. Consequently, validation of application
layer fields must also be performed in the egress. To achieve
this, flags for valid behaviors (e.g., read-only operations) are
set in the ingress, as specified by the ACEs. These flags are
transferred via metadata headers to the egress, where they are
used to validate the application layer protocol fields. Since
flags consume valuable space, we group multiple behaviors
and assign one flag per group. However, traditional MUD
files lack application layer protocol definitions, resulting in no
flags being set in the ingress, which by default leads to failed
matches and packet drops. Therefore, we also implemented a
relaxed variant based on blacklisting, i.e., only invalid values
are defined, while all others are accepted by default.
String Parsing. Many application layer protocols use text-
based fields that are challenging to parse in the data plane [14].
For example, we need to parse the OPC UA security policy
field to enforce specific security requirements. To do so, we
parse all possible strings using a step-by-step approach: we
begin with the shortest expected string and progress through
longer ones. All parsed strings are hashed and compared against
a list of allowed values using a simple table lookup.

2) Authentication: The authentication module is largely
implemented in the control plane, as we have to keep track
of sessions, generate challenges, and register authenticated
devices, which we could not realize on the data plane of our
Intel Tofino 1. However, we included EAP-OTP as an example
of an authentication method that can be partially implemented
in the data plane to speed up the authentication process. In
this scheme, One-Time Password (OTP) chains are derived
from a device’s password using SHA-1, SHA-2, and SHA-3
hash functions. The device, using the same password, generates
identical OTPs. Precomputing and storing OTPs on the data
plane allows the data plane to validate challenge–response
pairs without involving the control plane, thereby minimizing
latency. Only the final authentication result is forwarded to the
control plane for device registration.

B. Current Limitations

Despite its capabilities, our proof-of-concept has limitations:
• Parsing limitations: Only simple, fixed-length headers or

payload fields are currently supported. Complex strings
or nested structures cannot yet be parsed.

• Matching: While P4 supports exact, ternary, and range
matching, our implementation does not currently support
range matching due to its high storage demands.

• Authentication support: Advanced authentication mech-
anisms are not feasible on the data plane, and offloading
them to external systems may introduce unacceptable
latency for real-time ICS requirements.

• Capacity: Due to memory restrictions, our current imple-
mentation supports a maximum of 512 registered devices,
2048 ACEs, and 65k precomputed OTPs.

• Protocol Validation: Metadata from ingress to egress is
limited to 16 bits, restricting validation to 16 flags (i.e.,
16 distinct values or behavior groups).

We expect that future programmable hardware will increase
storage and processing capabilities, enabling more advanced im-
plementations. Nevertheless, our proof-of-concept demonstrates
the feasibility of implementing fine-grained and performant
access control for ICS on programmable switches.
Takeaway: Despite challenges due to processing and hardware
constraints, P4Ward runs successfully on Intel Tofino 1, proving
its feasibility.

VI. PERFORMANCE AND SECURITY EVALUATION

We conduct a thorough performance evaluation of our proof-
of-concept, then evaluate its effectiveness to mitigate the attacks
presented in Sec. II-B theoretically and practically.

A. Performance Evaluation

We assess three aspects: packet processing, MUD file
handling, and authentication.

1) Processing Speed: Intel Tofino 1 offers up to 3.2 Tbps
throughput, which our implementation matches when authenti-
cation is disabled, as all core processing is done in the data
plane. To assess the viability of programmable switches in
industrial settings, we compare Tofino 1’s latency with that of a
dedicated industrial-grade switch from a reputable manufacturer.
Since the industrial device lacks equivalent access control
functionality to that provided by P4Ward, we compare the
Round-Trip-Time (RTT) between two hosts connected to both
switches using basic forwarding and P4Ward on the Tofino.
Results. The industrial switch achieves an average RTT of
0.26 ms across 200 measurements, while Tofino 1 achieves
around 0.43 ms—both for simple forwarding and P4Ward.
Given the minimal difference and industrial tolerance for
millisecond latencies [59], the results confirm the viability
of programmable switches in industrial use cases.

2) Installation of MUD files: The control plane retrieves
and parses MUD files, then installs match-action entries in the
data plane and potentially disables old ones to apply updates.
We measured the latency of installing/disabling policies derived
from MUD files containing between 2 and 2000 ACEs.
Results. As shown in Fig. 2, installation and removal scales
nearly linearly with the number of ACEs. Downscaled, in-
stalling one ACE takes between 3.2 ms to 3.3 ms; disabling
one takes between 2.2 ms to 2.3 ms. Thus, 100 ACEs can be
installed in around 330 ms, which is likely enough to cover



2 4 8 20 40 80 150 250 500 1,000 2,000

5

50
200

1,000
4,000

MUD File [# ACEs]

Pr
oc

.T
im

e
[m

s]

Enable

Disable

Fig. 2: Processing time of enabling/disabling MUD files
depending on their number of ACEs (with logarithmic scales).

a device’s communication patterns. Furthermore, installation
generally takes place upon network join of a device, i.e., before
time-critical operations begin. New ACEs from updated MUD
files are enforced before disabling outdated ones, avoiding gaps,
while changes that stem from major functional or architectural
updates would disrupt operations regardless of P4Ward.

3) Authentication: We evaluated our EAP-OTP implemen-
tation using SHA1, SHA2, and SHA3 with 50 OTPs per
authentication and 40 OTPs pre-stored on the data plane.
Results. The results are provided in Tab. I and show that the
initial authentication takes 165 ms to 170 ms depending on the
hash algorithm. Re-authentication takes only around 17.9 ms
with pre-generated OTPs, but up to 150 ms if computation of
new OTPs is required. In time-sensitive systems, this may still
be too slow and should be omitted—leaving only the initial
authentication (ideally via stronger protocols like EAP-TLS)
to occur before process engagement.

Our performance evaluation highlights P4Ward’s ability to
meet the strict performance requirements of ICS. Next, we
examine its effectiveness.

B. Security Evaluation

In worst-case scenarios, attackers compromise legitimate
devices allowed to perform attack-specific communication
patterns. Then, P4Ward reaches its functional limitations.
However, in all other cases, tightly defined MUD files allow
P4Ward to reliably mitigate attacks as demonstrated below.
P4Ward blocks devices without MUD file by default, but we
assume the support of guest devices with default MUD files—
i.e., some restricted network access—for our evaluation.
Setup. We used the Intel Tofino 1 running P4Ward, a virtualized
L2 switch, three hosts (D1–D3), and an attacker device (AD).
D1–D3 represent legitimate devices while AD is a guest or
compromised legitimate device. All devices were governed by
MUD files. We connected both switches to each other, and D2
and D3 to the Tofino 1 (cf. Fig. 3). AD and D1 were directly
connected through the L2 switch, sharing a network segment
with D2, while D3 was isolated. The connection between AD
and D1 was never filtered and served as a baseline.

In the following, we provide theoretical analyses followed
by practical proof-of-concept evaluations of P4Ward’s effec-
tiveness against the attacks presented in Sec. II-B.

TABLE I: EAP-OTP authentication and re-authentication
latencies with pre-calculated OTPs [ms].

Algorithm Auth.
(SHA1)

Auth.
(SHA2)

Auth.
(SHA3)

Re-Auth.
(SHA2)
(pre-calc.)

Re-Auth.
(SHA2)
(fresh)

EAP-OTP 170 168 170 17.9 150

TofinoSwitch

Device 1 Device 2

Device 3

Attacker 1 Network 1

Network 2

Fig. 3: Setup used for security evaluation.

1) Network Reconnaissance: Completely preventing network
reconnaissance is not feasible when protocols like ARP or
ICMP are required for operation. However, P4Ward limits
reconnaissance by restricting communication partners (by IDs
and IP/MAC addresses) and services (by ports and protocols),
i.e., scans only reveal devices and services that attackers are
already authorized to access instead of the whole network.
Proof-of-Concept. We evaluated the effectiveness of P4Ward
using IP- and ARP-based scans via Nmap [21] within the
following scenarios: (i) P4Ward disabled, allowing all traffic
to/from any endpoint, (ii) only IPv4 traffic allowed, and
(iii) IPv4 traffic and ARP responses only allowed between
D1-D3; ARP requests allowed to/from any endpoint. We
display the observed results, i.e., whether the attacker received
responses from D1-D3, in Tab. II. Blocking ARP traffic
(policy (ii)) prevented MAC address discovery, halting local
communication, but affected also D1 and D2. Under policy
(iii), AD’s scans failed (except for D1) even if AD was not
restricted itself, while pre-defined communication between D1-
D3 was maintained. Overall, the results confirm P4Ward’s
ability to enforce least privilege/route (cf. III-B) policies that
significantly reduce reconnaissance success.

2) Volumetric DoS: Extended MUD files allow to define
rate limits for each connection. This feature can protect devices
from high-volume traffic generated by a single attacker device.
However, Distributed DoS (DDoS) attacks, where multiple
devices send malicious traffic simultaneously, are not mitigated
if not exceeding the per-connection rate limits. An additional
collective rate limit can be applied to a service’s total incoming
traffic, helping to prevent resource exhaustion of the device and
allowing non-targeted services to remain operational. However,
collective limits also throttle traffic from legitimate devices,
which may be unacceptable in some scenarios.
Proof-of-concept. We setup a Modbus server on D2 and
extended the MUD specification to include rate limits for AD,
D1, and D2. We evaluated their effectiveness by monitoring
the stability of a Modbus connection between D1 and D2
during a DoS attack conducted against the Modbus server on

TABLE II: Success of IP- and ARP-based reconnaissance
attacks for three scenarios with and without restricting MUD
ACEs. Wildcards are marked with *, i.e., no restrictions apply.

Scenario P4Ward Allowing Between Attack D1 D2 D3

i) ✕ * * IP ✓ ✓ ✓
ARP ✓ ✓ -

ii) ✓ IPv4 * IP ✓ ✕ ✓
ARP ✓ ✕ -

iii) ✓
IPv4 D1, D2, D3 IP ✓ ✕ ✕
ARP resp. D1, D2, D3 ARP ✓ ✕ -
ARP req. *



TABLE III: Connection state between D1 and D2 during a
DoS attacks against D2 with different flood rates and limits.

Flood rate [pps]
Scenario Rate-limit 1k 2k 4k 8k 20k
i) D2 (in) ✓ ✓ ✓ packet

loss
conn.
drop

ii) D2 (in), AD (out) ✓ ✓ ✓ ✓ ✓

D2 via hping3 [60] with TCP SYN floods in two scenarios:
i) a collective rate limit applied to all incoming traffic of the
Modbus server on D2, and ii) additionally, a collective rate
limit applied to all outgoing traffic of AD. In both scenarios,
the limits were set to 10k pps with a burst size of 40 packets.
The DoS attack was executed with increasing intensity from
1k to 20k packets per second sent from AD to D2. The
results are presented in Tab. III. In scenario (i), the rate limit
stopped the DoS attack but the legitimate Modbus connection
between D1 and D2 was affected as well since the overall
limit of the Modbus server was exceeded—first dropping
packets, then breaking the connection. However, in scenario
(ii), the legitimate connection remained stable, since the limit
on outgoing traffic of AD prevented exhaustion of D2’s limit.
From this, we conclude that rate limiting should also be applied
to the outgoing traffic of devices, ideally using lower limits
than applied to the incoming traffic of their communication
partners. This helps preserving legitimate communications even
under attack conditions.

3) Sniffing and Spoofing: P4Ward mitigates brute-force-
based sniffing by limiting the communication partners and
enforcing rate limits similar to its defenses against reconnais-
sance and volumetric DoS attacks. In addition, P4Ward can
effectively prevent spoofing, e.g., ARP spoofing, by enforcing
behavioral policies and using static MAC address mappings.
Proof-of-concept. We perform a typical MITM attack with
ARP spoofing, executed via arpspoof [61] running on AD.
We evaluated two scenarios with and without P4Ward to
restrict ARP responses to connections between D1 and D2:
(i) spoofing between D1 and D2, and (ii) spoofing between
D1 and the Intel Tofino switch. The results are shown in
Tab. IV. As expected, ARP spoofing was always successful
for D1, but also for D2 when P4Ward was not active, i.e., D1
and D2 had spoofed ARP entries with AD’s MAC address.
However, when active, P4Ward successfully blocked ARP
spoofing for D2. Also, spoofing targeting the Intel Tofino
switch consistently failed due to P4Ward’s reliance on static
MAC address assignment (cf. IV-B), which even prevented
traffic redirection when spoofing between D1 and D2 was
successful. Although this also disrupts communication between
D1 and D2, it is usually preferable to silent compromise and
easier to notice.

TABLE IV: Success of spoofing attacks with and without
P4Wardthat allowed ARP responses only between D1 and D2.

Scenario P4Ward D1 D2 Tofino

i) ✕ ✓ ✓ -
✓ ✓ ✕ -

ii) ✕ ✓ - ✕
✓ ✓ - ✕

4) Functional DoS & Tampering: P4Ward can validate
message and field lengths to block malformed packets, and
restrict header and payload fields to pre-defined values, e.g.,
preventing misuse of harmful function codes that trigger
software bugs, or manipulation of sensor values.
Proof-of-concept. We configured a Modbus server on D2 and
sent a write operation with a respective value from AD in
two scenarios: (i): all function codes allowed, and (ii): only
read-only function codes allowed from AD to D2. In scenario
(i), AD successfully modified the server’s register values. In
scenario (ii), however, P4Ward immediately dropped the packet
with the unauthorized function code, resulting in a connection
failure, and confirming P4Ward’s ability to enforce narrow
application-specific security policies in ICS.

C. Discussion

Our evaluation demonstrates that P4Ward effectively reduces
the attack surface in ICS, while offering adequate perfor-
mance. Combined with sensitive and device-specific MUD
files, P4Ward enforces zero trust, least privilege, least route,
and defense in depth while supporting logical device isolation.
However, P4Ward is no panacea and design limitations remain:
i) attacks within allowed patterns cannot be blocked, ii) DDoS
attacks within per-device rate limits may still succeed, and
iii) spoofing attacks may disrupt communication even if
sniffing and manipulation is prevented. Ultimately, effectiveness
depends on the precise design of MUD files and handling of
guest devices: overly permissive policies weaken protection.
Also, current hardware (e.g., memory) constraints restrict the
complexity of MUD ACEs (Sec. V), but can be overcome with
future hardware advancements.
Takeaway: Our evaluations confirm P4Ward’s ability to enforce
fine-grained, layered access control with low latency, offering
a practical foundation for securing ICS.

VII. CONCLUSION

Network-based security—particularly, (behavioral) access
control—is critical for reducing the attack surface of ICS.
It can either complement encryption-based mechanisms or
serve as an effective alternative when legacy devices and
protocols lack cryptographic support. However, there remains
a gap in performant and flexible access control solutions that
are aware of industrial protocols and payloads. To address
this gap, we propose P4Ward, a framework that leverages
programmable hardware switches to enforce extended MUD
policies. Our proof-of-concept supports multiple industrial
protocols, and we demonstrate its feasibility through evaluation.
While the current implementation comes with limitations such
as restricted parsing capabilities and scalability constraints,
these are likely to be mitigated with future hardware advances.
Crucially, P4Ward enables efficient and fine-grained access
control directly on the data plane of off-the-shelf hardware,
allowing enforcement of tailored behavioral policies without
compromising the strict latency and throughput requirements of
ICS. Therefore, P4Ward provides a practical and cost-efficient
path to minimizing attack surfaces in operational networks.



REFERENCES

[1] E. D. Knapp, “3 - Industrial Cybersecurity History and Trends,” in
Industrial Network Security (Third Edition) (E. D. Knapp, ed.), pp. 45–
64, Syngress, Third Edition ed., 2024.

[2] M. Serror, S. Hack, M. Henze, M. Schuba, and K. Wehrle, “Challenges
and opportunities in securing the industrial internet of things,” IEEE
Transactions on Industrial Informatics, vol. 17, no. 5, pp. 2985–2996,
2021.

[3] E. D. Knapp, “6 - Industrial Network Protocols,” in Industrial Network
Security (Third Edition) (E. D. Knapp, ed.), pp. 129–179, Syngress, Third
Edition ed., 2024.

[4] S. V. B. Rakas, M. D. Stojanović, and J. D. Marković-Petrović, “A review
of research work on network-based scada intrusion detection systems,”
IEEE Access, vol. 8, pp. 93083–93108, 2020.

[5] E. D. Knapp, “12 - Exception, Anomaly, and Threat Detection,” in
Industrial Network Security (Third Edition) (E. D. Knapp, ed.), pp. 383–
408, Syngress, Third Edition ed., 2024.

[6] E. Lear, R. Droms, and D. Romascanu, “Manufacturer Usage Description
Specification.” RFC 8520, Mar. 2019.

[7] P. Krishnan, K. Jain, K. Achuthan, and R. Buyya, “Software-defined
security-by-contract for blockchain-enabled mud-aware industrial iot
edge networks,” IEEE Transactions on Industrial Informatics, vol. 18,
no. 10, pp. 7068–7076, 2022.

[8] S. N. M. Garcı́a, A. Molina Zarca, J. L. Hernández-Ramos, J. B. Bernabé,
and A. S. Gómez, “Enforcing behavioral profiles through software-defined
networks in the industrial internet of things,” Applied Sciences, vol. 9,
no. 21, 2019.

[9] S. N. Matheu, A. Robles Enciso, A. Molina Zarca, D. Garcia-Carrillo,
J. L. Hernández-Ramos, J. Bernal Bernabe, and A. F. Skarmeta, “Security
architecture for defining and enforcing security profiles in dlt/sdn-based
iot systems,” Sensors, vol. 20, no. 7, 2020.

[10] S. N. Matheu Garcı́a, A. Sánchez-Cabrera, E. Schiavone, and A. Skarmeta,
“Integrating the manufacturer usage description standard in the modelling
of cyber–physical systems,” Comput. Stand. Interfaces, vol. 87, oct 2023.

[11] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, pp. 69–
74, Mar. 2008.

[12] H. S. A, H. Kothapalli, S. Lahoti, K. Kataoka, and P. Tammana, “Iot
mud enforcement in the edge cloud using programmable switch,” in
Proceedings of the ACM SIGCOMM Workshop on Formal Foundations
and Security of Programmable Network Infrastructures, FFSPIN ’22,
(New York, NY, USA), pp. 1–7, Association for Computing Machinery,
2022.

[13] V. Venugopal, J. Alves-Foss, and S. G. Ravindrababu, “Use of an SDN
switch in support of NIST ICS security recommendations and least
privilege networking,” in Proceedings of the Fifth Annual Industrial
Control System Security (ICSS) Workshop, (New York, NY, USA), ACM,
Dec. 2019.

[14] A. Mazloum, A. AlSabeh, E. Kfoury, and J. Crichigno, “Security
applications in P4: Implementation and lessons learned,” Comput. Netw.,
vol. 257, p. 111011, Feb. 2025.

[15] I. B. Fink, W. Koehler, M. Serror, and K. Wehrle, “Prototype Implemen-
tation of P4Ward.” https://github.com/COMSYS/P4Ward, 2025.

[16] E. D. Knapp, “2 - About Industrial Networks,” in Industrial Network
Security (Third Edition) (E. D. Knapp, ed.), pp. 11–43, Syngress, Third
Edition ed., 2024.

[17] “Ansi/isa-95.00.01-2010 (iec 62264-1 mod) enterprise-control system
integration - part 1: Models and terminology.”

[18] E. D. Knapp, “4 - Introduction to Industrial Control Systems and
Operations,” in Industrial Network Security (Third Edition) (E. D. Knapp,
ed.), pp. 65–90, Syngress, Third Edition ed., 2024.

[19] E. D. Knapp, “5 - Industrial Network Design and Architecture,” in
Industrial Network Security (Third Edition) (E. D. Knapp, ed.), pp. 91–
128, Syngress, Third Edition ed., 2024.

[20] M. Dahlmanns, J. Lohmöller, I. B. Fink, J. Pennekamp, K. Wehrle,
and M. Henze, “Easing the conscience with opc ua: An internet-wide
study on insecure deployments,” in Proceedings of the ACM Internet
Measurement Conference, IMC ’20, (New York, NY, USA), pp. 101–110,
Association for Computing Machinery, 2020.

[21] “Nmap.” https://nmap.org, 2025 (accessed April 20, 2025).

[22] CISA, “ICSA-14-289-01: IOServer Resource Exhaustion Vulnerability.”
https://www.cisa.gov/news-events/ics-advisories/icsa-14-289-01, 2018
(accessed April 20, 2025).

[23] CISA, “ICSA-17-054-03: Schneider Electric Modicon M340
PLC (Update A).” https://www.cisa.gov/news-events/ics-advisories/
icsa-17-054-03, 2019 (accessed April 20, 2025).

[24] N. Tripathi and N. Hubballi, “Application layer denial-of-service attacks
and defense mechanisms: A survey,” ACM Comput. Surv., vol. 54, May
2021.

[25] M. Lehto, “Cyber-Attacks Against Critical Infrastructure,” in Cyber
Security: Critical Infrastructure Protection (M. Lehto and P. Neittaanmäki,
eds.), pp. 3–42, Cham: Springer International Publishing, 2022.

[26] A. Greenberg, “A Hacker Tried to Poison a Florida City’s
Water Supply, Officials Say.” https://www.wired.com/story/
oldsmar-florida-water-utility-hack/, February 2021 (accessed April 20,
2025).

[27] E. D. Knapp, “11 - Implementing Security and Access Controls,” in
Industrial Network Security (Third Edition) (E. D. Knapp, ed.), pp. 331–
381, Syngress, Third Edition ed., 2024.

[28] E. D. Knapp, “9 - Establishing Zones and Conduits,” in Industrial Network
Security (Third Edition) (E. D. Knapp, ed.), pp. 293–314, Syngress, Third
Edition ed., 2024.

[29] Belden, “Tofino Xenon Industrial Security Appliance.”
https://www.belden.com/products/industrial-networking-cybersecurity/
cybersecurity/firewalls/tofino-xenon, (accessed April 20, 2025).

[30] Belden, “Tofino™ EtherNet/IP Enforcer LSM.” https://assets.belden.
com/m/22bc2efd658a1b4b/original/Tofino-NetConnect-LSM PB1091
INET TOF 514 A AG 051114LONG LR Original 54400.pdf,
(accessed April 20, 2025).

[31] Belden, “Tofino™ Modbus TCP Enforcer LSM.” https://assets.
belden.com/m/6a0f66be102e114f/original/DS-MBT-LSM-v6.pdf, (ac-
cessed April 20, 2025).

[32] Belden, “Tofino Xenon GOOSE Enforcer Loadable Security Module
(LSM).” https://assets.belden.com/m/615c861b760fe146/original/
GOOSE-ENFORCER-LSM PB00157 INIT TOF 1217 ENG
LowRes Original 122801.pdf, (accessed April 20, 2025).

[33] D. Dolev and A. Yao, “On the security of public key protocols,” IEEE
Transactions on Information Theory, vol. 29, no. 2, pp. 198–208, 1983.

[34] Z. Hu, H. Lin, L. Waind, Y. Qu, G. Chen, and D. Jin, “Industrial
network protocol security enhancement using programmable switches,”
in 2023 IEEE International Conference on Communications, Control, and
Computing Technologies for Smart Grids (SmartGridComm), pp. 1–7,
IEEE, Oct. 2023.

[35] S. A. Harish, S. Datta, H. Kothapalli, P. Tammana, A. Basuki, K. Kataoka,
S. Manickam, U. Venkanna, and Y.-W. Chong, “Scaling iot mud
enforcement using programmable data planes,” in NOMS 2023-2023
IEEE/IFIP Network Operations and Management Symposium, pp. 1–9,
2023.

[36] Intel, “Intel® Tofino™.” https://www.intel.de/content/www/de/de/
products/details/ethernet/programmable-ethernet-switch/tofino-series.
html, (accessed April 20, 2025).

[37] P4, “P4 Open Source Programming Language.” https://p4.org, (accessed
April 20, 2025).

[38] P4, “P4 Language and Related Specifications.” https://p4.org/specs/,
(accessed April 20, 2025).

[39] “Tools or Resources to Convert P4 BMv2
Code to TNA Architecture.” https://forum.p4.org/t/
tools-or-resources-to-convert-p4-bmv2-code-to-tna-architecture/
1214/3, 2025 (accessed April 20, 2025).

[40] I. B. Fink, I. Kunze, P. Hein, J. Pennekamp, B. Standaert, K. Wehrle,
and J. Rüth, “Advancing network monitoring with packet-level records
and selective flow aggregation,” in Proceedings of the 2025 IEEE/IFIP
Network Operations and Management Symposium (NOMS ’25), 2025.

[41] G. K. Ndonda and R. Sadre, “A two-level intrusion detection system for
industrial control system networks using P4,” in Electronic Workshops
in Computing, pp. 31–40, BCS Learning & Development, Aug. 2018.

[42] M. T. Khan, D. Serpanos, and H. Shrobe, “ARMET: Behavior-based
secure and resilient industrial control systems,” Proc. IEEE Inst. Electr.
Electron. Eng., vol. 106, pp. 129–143, Jan. 2018.

[43] G. Corbò, C. Foglietta, C. Palazzo, and S. Panzieri, “Smart behavioural
filter for industrial internet of things: A security extension for PLC,”
Mob. Netw. Appl., vol. 23, pp. 809–816, May 2017.

https://github.com/COMSYS/P4Ward
https://nmap.org
https://www.cisa.gov/news-events/ics-advisories/icsa-14-289-01
https://www.cisa.gov/news-events/ics-advisories/icsa-17-054-03
https://www.cisa.gov/news-events/ics-advisories/icsa-17-054-03
https://www.wired.com/story/oldsmar-florida-water-utility-hack/
https://www.wired.com/story/oldsmar-florida-water-utility-hack/
https://www.belden.com/products/industrial-networking-cybersecurity/cybersecurity/firewalls/tofino-xenon
https://www.belden.com/products/industrial-networking-cybersecurity/cybersecurity/firewalls/tofino-xenon
https://assets.belden.com/m/22bc2efd658a1b4b/original/Tofino-NetConnect-LSM_PB1091_INET_TOF_514_A_AG_051114LONG_LR_Original_54400.pdf
https://assets.belden.com/m/22bc2efd658a1b4b/original/Tofino-NetConnect-LSM_PB1091_INET_TOF_514_A_AG_051114LONG_LR_Original_54400.pdf
https://assets.belden.com/m/22bc2efd658a1b4b/original/Tofino-NetConnect-LSM_PB1091_INET_TOF_514_A_AG_051114LONG_LR_Original_54400.pdf
https://assets.belden.com/m/6a0f66be102e114f/original/DS-MBT-LSM-v6.pdf
https://assets.belden.com/m/6a0f66be102e114f/original/DS-MBT-LSM-v6.pdf
https://assets.belden.com/m/615c861b760fe146/original/GOOSE-ENFORCER-LSM_PB00157_INIT_TOF_1217_ENG_LowRes_Original_122801.pdf
https://assets.belden.com/m/615c861b760fe146/original/GOOSE-ENFORCER-LSM_PB00157_INIT_TOF_1217_ENG_LowRes_Original_122801.pdf
https://assets.belden.com/m/615c861b760fe146/original/GOOSE-ENFORCER-LSM_PB00157_INIT_TOF_1217_ENG_LowRes_Original_122801.pdf
https://www.intel.de/content/www/de/de/products/details/ethernet/programmable-ethernet-switch/tofino-series.html
https://www.intel.de/content/www/de/de/products/details/ethernet/programmable-ethernet-switch/tofino-series.html
https://www.intel.de/content/www/de/de/products/details/ethernet/programmable-ethernet-switch/tofino-series.html
https://p4.org
https://p4.org/specs/
https://forum.p4.org/t/tools-or-resources-to-convert-p4-bmv2-code-to-tna-architecture/1214/3
https://forum.p4.org/t/tools-or-resources-to-convert-p4-bmv2-code-to-tna-architecture/1214/3
https://forum.p4.org/t/tools-or-resources-to-convert-p4-bmv2-code-to-tna-architecture/1214/3


[44] S. Ruj and A. Nayak, “A decentralized security framework for data
aggregation and access control in smart grids,” IEEE Trans. Smart Grid,
vol. 4, pp. 196–205, Mar. 2013.

[45] D. Rosic, U. Novak, and S. Vukmirovic, “Role-based access control
model supporting regional division in smart grid system,” in 2013 Fifth
International Conference on Computational Intelligence, Communication
Systems and Networks, pp. 197–201, IEEE, June 2013.

[46] G. Karmakar, R. Naha, R. Shah, J. Kamruzzaman, and R. Das, “Software-
defined access control in smart grids,” in 2023 33rd Australasian
Universities Power Engineering Conference (AUPEC), pp. 1–6, IEEE,
Sept. 2023.

[47] P. P. Pereira, J. Eliasson, and J. Delsing, “An authentication and access
control framework for CoAP-based internet of things,” in IECON 2014
- 40th Annual Conference of the IEEE Industrial Electronics Society,
pp. 5293–5299, IEEE, Oct. 2014.

[48] A. Bhattacharya, R. Rana, S. Datta, and Venkanna, “P4-sKnock: A
two level host authentication and access control mechanism in P4 based
SDN,” in 2022 27th Asia Pacific Conference on Communications (APCC),
pp. 278–283, IEEE, Oct. 2022.

[49] F. Hauser, M. Schmidt, M. Haberle, and M. Menth, “P4-MACsec:
Dynamic topology monitoring and data layer protection with MACsec
in P4-based SDN,” IEEE Access, vol. 8, pp. 58845–58858, 2020.

[50] A. Hamza, H. H. Gharakheili, and V. Sivaraman, “Combining mud
policies with sdn for iot intrusion detection,” in Proceedings of the 2018
Workshop on IoT Security and Privacy, IoT S&P ’18, (New York, NY,
USA), pp. 1–7, Association for Computing Machinery, 2018.

[51] M. Al-Shaboti, I. Welch, A. Chen, and M. A. Mahmood, “Towards
Secure Smart Home IoT: Manufacturer and User Network Access Control
Framework,” in 2018 IEEE 32nd International Conference on Advanced

Information Networking and Applications (AINA), pp. 892–899, 2018.
[52] M. Ranganathan, “Soft mud: Implementing manufacturer usage descrip-

tions on openflow sdn switches,” 2019.
[53] I. B. Fink, M. Serror, and K. Wehrle, “Demons: Extended manufacturer

usage description to restrain malicious smartphone apps,” in 2021 IEEE
46th Conference on Local Computer Networks (LCN), pp. 463–470,
2021.

[54] W. Stallings, Cryptography and Network Security: Principles and
Practice. Pearson, 2022.

[55] X. Chen, “Implementing AES Encryption on Programmable Switches via
Scrambled Lookup Tables,” in Proceedings of the Workshop on Secure
Programmable Network Infrastructure, SPIN ’20, (New York, NY, USA),
pp. 8–14, Association for Computing Machinery, 2020.

[56] J. Vollbrecht, J. D. Carlson, L. Blunk, D. B. D. Aboba, and H. Levkowetz,
“Extensible Authentication Protocol (EAP).” RFC 3748, June 2004.

[57] T. Reddy.K, D. Wing, and B. Anderson, “Manufacturer Usage Description
(MUD) (D)TLS Profiles for IoT Devices,” Internet-Draft draft-ietf-
opsawg-mud-tls-12, Internet Engineering Task Force, Jan. 2023. Work
in Progress.

[58] P4, “Intel’s Tofino P4 Software is Now Open Source.” https://p4.
org/intels-tofino-p4-software-is-now-open-source/, (accessed April 20,
2025).

[59] J. Hiller, M. Henze, M. Serror, E. Wagner, J. N. Richter, and K. Wehrle,
“Secure low latency communication for constrained industrial iot sce-
narios,” in 2018 IEEE 43rd Conference on Local Computer Networks
(LCN), pp. 614–622, 2018.

[60] “hping.” https://www.hping.org, 2025 (accessed April 20, 2025).
[61] “Dsniff arpspoof.” https://www.kali.org/tools/dsniff/, 2025 (accessed April

20, 2025).

https://p4.org/intels-tofino-p4-software-is-now-open-source/
https://p4.org/intels-tofino-p4-software-is-now-open-source/
https://www.hping.org
https://www.kali.org/tools/dsniff/

	Introduction
	Architecture and Security of ics
	Overview of Industrial Control Systems
	Attack Vectors in ics
	Network-based Security Controls

	Towards Network-based Security with Programmable Switches and MUD
	Attacker Model
	Requirements
	The Potential of Programmable Switches and mud
	Related Work
	Retrofittable Network-based Security for ics
	Manufacturer Usage Description


	Scalable Access Control for ics using P4-programmable Switches and MUD
	Overview
	Device Management and Authentication
	Policy Management
	Access Control
	Forwarding and Routing

	Proof-of-Concept Implementation
	Implementing Access Control and Authentication
	Access Control
	Authentication

	Current Limitations

	Performance and Security Evaluation
	Performance Evaluation
	Processing Speed
	Installation of mud files
	Authentication

	Security Evaluation
	Network Reconnaissance
	Volumetric dos
	Sniffing and Spoofing
	Functional dos & Tampering

	Discussion

	Conclusion
	References

