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ABSTRACT
MASQUE proxying is a mechanism for tunneling traffic over
QUIC, which can help obstruct IP-based tracking when used
in a nested multi-hop fashion as, e.g., done with Apple’s
Private Relay. Yet, multi-hop MASQUE tunneling incurs an
encapsulation overhead and we find further performance is-
sues: because tunneled ACKs become ACK-eliciting, nested
MASQUE tunnels can trigger a cascade of unnecessary ACKs
of ACKs that amplifies with each hop. We theoretically derive
that the number of tunneled ACKs increases exponentially
with the number of proxies, but that the growth factor can
be small when ACK aggregation is used. Our testbed mea-
surements reveal that practical ACK handling flattens the
worst-case cascade, but the ACK byte overhead still reaches
up to 13 % when using four proxies. To reduce this impact, we
finally evaluate two mitigation approaches which decrease
overhead with little to no performance impact.
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1 INTRODUCTION
Proxy-based privacy tools, such as Virtual Private Networks
(VPNs) [17] or Tor [19], see increasing use as they address
the growing privacy awareness of users. Yet, VPNs usually
only operate with a single proxy hop, i.e., provide limited
privacy [18], while the multi-hop-by-design Tor has perfor-
mance issues [2]. In comparison, the MASQUE [16, 21] stan-
dardization initiative enables secure multi-hop systems with
high performance. For this, MASQUE proxies traffic over
QUIC [9] which features built-in encryption, fast connection
setup, and stream-based multiplexing. First major MASQUE
deployments demonstrate its relevance: Apple’s “Private Re-
lay” [3] proxies all Safari browser traffic with MASQUE, and
a proposal suggests the same for Google Chrome [6]. These
MASQUE deployments use two-proxy setups to ensure that
no relay can see both end-to-end (e2e) IP addresses. Increas-
ing the number of proxies and decentralizing their operation
would further enhance privacy because all proxies would
need to collude to link sender and receiver IP addresses.

In light of this potential, we aim to understand the per-
formance implications of multi-hop MASQUE deployments.
MASQUE uses QUIC DATAGRAM frames, a special unre-
liable yet ACK-eliciting frame type, i.e., the receiver must
respond with an ACK frame within the specified maximum
ACK delay [9]. While packets that only contain ACK frames
are not ACK-eliciting, they also get encapsulated in QUIC
datagrams when tunneled through MASQUE, thereby be-
coming (unnecessarily) ACK-eliciting for the next-hop proxy.
This effect cascades at each additional hop such that increas-
ing the number of proxies to enhance privacy increasingly
worsens the impact of this phenomenon. As this overhead
has not yet been studied, in this paper we focus on its extent
and performance impact. Our contributions are as follows:
• We formalize the impact of cascading ACKs in multi-hop

MASQUE with variable ACK ratio, finding that ACKs in-
crease exponentially with the number of proxies.

• We evaluate the practical impact of cascading ACKs for
a simple scenario in a Docker-based testbed with two
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MASQUE implementations, showing that while the stacks’
ACK handling reduces the worst-case impact, ACKs repre-
sent a substantial part of MASQUE protocol overhead.

• To reduce this overhead, we a) use ACK aggregation by
configuring different ACK delays as defined by QUIC, and
b) propose a novel non-ACK-eliciting DATAGRAM frame,
and demonstrate in our testbed that these mitigations can
reduce ACK overhead.

2 BACKGROUND: QUIC-BASED MASQUE
MASQUE’s connect-udp [21] method allows proxying UDP
datagrams through QUIC, as shown in Fig. 1. The client in-
structs the MASQUE proxy to open a UDP socket to a remote
UDP target [21]. Thereafter, the QUIC connection between
client and proxy acts as a tunnel for carrying e2e UDP pay-
load which is forwarded by the proxy. During tunneling, e2e
messages are encapsulated inside QUIC packets using DATA-
GRAM frames which are not retransmitted when lost [14, 22].
This form of unreliable transfer avoids known performance
issues due to nested retransmissions [7, 23]. The QUIC-aware
extension [15] provides a performance optimization called
forwarded mode, which allows proxies to omit the tunnel en-
capsulation and re-encryption in QUIC-over-QUIC scenarios
by directly forwarding packets between incoming and out-
going UDP ports. Because e2e packets are merely forwarded
without dedicated QUIC tunnels, forwarded mode entirely
avoids the overhead discussed in the remainder of this paper.
Apple’s Private Relay uses this optimization on the first hop,
however, forwarded mode might not fit every use case, as it
exposes clients to additional deanonymization risks [15].
Multi-hop use of MASQUE. As MASQUE can tunnel UDP
payloads, it can also tunnel the UDP-based QUIC and, thus,
also MASQUE traffic, enabling the creation of proxy chains
for multi-hop tunneling. Such proxy chains help hiding e2e
connection information from participating proxies as any
proxy in the chain at most sees one e2e host. However, when
chaining MASQUE connections, the overheads accumulate:
every time the UDP payload is encapsulated in DATAGRAM
frames and put inside an encrypted QUIC packet, a mini-
mum overhead of at least 30 B is created that scales linearly
with the number of proxies. Additionally, QUIC DATAGRAM
frames must be acknowledged which triggers additional
ACKs in multi-hop scenarios, as we detail next.

3 ANALYZING ACKS-OF-ACKS
Multi-hop MASQUE proxying encapsulates tunneled e2e
packets in several nested QUIC DATAGRAM frames as we
illustrate for 𝑛 = 3 proxies in the first line of Fig. 2. Each
DATAGRAM frame needs to be acknowledged on every re-
spective QUIC connection which means that there are 𝑛 "di-
rect" ACKs triggered by a single e2e data packet. In addition
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Client QUIC

Figure 1: MASQUE’s connect-udp method.
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Figure 2: Data on multi-hop MASQUE connections trig-
gers direct ACKs and ACKs-of-ACKs (ACK'-ACK''')

to these ACKs, we observe that multi-hop MASQUE produces
additional ACK'-ACK'''. This phenomenon is triggered by
MASQUE encapsulating ACK frames in DATAGRAM frames
that are themselves ACK-eliciting. Thus, encapsulating non-
ACK-eliciting QUIC packets makes them ACK-eliciting, and
ACKs-of-ACKs occur, causing cascades of ACKs.
Formalizing ACK overhead. We will now count the cas-
cading MASQUE ACKs triggered by a single e2e data packet,
and formalize this overhead for a variable ACK ratio 𝑟 , i.e.,
sending an ACK frame for every 𝑟 ack-eliciting packets. In
particular, we define the worst-case by assuming that each
ACK frame is sent in a separate QUIC packet.

We start with the innermost e2e connection that transmits
1
𝑟 ACK for each original DATA packet. The outer tunnel
connection needs to acknowledge both the encapsulated
DATA (direct ACK) as well as – in reverse direction – the
encapsulated ACK (indirect ACK), which leads to 1

𝑟 · (1 + 1
𝑟 )

additional ACKs. The next tunnel layer again adds 1
𝑟 direct

ACK, and 1
𝑟 indirect ACKs for each inner ACK. This pattern

repeats for every additional tunnel, so we can model the
number of ACKs on all layered connections as a recursive
sequence with 𝑎𝑟 (0) = 1

𝑟 and 𝑎𝑟 (𝑛) = 𝑎𝑟 (𝑛 − 1) + 1
𝑟 · (1 +

𝑎𝑟 (𝑛 − 1)) which can be resolved to 𝑓𝑟 (𝑛) = 1
𝑟 ·

∑𝑛
𝑖=0 (1 + 1

𝑟 )𝑖 .
Finally, we subtract the 1

𝑟 innermost e2e ACK as it is not
considered MASQUE overhead, so that

𝑓𝑟 (𝑛) = 1
𝑟
·

𝑛∑︁
𝑖=1

(1 + 1
𝑟
)𝑖 .

Without ACK aggregation, i.e., 𝑟 = 1, we get 𝑓1 (𝑛) =
∑𝑛

𝑖=1 2𝑖 .



Cascades of Nested Acknowledgments in Multi-Hop MASQUE ANRW 25, July 22, 2025, Madrid, Spain

Thus, MASQUE ACKs increase exponentially with the num-
ber of proxies. Yet, ACK aggregation reduces the exponential
base (< 2) so that the growth rate is slowed down.

MASQUE tunnel endpoints cannot reliably avoid sending
ACKs-of-ACKs without additional aids since encrypted QUIC
packets do not reveal whether they contain ACKs. Thus,
reducing unintentional ACKs-of-ACKs requires measures on
the QUIC or MASQUE level which we explore next.

4 MITIGATING ACK OVERHEAD
The large theoretical impact of ACKs-of-ACKs stems from
(i) instantly acknowledging (ii) non-ACK-eliciting packets
becoming ack-eliciting. Thus, we study two mechanisms that
reduce ACK overhead by (i) delaying or (ii) avoiding ACKs.

4.1 Delayed ACKs (DACKs)
We first leverage an established QUIC-level ACK reduction
technique, namely delayed ACKs (DACKs), showing how the
QUIC configuration of MASQUE endpoints impacts MASQUE
overhead. DACKs allow delaying the sending of ACKs until
they can be piggybacked with other data or a timeout occurs.
RFC 9000 [9] defines a default "max_ack_delay" of 25 ms for
QUIC, which can be adjusted during the handshake. We fo-
cus on delaying ACKs on the MASQUE connections with the
aim to reduce the number of ACK packets between client and
proxies. Since tunneled ACK packets trigger further ACKs,
as described above, the reduction of ACK packets on an inner
MASQUE connection directly reduces the number of ACKs
on the outer MASQUE connection. This allows to interrupt
and reduce the ACK cascades without modifying the e2e
connection. ACK feedback should still be sent at least once
per round-trip time (RTT) such that congestion control can
correctly estimate the connection’s state [8].

4.2 Non-ACK-eliciting datagram (No ACK)
The crucial ACKs-of-ACKs occur because non-ACK-eliciting
packets becoming ACK-eliciting when encapsulated in DATA-
GRAM frames. To avoid this, we propose introducing a new
type of DATAGRAM frames which is non-ACK-eliciting. Us-
ing non-ACK-eliciting datagrams for tunneling should abol-
ish ACKs-of-ACKs and decrease ACKs in general, as the
tunnels mainly carry DATAGRAM frames after setup. One
challenge is that the congestion control of the proxies re-
lies on frequent ACK feedback, i.e., sending no ACKs would
starve the tunnels. Thus, using non-ack-eliciting datagrams
requires to disable congestion control on the MASQUE tun-
nels. This is allowed by the MASQUE specification as long
as the e2e connection is congestion controlled [21].

Another aspect is that traffic is often server-driven while
clients mainly send ACKs such that ACK-only packets are
much more likely to be sent by the client. Optimizing for
this scenario, we experiment with a unidirectional mode

5 ms5 ms5 ms
Proxy 3Proxy 4Server

5 ms 5 ms
Client Proxy 1 Proxy 2

Figure 3: Docker-based testbed setup for 4 proxies.

which only uses non-ACK-eliciting datagrams when sending
in the client-to-proxy direction, and thus only disables con-
gestion control at the MASQUE client. We evaluate our two
mitigation strategies in a practical testbed as we detail next.

5 TESTBED MEASUREMENTS
We assess the practical impact of cascading tunneled ACKs in
a Docker-based testbed as shown in Fig. 3. In particular, we
spawn multi-hop MASQUE connections to tunnel a QUIC
connection between a client and a server, using separate
containers for isolating the individual QUIC endpoints and
proxies. Our test cases are designed to compare a diverse
range of proxy configurations across a focused set of network
scenarios: Specifically, we deploy 0-4 intermediate proxies,
and vary their ACK strategies as described below. Using
Linux tc, we enforce two different bandwidths by limiting
the client’s link to 10 or 50 Mbps, size the bottleneck buffer
to 1.5×BDP, and configure a fixed e2e base delay of 25 ms:
starting at the client, each of the first 𝑛 − 1 hops has a 5 ms
delay; the last hop fills up the difference to 25 ms. Packet
loss is not considered. For each test case, we run 50 measure-
ments of the client downloading a 2 MB file. During each
measurement, we capture traffic using tcpdump and collect
qlog [12, 13] files from every endpoint and proxy.

5.1 QUIC Stacks
We implement multi-hop MASQUE client and proxies using
two stacks with MASQUE support, aioquic [1] (Python) and
Chromium QUIC [5] (C++). Both stacks use Cubic congestion
control. For the e2e server, we always use Chromium.
Implementation of mitigations. While Chromium by de-
fault uses an ACK delay of 0.25×RTT, aioquic barely "delays"
by the smallest possible interval of the internal timer, i.e.,
1 ms. To implement varying DACKs, we make the ACK delay
per connection configurable via command line parameters.
Since ACK delays during slow start can negatively impact
throughput, the client starts delaying after receiving 100
packets. To enforce even higher delays, we relax Chromium’s
ACK constraints by a) allowing to exceed the recommended
limit of 25 ms [9], b) allowing to delay even if piggyback-
ing ACKs is possible, and c) allowing to acknowledge more
than 2 packets per ACK. For our non-ACK-eliciting datagram
variant, we mark DATAGRAM frames as non-ACK-eliciting
and disable congestion control on the proxies, while the e2e
connection remains congestion-controlled.



ANRW 25, July 22, 2025, Madrid, Spain Elmenhorst et al.

5.2 Metrics
Besides evaluating established performance metrics, e.g.,
completion time, we define two focused overhead metrics for
multi-hop MASQUE which are zero if no proxies are used:
Total MASQUE overhead. From pcap traces, we deduce the
total MASQUE (byte) overhead by subtracting the number
of e2e bytes from the total number of transmitted bytes 𝑇 1,
and then dividing by 𝑇 .
MASQUE ACK overhead. To focus on the overhead in-
curred by cascading ACKs, we define the MASQUE ACK
overhead as the percentage of transmitted bytes that are con-
tributed by MASQUE-induced ACKs. This explicitly excludes
e2e ACKs as they do not constitute overhead. To this end, we
calculate the sum of all “ACK-only” packets (see below), add
the frame sizes of additional piggybacked ACKs, subtract the
e2e connection’s ACK bytes, and finally divide by 𝑇 .

Detecting “ACK-only” packets, i.e., tunnel packets only
containing ACK or DATAGRAM frames on every encapsula-
tion layer, requires knowledge about the (encapsulated) frame
types of a given tunnel packet. Instead of assuming access
to key material of all connections to inspect the full con-
tent of nested packets in pcap, we developed a simple packet
matching algorithm based on qlog files. Based on the known
per-packet tunneling overhead and the recorded packet sizes
as well as arrival orders, we can match an “outer” packet to
the “inner” packet(s) starting with the first proxy qlog and
going hop-wise down to the e2e qlog.

5.3 Limitations
Our methodology is designed to provide a first view on multi-
hop MASQUE ACK overhead and compare different ACK
overhead mitigation strategies in a simple scenario. As such,
our evaluation in this paper does not intent to represent a
realistic Internet scenario, e.g. with cross traffic or lossy links,
but a controlled setup where we focus on those parameters
that impact ACK aggregation: the Bandwidth Delay Product
(BDP) which is varied by changing the link capacity, and the
implementations’ ACK handling. Note that link loss does
not significantly impact MASQUE ACK overhead as DATA-
GRAM frames are not retransmitted. Still, the generalizability
of our results is limited by the stable latency profile used
in the testbed. Further, since ACK algorithms vary between
QUIC stacks [4], our focus on two stacks likely does not cover
the entire behavior spectrum of QUIC implementations.

6 RESULTS
In this section, we present our results on the practical im-
pact of ACK cascades and evaluate the effectiveness of our
mitigation approaches.
1Since all traffic needs to pass through the first hop, we deduce
transmitted bytes from the first hop’s traces.
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Figure 4: MASQUE ACK overhead described as number
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6.1 ACK Frames and Byte Overhead
We first focus on the effective impact of cascading ACKs in
a naïve test case where we configure a minimal ACK delay
of 1 ms (aioquic’s default) on the tunnel connections and
do not apply any mitigation technique. This impact is pre-
sented by quantifying the number of MASQUE-generated
ACKs and their byte overhead. Fig. 4 (left) depicts the median
number of non-e2e ACK frames for each e2e data packet for
the different stacks and bandwidth scenarios, and shows the
theoretical overhead 𝑓2 (𝑛), i.e., using an ACK ratio of 2 as rec-
ommended by QUIC [9]. In the 10 Mbps scenario, the number
of MASQUE ACKs resembles but does not perfectly fit 𝑓2 (𝑛)
which is because the effective ACK ratio resulting from the
1 ms delay is not consistently 2, and because the theoreti-
cal overhead does not account for the case where multiple
frames are carried by the same QUIC packet. Strikingly, the
number of ACKs is much lower in the higher-bandwidth
scenario, e.g., when using four proxies: while MASQUE tun-
neling produces 4.2-4.8 ACK frames per e2e data packet in
the 10 Mbps scenario, we only observe 1.6-2.2 ACK frames
for 50 Mbps. This difference occurs because the higher band-
width leads to more ACK-eliciting packets arriving within
the 1 ms ACK delay such that the ACK ratio is higher and
more frames can be coalesced into the same QUIC packet.

This bandwidth-dependent ACK aggregation also affects
the ACK byte overhead, as shown in Fig. 4 (right): At 10 Mbps,
ACKs can make up more than 13 % of all transmitted bytes,
which corresponds to 60 % of the total overhead (e.g., for
four aioquic proxies), while the impact is roughly halved
at 50 Mbps. In contrast, the non-ACK-related overhead is
not affected by the bandwidth and only increases with the
number of proxies, i.e., the number of encapsulations.

Finally, we observe that Chromium shows lower ACK
byte overhead than aioquic. We attribute this observation to
Chromium’s ACK packetization, which is strongly optimized
to piggyback ACK frames with other frames [5] such that
these frames share the encapsulation overhead.
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6.2 ACK Overhead Mitigation Approaches
Having seen that the naïve ACK aggregation with a 1 ms
delay is already effective in reducing the worst-case expo-
nential growth of ACK overhead, we next study our proposed
mitigation schemes that aim to further decrease overhead.
Specifically, we compare the overhead of the naïve variant
to the non-ACK-eliciting datagrams variant (No ACK) and to
DACKs with different delays while focusing on the 10 Mbps
case where the overhead was highest before. Fig. 5 shows
the measured MASQUE ACK overhead as defined in Sec. 5.2,
while Fig. 6 shows the download completion times of all
variants for aioquic (left) and Chromium (right).
Non-ACK-eliciting datagrams. As can be seen in Fig. 5,
No ACK is most aggressive in reducing the overhead as it
disables ACKs of DATAGRAM frames altogether such that
there are almost no ACK frames on the actual MASQUE con-
nections. The only ACKs transmitted are e2e ACKs, and due
to their encapsulation there is still ACK overhead, namely
around 1 % for one proxy with linearly increasing overheads
to around 4.5 % for the four-proxy case (both stacks).

Unexpectedly, the unidirectional variant fails to reduce
ACK overhead and, in the case of Chromium, even results in
an increase. We trace this observation to the client – which
is now only sending non-ACK-eliciting packets – no longer
receiving regular feedback. This leads to ever-growing ACK
ranges [9] sent by the client because no ACK frame is ever
acknowledged. Closer investigation shows that the aioquic
client compensates this by sending a PING frame for every
8th ACK packet in order to actively trigger RTT feedback.
Such PING frames are then causing the same cascading ef-
fects as before. Chromium does not send PING frames which
leads to lengthy ACK ranges for most of the connection’s du-
ration. Consequently, even though there are less ACK-only
packets, the average ACK-only packet size explodes to up to
400 B, leading to a 19 % ACK byte overhead when using four
proxies. Due to these unintended effects, we disregard the
unidirectional variant from further evaluation.
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Figure 6: Download completion times for naïve ACKs
and mitigation schemes.

In terms of performance, our bidirectional No ACK option
improves completion times by up to 81 ms with respect to
the naïve case in Chromium as shown in Fig. 6. For aioquic,
however, it leads to strongly increased time variance and
median values. This is explained by single packet losses
during the encapsulated MASQUE handshake which defer
the connection setup by up to 800 ms. The losses are likely
caused by the lack of pacing due to the disabled congestion
control in aioquic (cf. Sec. 5.1).
Varying ACK delays. Our initial analysis in Sec. 6.1 indi-
cated that delaying ACKs by 1 ms, the default for aioquic,
already reduces overhead. We next evaluate the impact of
varying the ACK delays from 0.25 to 1×RTT, considering
that congestion control normally requires ACK feedback at
least once per RTT.

As can be seen in Fig. 5, in aioquic, a relative ACK delay
of 0.25×RTT reduces the ACK overhead for three and four
proxies by 3 to 5 percent points w.r.t. the naïve approach.
Further increasing the delay to 1×RTT reduces the over-
head by another 2 percent points, i.e., it more than halves
the overhead of the naïve approach. Chromium’s ACK byte
overhead is similarly reduced by 0.5-1×RTT DACKs, how-
ever, we observe the lowest overhead for an ACK delay of
0.25×RTT, indicating that higher ACK delays may decrease
the number of ACK frames but not necessarily the number
of ACK packets. In particular, ACK packetization largely im-
pacts the effective byte overhead since a QUIC packet header
consumes more bytes than a standard ACK frame.

Performance-wise, all DACK configurations improve the
download times compared to the naïve case as shown in
Fig. 6. We observe the biggest difference for four proxies:
Chromium completion time improves by 73 ms (0.25×RTT
delay), and aioquic’s even by 150 ms (1×RTT delay), which
corresponds to goodput increases from 7.0 to 7.5 Mbps, and
7.4 to 7.7 Mbps respectively. Packet loss rates (not shown)
are slightly increasing with larger delays compared to the
naïve 1 ms delay as endpoints are more likely to (falsely)
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label packets as lost if the corresponding ACK was delayed.
However, the differences to the naïve case are at most 2.6
percent points with four proxies and, as seen above, there is
no negative impact on transmission time.
Takeaway. The extent of MASQUE ACK overhead depends on
implementation factors, namely the configured local ACK delay
and ACK packetization strategy.When using a time-based ACK
delay, e.g., 1 ms, faster transmissions yield less ACK overhead.
Delayed ACKs as well as non-ACK-eliciting datagrams can
significantly reduce the ACK overhead of multi-hop MASQUE.
Non-ACK-eliciting datagrams improve overhead by up to 65 %,
yet require standard modification. Delayed ACKs can nearly
approach this efficiency and are already supported by QUIC.

7 DISCUSSION
Having seen the theoretical impacts and practical implica-
tions of cascading ACKs, we next discuss our results w.r.t.
the deployment of multi-hop MASQUE and in comparison
to one public deployment, namely Apple Private Relay (PR).
Deployment Considerations From the deployment per-
spective, our mitigation approaches work without changing
the MASQUE-oblivious e2e traffic, because they are only
applied to the tunnel QUIC connections between the client
and proxies. However, the No ACK scheme - which disables
proxy congestion control - should only be deployed if the
e2e traffic is congestion controlled. While this assumption
cannot be made for all use cases and is difficult to verify [11],
it is reasonable for web browsing - which is the primary
use case for multi-hop MASQUE today (see Apple’s PR [3]).
Whereas No ACK needs support by both MASQUE client
and proxy, DACKs can be applied on individual MASQUE
endpoints only. The most effective place to apply ACK aggre-
gation is the first hop since most ACKs are generated on the
outermost tunnel (see Sec. 3). Thus, it might be worthwhile
to focus ACK reduction on this connection.
Real World Impact Our main experiments focus on mea-
surements in a local testbed due to the limited deployment
of multi-hop MASQUE in the wild. However, we also in-
vestigated the behavior of PR, the one known dual-proxy
MASQUE architecture, using a PR-enabled iCloud account
and MacOS Sonoma to download a 1 MB file from a self-
hosted web server through PR. Though using a 1 Gbps Inter-
net connection, the small download size induced a median
throughput close to the 10 Mbps Docker scenario. Evaluating
the pcap traces extracted at the client and server, as we have
no access to the PR infrastructure itself, we found a total byte
overhead of 7.2 % and an estimated ACK overhead of 4.1 %.
Based on these overhead values – which are lower than in
the 2-proxy Docker setup – and the observed packet sizes,
we suspect that PR uses forwarded mode (cf. Sec. 2) on the
first proxy which essentially produces a single-proxy ACK
overhead because there is only one tunnel.

8 RELATEDWORK
To the best of our knowledge, there is no published work
on generic multi-hop MASQUE with related work focusing
on single-hop MASQUE and PR. Kühlewind et al. [10], e.g.,
investigate the performance of single-hop MASQUE settings
by comparing different MASQUE modes and analyzing the
impact of nested QUIC connections and congestion control.
They find that larger packet sizes reduce packet overhead
and transfer times, and that MASQUE’s unreliable tunneling
avoids problems with nested congestion control that occur
when nesting reliable connections. Additional studies investi-
gate the dual-hop MASQUE architecture PR: Sattler et al. [20]
map out PR’s topology with respect to proxy locations. Tre-
visan et al. [24] conduct active performance measurements
of PR and find median speed impairments of up to 87 % and
63 % for download and upload throughput when using PR.
Finally, Zohaib et al. [25] investigate the effectiveness of
traffic analysis attacks against PR and find that PR can be
deanonymized using attacks that also work against Tor.

9 CONCLUSION
This paper identifies and analyzes the phenomenon of cascad-
ing ACKs on nested QUIC connections. Focusing on multi-
hop MASQUE as a use case of nested QUIC, we show that this
cascading effect is caused by ACKs becoming ACK-eliciting
after their encapsulation. Our theoretical analysis shows
that ACK frames increase exponentially with the number of
proxies, while the growth factor depends on the ACK ratio.
Controlled multi-hop MASQUE measurements of two QUIC
stacks reveal that the effective overhead amounts to up to
13 % when using four proxies and that stack-dependent ACK
aggregation flattens the increase rates. By comparing the
naïve case to dedicated mitigation schemes, we demonstrate
that delayed ACKs and non-ACK-eliciting datagrams can
reduce ACK overhead with little to no negative impact on
the performance of multi-hop MASQUE.

In future work, our measurements could be extended to
evaluate multi-hop MASQUE overhead under more diverse
and realistic network conditions and load scenarios, consid-
ering additional metrics, e.g., CPU and memory cost. With
respect to mitigation, it would be interesting to investigate
the effect of ACK delays on delay-based congestion control
algorithms. Another promising angle is analyzing the im-
pact of tunneled ACKs on privacy: large numbers of small
ACK packets could create a distinct traffic pattern that might
make multi-hop MASQUE vulnerable to trivial protocol anal-
ysis attacks. Overall, the large-scale adoption of multi-hop
MASQUE, e.g., in Apple Private Relay, calls for a closer inves-
tigation of its various performance and privacy implications.

Ethics. This work does not raise any ethical issues.
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