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Abstract
Estimating the energy consumption of individual devices and fore-
casting the total load of end-user apartments have been highly
active research areas over the past decades. Many of the proposed
approaches and improvements rely on data-driven algorithms, in-
cluding machine learning, that require large amounts of reliable
measurement data for training and evaluation. We identified a
severe gap of fully-disaggregated public datasets in research and
therefore propose the Device Activity Report with Complete Knowl-
edge (DARCK) dataset, the first dataset monitoring every single
appliance in an apartment, including lighting. The dataset was
collected in a two-person household in Germany over the span
of 6 months and provides power readings of the mains as well as
of 51 different appliances at a sampling rate of 1𝐻𝑧. The dataset
aims to complement the existing range of public research data in
Non-Intrusive Load Monitoring (NILM) by offering data at com-
modity hardware precision that can be fully disaggregated. The
paper describes the measurement setup and processing steps for
data treatment as well as offering several noteworthy insights about
the content of DARCK itself and an exemplary benchmark.

CCS Concepts
•Computer systems organization→ Sensor networks; •Hard-
ware → Energy metering; Smart grid; Sensor applications and
deployments.
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1 Introduction
Reducing the pace of global warming requires concerted efforts
in decreasing greenhouse gas emissions across many sectors of
everyday lives, including the energy sector. This challenge is aggra-
vated by the insufficient capacity of renewable energy sources to
meet current demands and a global growth in population, calling
for more awareness of the impact of everyday activity. Research
indicates homeowners being more inclined to save energy when
they have access to detailed information about their consumption
patterns [4, 6], aiding in the global sustainability effort.

Non-Intrusive Load Monitoring (NILM) as a technique was pro-
posed with these and other use-cases in mind [8] and has since seen
a plethora of improvements across the field [1]. It builds on the idea
of identifying singular devices in the data of a sensor installed at a
house’s main power supply based on characteristic consumption
patterns (so-called signatures). The foundation of this approach is
the additivity of power consumption, resulting in the consumption
at the main sensor being the sum of all devices currently active in
the building.

In order to evaluate newly proposed algorithms and machine
learning models, excessive amounts of data, including measure-
ments of singular devices, are necessary. Ground-truth data about
the behavior of inhabitants, activity patterns of devices, concept
drift in energy consumption and variations in device signatures are
key for adequate model design, training and testing, in order to en-
able the developed models to be successfully deployed in real-world
environments. To increase comparability and decrease the effort of
data acquisition for researchers, the NILM community has collected
and released a multitude of energy disaggregation datasets [9] over
the past decades, each focusing on different aspects to improve.
One of the most notable differences in the datasets is the sample
rate, being either low-frequency (at line frequency or below, i.e.,
less than or equal to 50𝐻𝑧 in Europe) or high-frequency (above
line frequency). These differences stem on the one hand from the
typical hardware being used—commodity meters can provide data
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only at low frequency—and on the other hand from the two areas
of research of NILM algorithms [5]: Event-based algorithms use
high-frequency features to classify device changes, whilst eventless
algorithms analyze the data over a span of multiple seconds or
minutes to infer the current device consumption. Despite the con-
tinuous improvements in the range of available datasets in terms of
precision and completeness, many of them show missing periods
of data, incomplete ground truth, or have been collected in envi-
ronments that are unrealistic for a deployment scenario (e.g., being
collected at a lab or with custom sensors that cannot be attained
by the usual consumer).

We propose the Device Activity Report with Complete Knowl-
edge (DARCK) dataset spanning 6 months of recording from a two-
person apartment. It contains the aggregate reading from a main
smart meter and individual readings from 40 smart plugs, smart
relays, and smart power meters monitoring various appliances.

The following novel contributions compared to existing datasets
were identified: (1) completeness of device monitoring—to our
knowledge, we are the first to release a NILM dataset with every sin-
gle device in the household being monitored, not only the plug-level
loads but including consumption information of lights as well. Pre-
vious efforts of completeness (e.g., [2, 14]) included comprehensive
plug level measurements but left the consumption of lights open to
estimates on very detailed state tracking and device metadata. Mul-
tiple reviews over the past years (e.g., [9, 12]) found incompleteness
of device surveillance to be the most critical shortcomings of re-
leased datasets. (2) usage of off-the-shelf commodity hardware that
can be bought and installed with low effort. Researchers of both
traditional NILM approaches as well as of hybrid approaches [15]
such as Semi-Intrusive Load Monitoring (SILM) [13] can test their
algorithms on data of quality that can be expected in real-world
deployment scenarios. (3) continuous tracking and curated data
over a span of 6 months with 99.3% completeness, increasing utility
for more advanced problems such as concept drift in device energy
consumption or load forecasting. Missing values were linearly in-
terpolated to increase usability. (4) synchronized aggregated and
ground truth data at a uniform sampling rate (1𝐻𝑧). Many of the
more popular datasets (e.g., [7, 10, 11]) in NILM feature a higher
sampling rate for aggregate readings than for individual appliance
meters. Although this drawback is not as prevalent across the range
of datasets as a whole, we found research to be far more convenient
if no resampling or alignment is necessary.

2 Measurement Setup
The DARCK dataset was collected in a two-person apartment of
approximately 58𝑚2 located in Germany over the span of 6 months
(March until September 2025). One of the inhabitants moved out
on May 31𝑠𝑡 , which resulted in a change in device composition.

2.1 Data Collection
Taking into account switched out devices, a total of 51 devices
were monitored, using 31 Shelly Plus Plug S, 6 Shelly Plus 1PM
and 3 Shelly Plus PM Mini Gen3. The Shelly Plugs were used to
monitor individual power outlets, the 1PMs for wired-in devices
such as ceiling lights, and the PM Minis for the three phases of
the oven. The main meter of the apartment, an eBZ DD3, was

monitored using an infrared reading head magnetically attached
to the infrared interface of the meter. An ESP8266 flashed with
Tasmota decoded the binary datagrams. All measurement devices
reported their data via MQTT to Home Assistant running in docker
on a Dell OptiPlex 3020M.

2.2 Preprocessing
Home Assistant performed a couple of preprocessing steps on the
raw data to increase usability: Firstly, the off-the-shelf smart plugs
are inexpensive and do not offer industry-level precision. Hence, the
individual data might be inaccurate—nevertheless, the meters were
calibrated using a pure resistive load. Although a linear behavior,
especially considering changing humidity and temperature, cannot
be assumed, these calibrations were performed to increase the accu-
racy of the smart plug data. The Home Assistant instance collecting
the data was responsible to perform the resulting adjustment of
measurement values.

Further, some smart plugs were not always connected to a socket,
e.g., the plug for the vacuum cleaner was instead taped to the device.
Plugs disconnecting from the network were indicated by a missing
heartbeat signal. Home Assistant was responsible to detect these
offline devices or a disconnect of the ESP and notify the inhabitants
of potential networking issues. In case one of the measurement
devices was unavailable for too long, its last current value was
saved and a notification pushed to a mobile app to resolve the
potential issues quickly. Outages of the ESP were only sparse and
short-term (0.7%), and in case of the Shelly Plugs only occurred
when disconnecting the plug from the socket.

Lastly, Home Assistant also added timestamps in 𝑛𝑠 precision to
the published measurement values before writing the data into an
InfluxDB database.

2.3 Postprocessing
The final dataset was generated from the InfluxDB entries using
several postprocessing steps that increase the usability of DARCK
for researchers in NILM and related areas.

2.3.1 Aggregate Readings. The aggregate data was firstly scanned
for outliers: Domain knowledge of the measured environment al-
lowed us to exclude values of below 10𝑊 or above 10, 000𝑊 as
definite measurement errors. Occurrences, of which there were
only 3 over the complete period of time, were deleted.

Furthermore, since the network connection was not always reli-
able, we experienced packet bursts of delayed readings, consisting
of a large time gap followed by rapid readings. A custom algorithm
identified these bursts and back-filled the timestamps to create an
evenly spaced time series.

Still, to create a complete series of equidistant data points, the
measurement data needed to be further aligned: Since the data was
collected with𝑛𝑠 timestamps by Home Assistant, resampling to 1𝐻𝑧
was performed taking the mean of all readings within each second.
In 99.5% of cases, this was only one reading, as would be expected
under perfect conditions without outages. Any resulting gaps in
the data (0.7% outage ratio) were filled using linear interpolation,
resulting in a complete time series without the need for further
imputation by researchers.
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2.3.2 Individual Readings. Contrary to the continuous readings
of the ESP, the Shelly devices for submetering appliances did not
regularly publish readings but only at every change in power con-
sumption. If no power change is observed or the power change is
too small (less than a few Watt), the reading is pushed once every
minute, together with a heartbeat. On the other hand, in case of a
change of device state, the power consumption changes fast enough
to trigger several readings per second.

Assuming a near-constant power draw if no new readings are
pushed, we used forward-filling to increase the sample rate to 1𝐻𝑧.
Since forward-filling uses the last seen value, we had to resample
sub-second measurements by taking the final value received in
each second instead of taking the mean. Using the mean instead
would have resulted in a forward-fill of constant power draw in
cases of rapid device turn-off transients instead of a power con-
sumption of 0—analogously, steady-state behavior would also have
been skewed using mean values for resampling.

To increase usability, readings of multi-purpose plugs were split
into separate columns in the final dataset. After merging both the
individual readings and the aggregate readings, any remaining NaN
values, e.g., stemming from a period where the smart plug was
not yet connected, were filled with 0, assuming the device did not
consume power.

2.3.3 Manual Correction. During our post-analysis of measure-
ment data, we compared the sum of all submeters with the aggre-
gate measurements: If the deviation was consistently larger than
80𝑊 for a duration of at least 90𝑠 , even after subtracting the con-
sumption of the metering devices themselves, we suspected an
oversight by the inhabitants in terms of complete device coverage.
Two such significant unmetered load events were identified: On
March 10𝑡ℎ , an unmetered 107𝑊 bulb was active, and on May 31𝑠𝑡 ,
an unmetered 101𝑊 pump for an air mattress. Both of these inci-
dents have beenmanually corrected in the load data: The unmetered
bulb was subtracted from the main readings as if it never occurred.
The air mattress, as it was monitored before at a different occa-
sion, was manually added to the respective plug’s data as if it was
monitored by the plug.

Although other unmonitored device activities might still exist, it
is highly unlikely, since special attention was given by the inhabi-
tants of the apartment to not plug devices directly into an outlet
without an intermediary smart plug. We chose to not use a lower
threshold for identifying unmetered loads as previous research on
a different dataset, collected with highly accurate sensors [14], did
reveal significant discrepancies between the measured values at
submeters and the mains meter, questioning the general assump-
tion of additivity to hold in public datasets [3]. Indeed, similar to
the reported tendency of isolated fridge events deviating up to 50𝑊
compared to the power change reported at the mains [3], we simi-
larly found numerous events to deviate to this order of magnitude,
even for always-monitored devices that could not have been acci-
dentally plugged-in without a meter. A more in-depth analysis of
these deviations and their causes, across multiple datasets and to a
larger, more detailed extent is warranted but outside the scope of
our contributions.

3 Dataset Characteristics
The DARCK dataset contains the active power measurements mea-
sured at the apartment’s mains as well as of 51 different appliances.
Plugs that were collecting data from different appliances were be-
ing documented and their respective appliances afterwards split
up into separate columns. This procedure omits the need for ad-
ditional annotation files and increases the reusability of the data.
The collection period was a span of 6 months, between the 5𝑡ℎ of
March and 4𝑡ℎ of September 2025. The data has been resampled
to a sampling rate of 1𝐻𝑧, with no gaps or missing values remain-
ing after the postprocessing (Section 2). The data is organized in
a csv file, which has been compressed to 3% of its initial file size.
Decompressing increases file size from about 90𝑀𝐵 to 4𝐺𝐵.

Additionally to the timestamp, the mains and the sensor readings,
a couple of summarizing columns have been provided in the dataset:
Aggregated consumption has been calculated for the chargers, the
stove plates and the lighting of the apartment. This facilitates the
analysis of the consumption of mobile devices and the stove re-
spectively, and enables a quick overview of the share of energy
consumed by lighting the apartment. Furthermore, since every de-
vice within the apartment has been monitored, this enables us to
calculate the total measurement error, stemming from inaccuracies
of the off-the-shelf hardware. We added a separate column in the
dataset detailing the measurement inaccuracy after subtracting a
30𝑊 offset for the measurement devices themselves, which have
been benchmarked before the data collection was started. The ad-
vantages of including these columns to the dataset are demonstrated
in Section 4 in a short exemplary analysis.

The complete set of appliances as well as their location and
a description of how to use the dataset can be found alongside
DARCK itself here: 10.5281/zenodo.17159850.

4 Analysis
To illustrate some of the characteristics of DARCK, we performed
a couple of statistical analyses.

Firstly, we investigated whether there was a change in total
power consumption after one of the inhabitants moved out. For this
purpose, we analyzed the mean daily consumption of the periods
until May 31 and afterwards. Surprisingly, the consumption rises
slightly (0.2%) after the apartment was inhabited by less persons.
A deeper analysis revealed, that the fridge had an increase in the
overall share of power consumption that compensated for the loss of
the second inhabitant’s devices, as can be seen in Figure 1. Further,
the overall share of lights and the use of the oven increased.

The drastic increase in the share of the fridge triggered a second
investigation into potential concept drift of device signatures: Since
themeasurement period spannedmultiple seasons, we assumed that
devices with temperature-based feedback loops might be affected by
the outside temperature and draw a correlated amount of power.We
researched the temperature of the inhabitants’ town, which serves
as a rough estimate of the actual location’s outside temperature, and
compared its trendwith themeanweekly power consumption of the
fridge. As shown in Figure 2, the power consumption of the fridge
is correlated to the temperature, both showing a steady increase
towards the summer season. In fact, the correlation between the
mean daily power consumption of the refrigerator and the mean

https://doi.org/10.5281/zenodo.17159850
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Figure 1: The overall share of power consumption in % of
different household devices with two inhabitants (left side)
and one inhabitant (right side).
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Figure 2: The mean weekly power consumption of the fridge
compared to the outside temperature. The first and last mea-
surement week are incomplete (5 and 4 days respectively),
hence their aggregate consumption is lower.

daily ambient temperature is 𝑟 = 0.82. A further look into the
fridge’s behavior revealed that the durations of its cooling phases
increased drastically, whilst the signature itself did not change in
amplitude.

Lastly, we performed a sanity check on the measurement inac-
curacy, i.e., the difference between the sum of all measured devices
(including 30𝑊 for the measurement devices themselves) and the
mains power, which can be found in the inaccuracy column of
the dataset. We found that the inaccuracy lies between 0.0 and
2, 182.9𝑊 , with a median of 2.7𝑊 and a mean of 3.5𝑊 . Hence, the
vast majority of data points lies within an acceptable error of a few
Watts, and the previously discussed occasions of event deviations
below 80𝑊 (Section 2.3.3) appear seldom compared to the overall
duration of the collection period. A deeper analysis of the very
high inaccuracy values above 80𝑊 revealed that they exclusively
appeared in isolated cases, i.e., only a single value showed a high
inaccuracy, after which the discrepancy dropped back to expected
values. The reason behind these patterns lies in a slight desyn-
chronization between mains and smart plug readings, stemming
from the resampling: For some device state changes, e.g., turning
on the oven, the jump in power consumption was registered with
slight delay, resulting in an offset by one second. We did not adjust
these discrepancies between smart plug and mains data, since a
systematic behavior could not be identified.

Table 1: DisaggregationPerformance of Seq2Point onDARCK

Device MAE
Aggr. Chargers 6.7488
Printerscanner 1.3613
Aggr. Lights 8.0164
Router 0.3211
Aggr. Stoveplates 6.9314
Oven (Stove L3) 4.7880
Fridge 10.6103
Vacuum 2.2499
Washing Machine 4.0811
Hairdryer (Sherlock) 6.5189
Monitor (Sherlock) 5.7129
PC (Sherlock) 10.4927
Server (Sherlock) 0.2569
TV (Sherlock) 3.8718
Kettle 8.6775
Microwave 2.1201

4.1 Benchmark
We performed an exemplary disaggregation test using Seq2Point
models, a type of neural networks (NNs) that have shown recent
popularity in NILM [16]. Since DARCK is a low-frequency dataset,
eventless approaches, e.g., using NNs, are more suitable than event-
based algorithms, which typically rely on high-frequency features
based on harmonics.

We trained Seq2Point models for 16 different columns of the
dataset, including only devices that were active more than once per
week with more than 5𝑊 , using a 75/12.5/12.5 train/validation/test
split and a batch size of 1, 000. The model architecture was designed
according to related work [16] and the optimization performed us-
ing the Adam optimizer and early stopping with a patience of 3. The
respective Mean Absolute Error (MAE) in𝑊 is reported in Table 1
and scores on the DARCK dataset in the same orders of magnitude
as reported results on other datasets such as UK-DALE [16].

4.2 Discussion
A couple of limitations are known to us, as the DARCK dataset was
not designed to fit every research purpose in the area of energy
consumption analysis. Firstly, the dataset contains only measure-
ments of a singular household—the effort to maintain an extensive
infrastructure capable of monitoring every single electrical load
is hard to scale to multiple buildings. However, since the number
of inhabitants changed over time, opportunities for generalization
analyses are given. Secondly, the sample rate of the dataset is 1𝐻𝑧,
which excludes high-frequency analyses in NILM from taking ad-
vantage of harmonics related features. Lastly, the measurement
infrastructure is commodity hardware with the sensor inaccuracies
that would be expected from low-cost devices. This results partly
in non-negligible measurement discrepancies that will increase the
difficulty for some machine learning models to correctly disaggre-
gate the consumed energy. On the flip side, the given inaccuracy
provides a realistic scenario for researchers that aim to deploy their
models in actual household settings, as similar discrepancies in
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collected data will very likely be experienced. In a similar vein of
limitations lies the measured quantity, which is only the active
power. Although more data, e.g., on temperature, humidity, water
consumption, or even reactive power, might be helpful to increase
the precision of the trained models, ultimately we do not expect
customers in real—world use cases to be capable of providing this
additional information to the energy disaggregation models. Hence,
the provided data serves as an opportunity for researchers aiming
to build models for real-world deployments in realistic scenarios.

5 Conclusion
We present the DARCK dataset, spanning mains and individual de-
vice measurements of a two-person apartment in Germany over a
period of 6 months, where after half of the measurement period the
number of inhabitants changes. Measurements have been synchro-
nized to a sample rate of 1𝐻𝑧, enabling research on low-frequency
energy consumption data. DARCK is the first dataset to include
submetering of every appliance in a household, including lights,
allowing for research in the areas of NILM, energy forecast and
related approaches such as SILM. A short analysis of the collected
data confirms the presence of concept drift for at least one appliance
(the fridge), offering the opportunity for researchers to test their
algorithm’s adaptability. Finally, we offer some baseline results per-
formed with Seq2Point models for other researchers to compare
against. By providing this dataset, we help researchers improve
their algorithms on more advanced problems such as changing
device constellations and concept drift in device activations. Since
our measurement is still ongoing, we hope to extend DARCK in the
future with at least one update.

References
[1] Georgios-Fotios Angelis, Christos Timplalexis, Stelios Krinidis, Dimosthenis

Ioannidis, and Dimitrios Tzovaras. 2022. NILM Applications: Literature Review
of Learning Approaches, Recent Developments and Challenges. Energy and
Buildings 261 (2022), 111951.

[2] Nipun Batra, Manoj Gulati, Amarjeet Singh, and Mani B Srivastava. 2013. It’s
Different: Insights into Home Energy Consumption in India. In Proceedings of
the 5th ACM workshop on embedded systems for energy-efficient buildings. 1–8.

[3] Justus Breyer, Jonas Koerhuis, Muhammad Hamad Alizai, and Klaus Wehrle. 2025.
Practical Insights from Implementing Event-Based NILM Systems. In Proceedings
of the 16th ACM International Conference on Future and Sustainable Energy Systems.
751–756.

[4] K. Carrie Armel, Abhay Gupta, Gireesh Shrimali, and Adrian Albert. 2013. Is
Disaggregation the Holy Grail of Energy Efficiency? The Case of Electricity.
Energy Policy 52 (2013), 213–234.

[5] Suryalok Dash and NC Sahoo. 2022. Electric Energy Disaggregation via Non-
intrusive Load Monitoring: A State-of-the-Art Systematic Review. Electric Power
Systems Research 213 (2022), 108673.

[6] Karen Ehrhardt-Martinez, Kat A Donnelly, Skip Laitner, et al. 2010. Advanced
Metering Initiatives and Residential Feedback Programs: A Meta-Review for
Household Electricity-Saving Opportunities. American Council for an Energy-
Efficient Economy Washington, DC.

[7] Adrian Filip et al. 2011. BLUED: A Fully Labeled Public Dataset for Event-
Based Non-Intrusive Load Monitoring Research. In 2nd Workshop on Data Mining
Applications in Sustainability (SustKDD), Vol. 2012. 5.

[8] George William Hart. 1992. Nonintrusive Appliance Load Monitoring. Proc. IEEE
80, 12 (1992), 1870–1891.

[9] Hafiz Khurram Iqbal, Farhan Hassan Malik, Aoun Muhammad, Muhammad Ali
Qureshi, Muhammad Nawaz Abbasi, and Abdul Rehman Chishti. 2021. A Critical
Review of State-of-the-Art Non-Intrusive Load Monitoring Datasets. Electric
Power Systems Research 192 (2021), 106921.

[10] Jack Kelly and William Knottenbelt. 2015. The UK-DALE Dataset, Domestic
Appliance-Level Electricity Demand and Whole-House Demand from Five UK
Homes. Scientific data 2, 1 (2015), 1–14.

[11] J Zico Kolter and Matthew J Johnson. 2011. REDD: A Public Data Set for Energy
Disaggregation Research. InWorkshop on Data Mining Applications in Sustain-
ability (SIGKDD), San Diego, CA, Vol. 25. Citeseer, 59–62.

[12] Lucas Pereira and Nuno Nunes. 2018. Performance Evaluation in Non-Intrusive
Load Monitoring: Datasets, Metrics, and Tools—A Review. Wiley Interdisciplinary
Reviews: data mining and knowledge discovery 8, 6 (2018), e1265.

[13] Guoming Tang, Kui Wu, and Jingsheng Lei. 2015. A Distributed and Scalable
Approach to Semi-Intrusive Load Monitoring. IEEE Transactions on Parallel and
Distributed Systems 27, 6 (2015), 1553–1565.

[14] Benjamin Völker, Marc Pfeifer, Philipp M Scholl, and Bernd Becker. 2020. FIRED:
A Fully-labeled hIgh-fRequency Electricity DisaggregationDataset. In Proceedings
of the 7th ACM International Conference on Systems for Energy-Efficient Buildings,
Cities, and Transportation. 294–297.

[15] Benjamin Völker, Philipp M Scholls, Tobias Schubert, and Bernd Becker. 2018.
Towards the Fusion of Intrusive and Non-Intrusive Load Monitoring: A Hybrid
Approach. In Proceedings of the Ninth International Conference on Future Energy
Systems. 436–438.

[16] Chaoyun Zhang, Mingjun Zhong, Zongzuo Wang, Nigel Goddard, and Charles
Sutton. 2018. Sequence-to-Point Learning with Neural Networks for Non-
Intrusive Load Monitoring. In Proc. AAAI, Vol. 32.


	Abstract
	1 Introduction
	2 Measurement Setup
	2.1 Data Collection
	2.2 Preprocessing
	2.3 Postprocessing

	3 Dataset Characteristics
	4 Analysis
	4.1 Benchmark
	4.2 Discussion

	5 Conclusion
	References

