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Abstract
Improving residential energy efficiency is essential for sustainabil-
ity, and Non-Intrusive Load Monitoring (NILM) is a promising
technology that provides detailed insights into energy consump-
tion without requiring individual appliance monitoring. However,
creating accurate NILM models using publicly available datasets
involves substantial challenges. This paper identifies critical pit-
falls in dataset handling, event detection accuracy, and feature
extraction, aspects often undiscussed in prior literature. We pro-
pose novel algorithms to rectify event timestamp inaccuracies and
effectively extract transient signals associated with appliance state
changes. We rigorously evaluate our pipeline on multiple public
datasets, analyzing feature stability and assessing the impact of
aggregated versus isolated data. The insights from our practical
implementation and evaluation aim to assist researchers in over-
coming common early-stage obstacles in developing robust NILM
systems and enhancing their applicability in real-world scenarios.

CCS Concepts
•Hardware→ Energy metering; • Computing methodologies
→ Supervised learning.
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1 Introduction
Climate change necessitates substantial reductions in greenhouse
gas emissions, which requires lowering energy consumption across
multiple sectors. Detailed insights into individual energy usage
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patterns have been shown to motivate consumers towards energy-
saving behaviors [5, 8]. Such insights typically rely on installing
dedicated meters on every appliance; however, this approach places
substantial installation and maintenance burdens on users.

Non-intrusive LoadMonitoring (NILM) [9] offers a compelling al-
ternative by analyzing aggregate energy consumption data to infer
appliance-specific usage patterns. NILM employs machine learn-
ing (ML) models to disaggregate total household energy consump-
tion into detailed appliance-level information. Despite its promise,
NILM presents several technical and practical challenges, includ-
ing the diversity of household appliances and the extensive data
requirements for training ML models. Furthermore, the inherent
complexity of NILM systems demands multiple fully-functional
components to achieve effective performance, making implementa-
tion challenging for developers lacking substantial external support.

While extensive research has been conducted on NILM and the
benchmarking of various ML models (e.g.,[7]), existing literature
often overlooks critical early-stage processing details, favoring
instead comprehensive discussions of model architectures and eval-
uation metrics. Publications focusing explicitly on event detection
(e.g.,[1]) typically emphasize detection performance—i.e., whether
events are successfully identified—rather than exploring event tim-
ing accuracy and its subsequent impact on downstream tasks. Simi-
larly, studies addressing the calculation and performance evaluation
of features [11, 16] typically provide theoretical formulas without
adequately detailing their practical implementation on real-world
datasets, especially concerning the handling of background noise.

To bridge these gaps, this study provides practical guidance for
researchers focusing on classification and disaggregation tasks by
outlining critical preprocessing steps on publicly available datasets.
Specifically, we make the following contributions:
Contributions.
• We propose a straightforward yet effective method for adjusting

event timestamps produced by standard detection algorithms.
• We introduce a simple algorithm for extracting transient sig-

nals around event timestamps, facilitating more effective down-
stream processing.

• We implement and systematically evaluate our timestamp adjust-
ment and transient extraction techniques on publicly available
datasets, utilizing publicly accessible event detection code.

• We investigate feature calculation and stability in isolated and
aggregated energy data, highlighting noise introduced by simul-
taneous device activations and emphasizing the importance of
carefully selecting areas of interest for feature extraction.
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This paper thoroughly documents practical strategies for ad-
dressing frequent early-stage challenges in NILM pipelines, aiming
to support future research and innovation. These shared insights
are intended to simplify the development of novel ML methods and
improve the effectiveness of NILM solutions overall.

2 General NILM Pipeline
To deploy an NILM setup, multiple steps need to be considered.
There have been two main approaches to this problem: event-based
and eventless NILM [7], differing in the necessary components.
Whilst eventless NILM systems continuously monitor the stream
of power measurements, event-based systems on the other hand
rely on event detection mechanisms to associate changes of device
behavior via classifiers to the respective devices. Since our contribu-
tions lean heavily towards the event-based approach, the following
paragraph focuses on the fundamental complexity of this category.

Data collection is crucial for all NILM approaches, leveraging
sources like smart meters to gather consumption data. This data
supports model training pre-deployment and informs energy disag-
gregation post-deployment. The research community has over the
years established a variety of publicly available datasets [12, 15, 19]
to spare the effort of data collection for further research onmodel de-
velopment and enable a common ground for benchmarking. Event
detection, specific to event-based NILM, identifies appliance state
changes (e.g., on/off) through variations in power consumption.
Event detection employs various methods such as expert heuris-
tics (e.g., threshold detection), probabilistic models, or matched
filters [1], grounded in the Switch Continuity Principle (SCP) [9].
SCP asserts that only one appliance alters its state in a specific
time frame, requiring a particular sampling rate for reliability, as
it becomes less dependable over intervals of several seconds [14].
Often, public datasets come with published metadata containing
event information [15, 19]; the research community can also make
use of open-source tools for event detection [2, 18]. Feature cal-
culation in event-based NILM involves analyzing data around
detected events to differentiate appliances or states, often using
data transformations such as Fourier or wavelet transforms, which
has been extensively reviewed [10, 11, 16]. Classification uses the
extracted features to identify the appliance or its state using ML
models, with event-based NILM having the advantage to draw from
simple algorithms like RF or SVM [11]. Energy disaggregation
in event-based NILM matches events to appliance states and their
expected consumption for power estimation.

The following sections detail challenges that can arise, insights
we gathered and solutions we developed to successfully navigate
through the complexities of event-based NILM. These apply regard-
less of whether we relied on publicly available metadata and code
or using our own implementations.

3 Timestamp Misalignment
One of the initial practical challenges in implementing a NILM
pipeline is managing timestamp misalignments between events
detected using low-frequency data and the corresponding high-
frequency aggregated data from public datasets. This may be un-
avoidable to correctly assign a detected event to its corresponding
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Figure 1: An event of a printer on March 2, 2017, in house 1
of UK-DALE [12] with detected [2] and adjusted timestamp.
Extracting the transient is only possible after recalculating
the timestamp.

appliance - older datasets [12, 13] only contain low-frequency mea-
surements of isolated appliances but are popular for performance
evaluation, besides others due to the extensive research conducted
on them. For instance, the UK-DALE dataset [12], widely adopted in
the NILM community due to its high sampling frequency of aggre-
gated data, extensive coverage of diverse household scenarios, and
prolonged recording periods, exemplifies this issue clearly. Specifi-
cally, UK-DALE provides appliance-level data at a frequency of 16𝐻𝑧,
whereas the aggregated data is recorded at 16𝑘𝐻𝑧. Consequently,
utilizing timestamps directly from event detection tools, such as
NilmTK [2], for high-frequency data analysis may result in signif-
icant inaccuracies, as illustrated in Figure 1. Such misalignments
undermine the accuracy of feature extraction from short intervals
around the identified events, resulting in unreliable feature values.

To address this challenge, we propose a straightforward yet
effective timestamp adjustment methodology. Initially, a segment
spanning 3𝑠 before and after the detected event (equivalent to half
the event detection sampling interval) is extracted from the high-
frequency aggregated data and resampled to power values at line
frequency, i.e., 50𝐻𝑧, the highest rate usable for power values, as
they are calculated using root mean squares (RMS) over the periods
of consumption. Given the assumption that the original timestamps
closely approximate actual event occurrences, we refine them by
identifying the inflection point corresponding to the maximum
gradient change. As events (in the sense of a change in power
consumption) typically do not correspond to just one point in time
but rather a small window during which the new power level is
reached, the inflection point is usually a timestamp somewhere
within this window. A Savitzky-Golay filter [17] with a polynomial
order of 2 and a window size of 15, both parameters resulting from
optimization, effectively smooths the extracted power curve while
preserving the essential structure of the signal. Subsequently, a
median filter with a kernel size of 5 eliminates remaining outliers
and abrupt signal fluctuations. Finally, by computing the second
derivative, we precisely pinpoint the inflection point associated
with the highest gradient, thus obtaining a refined event timestamp.
Intuitively, choosing the whole area between the preceding and
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subsequent timestamp of the low-frequency data (e.g., in the case of
UK-DALE, an area of 12𝑠 in total) for finding the correct timestamp
would be the safe approach. However, in this specific case, half the
window size proved already enough, as throughout our experiments,
no inflection points were found beyond the initial 3𝑠 extension to
the left and right of the timestamp. Additionally, multiple detections
corresponding to the same event were effectively merged into a
single timestamp through this approach, eliminating duplicates. The
refined timestamp, exemplified in Figure 1, significantly enhances
precision and ensures robust downstream feature calculation. A
comparison of feature values in Figure 2 reveals noticeably clearer
decision boundaries for respective devices, easing classification.

4 Transient Discovery
One fundamental aspect of NILM is the additive nature of electrical
power consumption. NILM systems rely on identifying the unique
power consumption signature exhibited by each appliance, enabling
recognition from aggregate power readings. Due to power additiv-
ity, combined appliance signatures create a complex optimization
scenario to reconstruct the individual appliance consumption accu-
rately. Event detectors, as introduced in Section 2, primarily aim to
identify timestamps at which appliances transition between opera-
tional states. These state transitions rarely occur instantaneously;
instead, appliances typically experience a transient period charac-
terized by fluctuations before settling into a stable power state.

Signature characteristics can be described by two categories
of features: transient and steady-state. Transient features should
be calculated exclusively within the transient interval, whereas
steady-state features require a defined region of interest (ROI) post-
transient, particularly when using aggregated data, and should be
compared against pre-event ROIs to mitigate transient influence
on statistical measures such as mean power consumption. How-
ever, literature has largely overlooked detailed transient extraction
methodologies, with sparse discussions found even in extensive
feature studies [11, 16] and specific transient-focused analyses [6].

We introduce a robust yet straightforward method for deter-
mining the start and end points of transients, given an initial ap-
proximate event timestamp within the transient (e.g., refined via
Section 3). This method employs a bidirectional sliding window
of 5 periods in size around the timestamp, evaluating the absolute
gradient within each window segment. When all gradient values in
a segment fall below a specified threshold, it indicates the detection
of a plateau. To confirm the plateau marks the transient’s actual
end rather than an intermediate stability, we apply a short forward
look-ahead, where 0.5𝑠 worked most effectively. If the gradient
exceeds a higher threshold during this look-ahead, the transient
is considered ongoing, prompting further iterations of the sliding
window approach from the identified new point.

Empirical evaluations on optimized events from the UK-DALE,
FIRED [19], and SustDataED2 [15] datasets demonstrated optimal
gradient thresholding at 0.5. Additionally, the look-ahead validation
approach was most effective with a window size of 4 and a gradient
threshold of 1.8. Figure 1 provides an exemplary visualization of the
extracted transient timestamps. Clearly, it would be possible to trim
the transient of this example even further, as its elongation might
affect transient feature calculation. However, our tests showed

that using smaller thresholds resulted in a large increase of false
negatives and instances, where the transient was preemptively cut.
Reducing the transient range even further without compromising
accuracy in an automated way is subject of our ongoing research.
Nevertheless, we performed a comparative study, using provided
events of the toolkit or metadata respectively as baseline, and were
able to achieve a non-negligible improvement of at least 20% on
the F1-score on each of the datasets [12, 15, 19] respectively. The
details of this study are provided in Appendix A.

5 Feature Calculation & Stability
Even after correcting event detection timestamps and successfully
extracting transients, significant challenges remain when process-
ing aggregated electricity data into robust features for NILM classi-
fication tasks.

5.1 Handling Aggregated Data
Although prior work provides extensive overviews on feature en-
gineering for NILM [11, 16], we observed a notable gap in the
literature: there is little to no discussion on how feature behav-
ior changes when calculated on isolated appliance signals versus
aggregated household data.

Our experience suggests that this distinction is not negligible.
Background noise and simultaneous device activity can distort
certain features that are otherwise highly discriminative in isolated
settings, leading to considerable fluctuations and diminished utility.

In our analysis, we identified two key challenges when working
with aggregated measurements:

First, many features lack an additive property analogous to ac-
tive power. That is, it is generally not valid to compute a feature
𝑓 at an event time 𝑡event as 𝑓 (𝑡event) = 𝑓 (𝑤post) − 𝑓 (𝑤pre), where
𝑤pre and𝑤post are windows before and after the event, respectively.
This issue is particularly acute for transient features, which cannot
be computed in isolation from other ongoing device activity. Using
𝑓 (𝑡event) = 𝑓 (𝑤transient) alone fails to capture the actual contribu-
tion of a single device’s state change to the aggregate power signal.
We outline a set of feature-specific adaptations in Appendix B to
address this issue. Since all features are to some degree dependent
on the current of the system, which holds the additive property, the
idea behind these adaptations is to adjust the feature calculation in
a way that integrates the additivity of current.

Second, even features theoretically assumed to be additive (e.g.,
active and apparent power) exhibit systematic offsets when com-
puted from aggregated measurements. Using the FIRED dataset [19]
— which provides both high-frequency isolated and aggregated data
— we computed features across both modes at identical event times-
tamps. As illustrated in Figure 2, we found noticeable discrepancies:
aggregated features tended to yield different values after removing
noise than their isolated counterparts, e.g., in the case of FIRED’s
fridge especially detrimental in the areas above 300𝑊 .

While we did not find a closed-form correction for these offsets,
two important conclusions emerged from large-scale analysis:

• Features that are discriminative in isolated contexts generally
remain so under aggregation, albeit with shifted distribu-
tions. Hence, general feature selection might be unaffected.
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Figure 2: The power distribution of FIRED’s fridge, calcu-
lated on isolated and aggregated measurements for baseline
detected events and after timestamp correction.

• To minimize model confusion, it is critical that features
used for training be computed directly from aggregated data.
Training models on isolated features and deploying them on
aggregated signals may lead to systematic misclassifications.

The role of simultaneous device activity in these shifts remains
an open question and warrants further investigation.

5.2 Choosing the ROI
The selection of the ROI for calculating pre- and post-event features
remains an underexplored area in the NILM literature. While it is
tempting to assume that a sufficiently small ROI suffices—especially
if the transient extraction is accurate—this assumption fails in prac-
tice. Devices can exhibit unstable behavior even after entering their
steady-state. Hence, small ROIs risk capturing transient fluctuations
or background noise, yielding unreliable estimates. Conversely,
overly large ROIs may inadvertently include subsequent events.

To the best of our knowledge, there exists no systematic investi-
gation of optimal ROIs for feature computation. Few works, such
as [3], report ROI parameters, and even then without elaborating
on how they were chosen.

We thus conducted an exhaustive analysis over twelve days of the
FIRED dataset to assess the impact of ROI size on feature stability.
Specifically, we computed a number of prominent features [11] over
various ROI combinations, ranging from 4 to 24 periods, for both
pre-event and (for steady-state features) post-event windows. We
then evaluated the variance of each feature per configuration to
quantify stability, with results depicted in Table 1.

Our findings suggest that steady-state features generally benefit
from larger ROIs, with 20 periods often yielding the most stable
results. In contrast, transient features are more robust with smaller
pre-event windows (around 10 periods), which better capture back-
ground noise without incorporating unrelated fluctuations.

However, optimal parameter settings only tell part of the story.
Many features exhibited low variance across ROI configurations,
indicating inherent robustness. Notable exceptions included:

• Harmonic Energy Distribution (HED): Highly unstable
below 10 periods, but stable with mid-range ROIs.

Table 1: Optimal number of periods for feature stability

Feature Pre-Event Post-Event

Active Power 20 24
Admittance 22 18
Apparent Power 10 18
Current Over Time 8 -
Form Factor 14 -
Harmonic Energy Distribution 10 -
Max-Min-Ratio 10 -
Mean-Variance-Ratio 8 -
Odd-Even-Ratio 10 -
Peak-Mean-Ratio 12 -
Resistance 12 16
Total Harmonic Distortion 10 -
Tristimulus 8 -

• MeanVarianceRatio (MVR): Performed best at lower ROIs
(around 6–8 periods), but became unstable as ROI increased.

• Resistance: Exhibited high variance across all configura-
tions, likely due to its inverse relation to admittance and
sensitivity to minor signal variations.

To balance performance and simplicity, we recommend a default
ROI of 10 periods for estimating background noise and pre-event
behavior. For steady-state features, a post-event ROI of 20 periods
is advisable. This configuration offers robust performance across a
wide range of features without requiring feature-specific tuning.

6 Conclusion
This work highlights critical, often overlooked challenges in im-
plementing event-based NILM systems, offering practical solutions
and insights that bridge the gap between theoretical models and
real-world deployment.

We began by addressing the common issue of event timestamp
misalignment in high-frequency aggregated datasets, proposing
a lightweight gradient-based refinement method. We then intro-
duced a transient extraction technique that improves the accuracy
of downstream feature computation—a step largely neglected in
prior work. A combination of both timestamp adjustment and tran-
sient extraction offers a straightforward method for computing
reliable ground-truth for the implementation and evaluation of
NILM solutions. Our subsequent analysis of feature behavior re-
vealed that assumptions like feature additivity often break down
in aggregated contexts, leading to systematic discrepancies. We
showed that training models on features derived from aggregated
data is essential for robust performance and provided adjustments
for commonly used features to support this. Finally, we conducted
a comprehensive investigation of ROI configurations for feature
extraction, yielding actionable guidelines that improve stability
without requiring feature-specific tuning, facilitating future opti-
mization of NILM systems. Together, these insights aim to reduce
barriers to effective NILM research and development, enablingmore
reproducible, comparable and deployment-ready solutions.
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A Comparative Study
In order to quantify the impact that adjusting the timestamp and
extracting an event’s transient has on the overall performance of an
event-based NILM system, we performed a comparative evaluation.
For this purpose, common simple classifiers (kNN, SVM and Ran-
dom Forest) were chosen, as they have been used in event-based
NILM before (e.g., [4, 10]). As datasets, UK-DALE [12], FIRED [19]
and SustDataED2 [15] were used. The events of the datasets were
taken either from metadata (in the case of FIRED and SustDataED2)

Table 2: Random Forest performance using provided and
optimized events

Dataset Baseline Events Optimized Events
Accuracy F1-Score Accuracy F1-Score

FIRED 0.47 0.54 0.79 0.81
UK-DALE 0.07 0.09 0.26 0.30
SustDataED2 0.18 0.2 0.49 0.56

or generated via the NilmTK [2] (in the case of UK-DALE). Sub-
sequently, to avoid heavy class imbalance, all appliances with a
number of events below 60% of the respective median number of
events per dataset were eliminated. The remaining imbalance was
addressed using the RandomUnderSampler of Python’s imblearn
library. Subsequently, the resampled events were split into training
and test data, using an 80-20 split.

As baseline, features were calculated using the provided times-
tamps for each event, using 0.5𝑠 before the timestamp as reference
value for pre-event behavior, and 0.5𝑠 starting at the timestamp as
transient. We performed forward feature selection, as is commonly
used [11], using our adapted feature calculation (see Appendix B)
based on the feature overview of Kahl et al. [11]. The baseline was
compared to the exact same set of events but using our timestamp
adjustment and transient extraction method as post-processing of
the event timestamps.

The results of the best performing classifier, which was the Ran-
dom Forest, are summarized in Table 2. As clearly visible, both
standard metrics of classification (accuracy and macro F1-score)
increase by an absolute of 20% in almost all cases. Although the
transient extraction might still be improved, as discussed at the
end of Section 4, the impact of applying our optimization strate-
gies is already non-negligible. More refined models might already
provide better baseline results, however, these results already hint
at there being improvement potential regardless of the model type
and dataset, albeit not always with a similar margin.

B Feature Calculation on Aggregated Data
To exploit the additive property of more than simply the power
features (Active Power P,Reactive Power Q,Apparent Power S)
in aggregated data, we developed formulae based on the feature
overview of Kahl et al. [11].

The Admittance Y holds the same additive property as power,
i.e.,𝑌𝑒𝑣𝑒𝑛𝑡 = 𝑌𝑝𝑜𝑠𝑡 −𝑌𝑝𝑟𝑒 . Since theResistance R does not hold the
additive property, as it is the multiplicative inverse of admittance,
we can instead leverage the calculation of Y to arrive at R:

𝑅𝑒𝑣𝑒𝑛𝑡 =
1

𝑌𝑒𝑣𝑒𝑛𝑡
=

1
𝑌𝑝𝑜𝑠𝑡 − 𝑌𝑝𝑟𝑒

=
1

𝑅𝑀𝑆 (𝐼𝑝𝑜𝑠𝑡 )
𝑅𝑀𝑆 (𝑈𝑝𝑜𝑠𝑡 ) −

𝑅𝑀𝑆 (𝐼𝑝𝑟𝑒 )
𝑅𝑀𝑆 (𝑈𝑝𝑟𝑒 )

Many transient features make use of the harmonic characteristics
of the current. For this purpose, the fast Fourier transform (FFT) is
applied to the post-event window and the transient phase, using a
Hamming window to minimize spectral leakage. Since the current
intrinsically holds the additive property, we can leverage this and
the basic idea of FFT (that the signal is composed of a superposition
of periodic components) to extract the influence of the transient
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itself: For all multiples 𝑓 𝑖 of the fundamental frequency 𝑓 𝑏𝑎𝑠𝑒 , we
subtract the amplitudes of the pre-event ROI from the amplitudes
during the transient:

𝑓 𝑖𝑒𝑣𝑒𝑛𝑡 = 𝑓 𝑖𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 − 𝑓 𝑖𝑝𝑜𝑠𝑡

Afterwards, features such as Harmonics Energy Distribution,
Tristimulus, Total Harmonic Distortion (THD) or Odd Even
Harmonics Ratio can be calculated using the adjusted frequency
amplitudes according to established procedures [11].

Some features are based on waveform analysis, i.e., analyzing the
shape of the transient. To remove components of the transient data
that have been caused by background noise, we approximate the
signal in the pre-event ROI to later on subtract it from the transient
signal. For this purpose, firstly the pre-event ROI is divided into
segments of length of one period. The segments are averaged and
the result is smoothed using a low-pass filter. This representative
is then concatenated to itself to fit the duration of the transient

and shifted in phase to align with the transient, to finally be sub-
tracted from the transient, leaving just the impact the switching of
device states has caused on the overall signal. Waveform analysis
features that are based on this artificially created signal of the tran-
sient include Peak Mean Ratio,Mean Variance Ratio and Form
Factor [11].

The last set of features captures the behavior of the RMS current
during the transient. Current Over Time (COT) [11] is adjusted
by subtracting the mean RMS of the pre-event window from each
of the first 25 RMS values of the transient:

𝐶𝑂𝑇 = [𝑅𝑀𝑆 (𝐼1) − 𝑅𝑀𝑆 (𝐼𝑝𝑟𝑒 ), ..., 𝑅𝑀𝑆 (𝐼25) − 𝑅𝑀𝑆 (𝐼𝑝𝑟𝑒 )]

where 𝐼𝑖 denotes the current during the 𝑖𝑡ℎ period starting at
the transient. Periods to Steady State simply is the length of
the transient, converted to the number of periods, and needs no
adjustment regardless of isolated or aggregated appliance data.


	Abstract
	1 Introduction
	2 General NILM Pipeline
	3 Timestamp Misalignment
	4 Transient Discovery
	5 Feature Calculation & Stability
	5.1 Handling Aggregated Data
	5.2 Choosing the ROI

	6 Conclusion
	References
	A Comparative Study
	B Feature Calculation on Aggregated Data

