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Non-Intrusive LoadMonitoring (NILM), an important application of machine
learning, frequently misidentifies activities of unknown devices, resulting
in incorrect energy consumption estimates. This paper proposes an innova-
tive filtering step between event detection and classification of event-based
NILM to exclude events from unknown devices. This approach incorporates
confidence-based classifiers, clustering, ensembling, and density-based tech-
niques, notably Local Outlier Factor and One-Class SVM. The best techniques
reduce false positives (over 93%) for unknown devices while preserving most
events from known devices (less than 7% loss). This significant advancement
enhances event-based NILM system accuracy, offering more reliable energy
monitoring for real-world applications, and thereby contributes to broader
energy conservation efforts in the context of climate change.

CCS Concepts: •Computingmethodologies→Machine learning;Anom-
aly detection; Ensemble methods; Supervised learning.

Additional Key Words and Phrases: Energy disaggregation, Anomaly detec-
tion, Ensembling
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1 INTRODUCTION
Climate change necessitates reducing greenhouse gas emissions,
a challenge exacerbated by the insufficient capacity of renewable
energy sources to meet current demands. This calls for reducing
energy consumption across various sectors, notably in residential
areas. Research indicates homeowners being more inclined to save
energy when they have access to detailed information about their
consumption patterns [5, 10], aiding in the global sustainability
effort.
In residential energy management, disaggregating household

power load is crucial but challenging. Installing separate meters for
each appliance, called Intrusive Load Monitoring (ILM), provides an
intuitive but costly and complex solution. Non-Intrusive Load Mon-
itoring (NILM) [14] offers a practical alternative by analyzing total
consumption data from a single point, such as a smart meter, using
time series analysis and machine learning. NILM, which divides
into event-based and eventless methods [8], identifies appliance
energy usage by detecting operational changes or using machine
learning (ML) algorithms to distinguish device signatures.

NILM systems, particularly those using ML, face a critical limita-
tion due to their dependence on specific models. This dependence
limits their flexibility, as they often cannot adapt to new or changed
appliances in dynamic residential environments. Event-based NILM
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systems, skilled at detecting device state changes, struggle with mis-
classification when encountering unknown devices, leading to inac-
curate energy disaggregation. Depending on the share of unknown
devices in the overall power consumption, these misclassifications
can significantly decrease the reliability of the NILM system, as the
unclassifiable activity is not simply ignored but instead assigned to
one or more of the monitored devices, thereby skewing the results.
For maximum energy efficiency, the system should run on cus-

tomer’s premises, however, continuously updating classifiers to
include new devices is burdensome for users, reducing NILM’s prac-
tical use and acceptance. To overcome the manual updating of ML
models for unknown device events, NILM technologies may use au-
tomated model adaptation or event separation mechanisms. These
methods aim to distinguish known device events from unknown
ones. Yet, they face challenges due to the unpredictable nature of
residential settings, where new devices with unique energy profiles
can emerge anytime. The unpredictability of distinguishing features
between known and unknown devices complicates system optimiza-
tion for future changes, limiting NILM’s effectiveness in accurately
identifying device usage in evolving residential environments.

To enhance the precision and flexibility of event-based NILM, our
research makes the following novel contributions:

• Establishment of a novel filtering stage in event-based NILM,
positioned between event detection and classification, specif-
ically aimed at filtering out events from unknown devices.
This includes the development of a range of methods to
integrate this stage, utilizing techniques such as confidence-
based, clustering, ensembling, and density-based approaches.

• Implementation and assessment of these methods using a
publicly available dataset, focusing on their performance
and capacity to adapt to new environments. This evaluation
includes an investigation into the potential of these filters
for domain transfer without necessitating retraining.

• Innovative exploration of density-based models, specifically
Local Outline Factor (LOF) and One-Class Support Vector
Machines (OC-SVMs), for device classification, representing
a novel research direction that could significantly enhance
event-based NILM system performance.

By accurately distinguishing between events from known and un-
known devices, event-based NILM systems become more adaptable
and reliable in dynamic residential environments. Our contributions
tackle a key NILM challenge, fostering broader and more efficient
adoption in the real world.

2 BACKGROUND AND LITERATURE REVIEW
This section lays the groundwork for our methodology, offering an
overview of the event-based NILM pipeline and reviewing existing
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Fig. 1. Event-based NILM pipeline: Adaptations proposed in this paper are
marked in red.

research on handling unknown devices and anomalies, a critical part
of our study that is essential for comprehending our contributions.

2.1 Background
NILM systems can be divided into event-based and eventless cate-
gories, with each showing strengths within their specific areas. It
is challenging to definitively claim one approach as superior to the
other. Our study focuses on improving event-based NILM systems,
and we will outline the key processes that define these systems, as
depicted in black in Figure 1.

Data acquisition. The foundation of an NILM system is data col-
lection, often through a sensor at a central point like a smart meter.
Event-based NILM systems require data at high sampling rates,
around 925 Hz or higher, to ensure the effectiveness of later stages,
as lower rates may impair performance [15]. The sensor records a
time series of aggregated power usage from all devices, providing
the analysis base for subsequent NILM phases.

Event Detection. The second stage in an event-based NILM system
is event detection, aimed at identifying state changes in appliances,
such as turning on or off, by monitoring power consumption fluctu-
ations. Event detection employs various methods like expert heuris-
tics (e.g., threshold detection), probabilistic models, or matched
filters [1], grounded in the Switch Continuity Principle (SCP) [14].
SCP asserts that only one appliance alters its state in a specific
time frame, requiring a particular sampling rate for reliability, as it
becomes less dependable over intervals of several seconds [21].

Feature Calculation. Handling time series feature calculation for
detected events is variably treated in the literature, with some con-
sidering it a separate NILM component. This step is crucial for
providing ML models with a manageable, reduced representation
of the data. Given data complexity at several kHz, using the full
dataset for classification is impractical. Feature calculation often
includes initial data transformations like wavelet or Fourier trans-
forms, with the suitability and efficiency of various features for
NILM extensively studied in the literature [17, 25].

Appliance Classification. Computed features are used to link de-
tected events to specific appliances or their operational states by
training ML models on datasets. NILM model complexity varies,
ranging from simpler models like RF or SVM [29] to more complex
ones involving ensembling techniques [6] or neural networks [24].
For multi-label classification, models may provide confidence val-
ues for each potential device instead of a singular identification,
allowing for a nuanced data interpretation.

Energy Disaggregation. In the final phase, the aggregated load is
disaggregated into individual device consumption based on labeled
events from prior steps. This important stage hinges on the accu-
racy of both event detection and classification. Mistakes in earlier
stages can negatively impact this last step, causing inaccuracies in
device power consumption estimates. The results of this energy
disaggregation can then be relayed to the end-user, such as through
a mobile application.

Creating an effective NILM system requires careful integration of
its components, allowing little room for error. It is vital to recognize
and mitigate factors that might reduce the system’s effectiveness,
such as the influence of unknown devices on the performance and
accuracy of the NILM pipeline.

2.2 Related Work
Despite three decades of NILM research [2, 8], managing unknown
devices has been somewhat overlooked, with significant contribu-
tions appearing only recently. Most NILM studies presuppose a
static array of devices, disregarding the dynamic nature of typical
households. However, this paper aims to summarize the current
research on this particular challenge within NILM.

Extensible Models. To accommodate the evolving composition of
household devices, developing a flexible NILM framework is crucial.
Kong et al. [19] introduced a method employing a Factorial Hidden
MarkovModel (FHMM) that can be expanded to include new devices.
However, this requires training HMMs for new devices with exter-
nal data, potentially causing domain transfer problems, and lacks
unknown device detection. Alternatively, Gillis and Morsie [11]
proposed a decision tree-based framework that allows adding new
devices by incorporating their wavelet features into the retraining
process. Furthermore, Tanoni et al. [26] developed an incremental
learning approach that enables deep neural networks within NILM
systems to adjust to new devices, showcasing the direction toward
more adaptable NILM solutions.

Predictive Maintenance. Here the aim is to detect unusual device
behavior early to preempt potential malfunctions. Zangrando et
al. [31] tested anomaly detection methods, finding OC-SVMs, Isola-
tion Forests, and LOF to perform best. Azizi et al. [3] introduced a
framework that evaluates the deviation of an event’s features from
known categories. If it exceeds a certain threshold, the system as-
sesses anomaly frequency to identify if it signals a malfunction or a
new, unmonitored device. This method combines anomaly detection
with classification, boosting predictive maintenance’s reliability.

Novelty Detection. Research on real-time new device detection has
predominantly focused on eventless NILM systems. Zhang et al. [32]
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used a neural network ensemble to evaluate classifier outcomes
against expected performance and identify new devices through any
shortfall. Welikala et al. [30] investigated device spectral signatures,
employing maximum a posteriori estimates for device combinations
and threshold comparison to spot new appliances. Similarly, Guo
et al. [12] leveraged device signature templates for new appliance
detection. Majumdar et al. [20] showed sparse coding’s effectiveness
in integrating new devices into dictionary coding frameworks with-
out losing accuracy. Han et al. [13] utilized conditional generative
adversarial networks for unknown device detection, marking a sig-
nificant contribution to NILM’s research development in identifying
new devices. Lastly, de Baets et al. [9] used siamese neural networks
to classify the VI-trajectories of appliances and decide based on
clustering whether an appliance was known.

Gap. Addressing unknown devices is key for NILM’s accurate
power consumption analysis. Current NILM studies focus on event-
less systems [12, 13, 20, 32], overlooking event-based NILM’s bene-
fits, such as less need for model tuning, crucial for wide-scale de-
ployment. Our work fills this research gap by introducing a method
to filter events from unknown devices in event-based systems, sig-
nificantly advancing event-based NILM’s practical application.

3 DESIGN
To tackle the challenges posed by unknown devices in event-based
NILM, we outline our fundamental design concepts and explore
various strategies for their implementation. Traditional event-based
systems indiscriminately detect events from both known and un-
known devices, thereby often leading to incorrect classifications
and, subsequently, an elevated error rate in energy consumption
estimation. To mitigate this issue, we propose modifications to the
typical event-based NILM pipeline, aiming to enhance its accuracy.

3.1 Pipeline Adaptation
We explore various methods to prevent events from unknown de-
vices from leading to inaccurate energy estimations. As shown in
Figure 1, a potential intervention point is the event detection phase.
By meticulously fine-tuning this stage, it may be feasible to ensure
that only events from known devices proceed to the classification
step. However, this approach necessitates extra threshold setting and
specialization for the event detection process, potentially compro-
mising its flexibility and adaptability to changes in the environment.
We contend that a classifier designed to specifically filter out un-
known events could be more effective than a custom event detector.

Alternatively, addressing the issue at the classification stage rep-
resents a more viable approach. This could involve implementing
distance or confidencemetrics with defined thresholds, which events
must meet to be classified as belonging to a known device. This
strategy has shown potential in eventless NILM systems as well, as
evidenced by previous research [3, 12, 30, 32]. Essentially, setting a
post-classification threshold introduces a new category (unknown)
to the classifiers. Events classified under this category would then
be excluded from the energy disaggregation process. This method
could be further refined with the use of ensembling techniques [32].
A key benefit of this approach is its simplicity; it does not require

adding a new component to the existing pipeline. Instead, it neces-
sitates modifying the classifiers to include an additional confidence
or distance measure alongside the device label.

Finally, introducing an independent filtering step between event
detection and classification is a viable option. This intermediary
filter would block events from unknown devices from proceeding to
the classifier and, consequently, to the energy disaggregation phase.
Possible implementations for this filtering step include unsupervised
clustering algorithms or ML models tailored specifically for this pur-
pose, such as LOF. This offers the benefit of further modularizing
the NILM pipeline, thereby simplifying the process of swapping,
adjusting, and optimizing various components. Additionally, a dedi-
cated filter specifically designed for this task could potentially be
more effective than an implicit filtering process integrated within
the classification step. This distinct approach allows for targeted
and efficient exclusion of events from unknown devices.

Filter selection. When evaluating the options for filtering out
unknown events in NILM systems, it becomes clear that modifying
the event detection process involves considerable implementation
challenges. Although its effectiveness might be comparable to a
separate filter step or a confidence-based classifier with thresholds,
the overhead associated with this approach diminishes its feasibility
for widespread application. Consequently, our research focuses on
the latter options: implementing a separate filter step, utilizing a
threshold-based confidence classifier, or a combination of both.

In our experimental setup, we only implement parts of the NILM
pipeline up to the point of the respective filtering step, i.e., an event
detection with a subsequent filter that may be stand-alone or inte-
grated as confidence-threshold into a classifier. The task of optimiz-
ing classifiers and energy disaggregation algorithms that leverage
the filtered events is already a well-explored area of research. There-
fore, directing our efforts towards these aspects would likely yield
limited additional insights. By concentrating on the filtering process,
we aim to contribute novel solutions to the field of NILM, enhancing
the overall system efficiency and accuracy.

3.2 Filtering Methods
To evaluate the efficacy of various filtering approaches, we com-
mence with simple, intuitive methods using confidence-based clas-
sifiers, gradually progressing to more sophisticated solutions. Ad-
ditionally, we incorporate the preliminary steps of an event-based
NILM system and test all configurations using publicly accessible
datasets. This section details our selection process and considera-
tions for the different filtering strategies.

Dataset Selection. For an effective evaluation of filter performance,
selecting a suitable dataset is essential. The ideal dataset should en-
compass a diverse range of typical household devices and capture
their natural usage patterns. This diversity allows for the exclusion
of specific devices during monitoring, closely replicating real-world
deployment scenarios. Additionally, high-quality labeling or mea-
surements of individual appliances, alongside aggregate household
data, are necessary to validate the accuracy of the classifier and filter.
While oversampling can increase the number of training samples,
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the dataset should contain at least 10 events per device to capture
the natural variability of device behavior. Moreover, a high sampling
rate of at least 1 kHz is crucial for accurate event detection [15] and
facilitates the use of harmonic-based features.
Considering these criteria, we selected the FIRED [28] dataset

that monitors 66 appliances in a two-person household. The dataset
offers measurement frequencies of 2 kHz and 8 kHz for isolated and
aggregate measurements, respectively. Spanning 101 days, FIRED
provides ample data for multiple devices, each with 10 or more
events, and reliable labeling over a substantial timeframe.

Event Detection. We utilize the aggregated power data from the
FIRED dataset for event detection due to its additive nature. The
assumption is that changes in a device’s power consumption during
operational state transitions are observable in the aggregated read-
ings, allowing for the estimation of event occurrences solely from
time series analysis of power data.

Our event detection algorithm employs a probabilistic approach
focusing on the identification of maxima and minima as potential
events. We have refined this method based on the work of previ-
ous researchers [23, 27] that demonstrated notable enhancements
compared to basic mean and median filtering techniques. The algo-
rithm, rooted in Log Likelihood Ratio tests, consists of two primary
components: detection statistics and detection activation.
Detection statistics calculate the likelihood of a change in power

mean across pre- and post-event windows for a given sample 𝑥

using the formula:

𝑑𝑠 (𝑥) = 𝜇1 − 𝜇0
𝜎2

·
���𝑃 (𝑥) − 𝜇0 + 𝜇1

2

���
where 𝜇0 and 𝜇1 denote the mean of the pre- and post-event win-

dows respectively, 𝜎2 is the variance over the combined windows
and 𝑃 (𝑥) is the power value of the given sample. The detection sta-
tistics is set to 0 in a post-processing step if the absolute difference
between 𝜇0 and 𝜇1 does not surpass a predefined threshold 𝑃𝑡ℎ𝑟 .
The detection activation is responsible for actual event detection
by sliding an extrema locator window over the series of detection
statistics, identifying maxima and minima as potential events. These
are considered as indicative of state changes of individual appliances.

Model Selection. Various methods exist for integrating an event
filter into an event-based NILM pipeline. We have selected several
approaches for each method to assess their effectiveness.
Initially, we consider confidence or probability-based classifiers

with a threshold to exclude events from unknown devices. For this
purpose, we chose SVM, LR, and RF due to their reliable confidence
measures in multiclass problems. Additionally, we explored ensem-
bling techniques known for their robustness in multiclass scenarios.
Specifically, we implemented voting, stacking, and a mixture of
experts (MoE) using SVM, LR, and RF classifiers. In the voting en-
semble, we employed soft voting by aggregating probabilities across
each class, with the highest total indicating the class assignment.
Stacking involved using SVM, LR, and RF as base models, with their
outputs fed into a level-1 RF that learns to combine these scores.
The MoE approach utilized a binary RF for each tracked device,

comparing their output probabilities. For both voting and stacking,
an event is assigned to a known device if the highest confidence
score exceeds a threshold. Similarly, in MoE, if any expert exceeds
a threshold in its probability score, the event is classified as known.
Secondly, we combined confidence-based classifiers with unsu-

pervised clustering techniques. This strategy involves a parallel
classifier outputting a device cluster likely associated with the event,
and subsequently dismisses the confidence scores of known device
classes not present in the cluster. We applied k-Means for prior
clustering (PC) and integrated it with SVM, RF, LR, and the voting
and stacking ensembles.
Thirdly, we explored filtering algorithms separate from the clas-

sification process, typically used in anomaly detection. We selected
OC-SVM and LOF, with events predicted as outliers excluded from
subsequent classification. Furthermore, we investigated these fil-
ters’ performance when used as classifiers themselves: Given their
binary output, we created MoEs with one model per device for both
OC-SVM and LOF. To our knowledge, this is the first instance of
applying OC-SVM-MoE and LOF-MoE in NILM for device classifi-
cation or detection of unknown devices.

Feature Selection. The operation of both the event-based classifiers
and the filtering techniques, including clustering and density-based
filters, necessitates a well-defined set of input features. In designing
our feature vector, we drew upon existing research to balance low
dimensionality with effective classification.
We selected Active Power (P) and Reactive Power (Q) as one-

dimensional features, being established both as individual and com-
bined features in prior studies [17]. Additionally, features derived
from harmonics have been consistently reported to perform robustly
in NILM tasks [16, 17]. To incorporate this aspect, we included Tris-
timulus [17, 22] in our feature set, a condensed representation of
harmonics information. This addition has demonstrated success as
a standalone feature [29], contributing three more dimensions.

With a total of five dimensions, the feature vector maintains a low
computational complexity, facilitating efficient model processing. It
has been shown [4] that this feature set achieves comparable results
to a comprehensive feature selection on other real-world household
datasets [17]. However, we acknowledge that the exploration of
an optimal feature set remains a topic for future research and is
beyond the scope of our current study. Notably, the system currently
relies on amplitude changes alone and does not consider contextual
information, such as the timing between amplitude rises and drops.

4 IMPLEMENTATION
Having established our preliminary choices, we now delve into
the details of implementing various configurations of the modified
NILM pipeline. Our discussion includes the data extracted from
the dataset, the considered devices, and any data augmentations
employed. Additionally, we elaborate on the training procedures for
the different ML models utilized in our experimental setups. This
comprehensive approach ensures a thorough understanding of the
methodologies applied and the rationale behind our decisions.
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Data Volume. As FIRED [28] partly offers precise labeling, we
hence focus our analysis on this timeframe to benefit from the
detailed metadata provided. The devices in FIRED are distributed
across three electrical phases, 𝐿1−𝐿3, and remain on the same phase
throughout the labeled time period. While a device can be switched
to a different phase by plugging it into another socket during de-
ployment, the NILM system monitors all phases simultaneously,
ensuring that a device is recognized regardless of its phase. To focus
on devices with a high frequency of events, we analyzed the data
for all three phases using our event detection algorithm over this
time period. The results showed that phase 𝐿3 had by far the most
detectable events—over seven times more than 𝐿2 and more than
fifty times more than 𝐿1. Consequently, our study concentrates on
data from the frequently used devices on phase 𝐿3.

Device Selection. As mentioned earlier, a minimum of 10 events
per device is essential to ensure diversity in our training data for each
class. This criterion applies to all devices, whether they are part of
the training or testing set, facilitating a more flexible configuration
of known and unknown devices. Additionally, this threshold aids in
discerning statistically significant behavioral patterns.
Consequently, we tasked our event detector with analyzing the

entire span of phase 𝐿3 data. Detected events were then aligned with
the corresponding ground truth where feasible. Devices connected
to Powermeter 11 were excluded, partly because they were not used
during the labeled time period, i.e., they offered no reliable ground
truth, and partly because their power consumption was below 5 W.
Events with such low power ratings were not identifiable with our
configuration of the event detector. However, with an average power
consumption of about 250 W at the smart meter, their contribution
to the overall power consumption would be below 2%, which was
deemed negligible during our initial investigations. The results of
this analysis are presented in Table 1, showing the final selection
of devices and their respective event counts. Our selection includes
both low (<200 W) and high-power consumption devices.
For these events, we computed features using the isolated mea-

surements of each device. We selected a Region of Interest (ROI)
spanning a 2 s window starting from each event. The feature calcu-
lation was conducted at a sampling rate of 2 kHz, which adequately
supports the harmonics-based Tristimulus feature.

Data Augmentation. The data distribution in Table 1 reveals a
significant skew in the number of events among different devices.
Such an imbalance can lead to biased outcomes in machine learning
models, particularly those based on clustering and density, as they
might be influenced disproportionately by the majority classes.
As a countermeasure, resampling techniques are typically em-

ployed. These include undersampling the majority classes or over-
sampling the minority ones. For our study, we chose oversampling
the minority classes, aiming to introduce greater diversity into both
the training and testing datasets. Moreover, undersampling the ma-
jority classes would have reduced the number of test cases per class,
thereby diminishing the statistical significance of our evaluations.

To achieve an equitable distribution of samples across all classes,
we utilized the SMOTE [7] technique, which is a well-regarded
method in various application domains. As a consequence, each class

Table 1. Devices [28]

Device Events Power

Espresso Machine 1410 High
Fridge 559 High
Oven 97 High
Kettle 23 High
Coffee Grinder 95 Low
Fume Extractor 30 Low
TV 14 Low
Kitchen Spotlight 12 Low

is adequately represented, enhancing the robustness and reliability
of our model training and evaluation processes.

Data Split. To effectively train our filter configurations, we di-
vided the devices into two categories: Known and unknown. The
data from unknown devices is withheld during training and exclu-
sively used for testing. In contrast, for known devices, we allocate
67% of the samples to training, using a 2:1 split ratio.
The supervised multi-class classifiers, namely RF, LR, and SVM,

along with k-Means for prior clustering and the components of
the voting and stacking ensembles, utilize the entire set of train-
ing data. However, for the MoE ensembles, each binary classifier is
trained differently: Every expert receives the complete set of train-
ing samples for its corresponding device as positive examples. For
negative samples, the training data of all known devices are evenly
distributed across the other experts. Specifically, for 𝑁 known de-
vices, an expert is trained with all the training samples of one known
device as positive instances and a combined (𝑁 −1)𝑡ℎ portion of the
training samples of each other known device as negative instances.
This approach aligns with scenarios where training is limited to a
specific subset of devices. It also ensures that the negative samples
for each expert are distinct and that there is an equal balance of
positive and negative samples for training each expert.

Training. To train the filters, we optimized them using 5-fold
cross-validation combined with RandomizedSearchCV for hyper-
parameter tuning. Details regarding the hyperparameter tuning,
including the search spaces and results, are presented in Table 2. In
addition, the thresholds for the confidence values were fine-tuned
using a binary search method. We employed a knee-criterion based
on the recall for the class of known devices, setting the threshold at
a point where identification of almost all known device instances
was still possible while maximizing the exclusion of unknown de-
vices. This approach stems from our main objective for the filters to
primarily eliminate events from unknown devices.

For the prior clustering approach, we fixed the number of clusters
at 2, given the relatively small total number of known devices. The
number of necessary clusters correlates strongly with the amount
of known devices and their respective number of distinguishable
states, with two clusters achieving best results in our settings.
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Table 2. Hyperparameters

Model Parameter

SVM 𝐶 ∈ {10−2, 10−1, 100, ..., 103}
𝛾 ∈ {104, 103, ..., 10−2}

𝑘𝑒𝑟𝑛𝑒𝑙 ∈ {RBF}
LR 𝐶 ∈ {10−3, 10−2, ..., 103}

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 ∈ {𝑙1, l2}
RF 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 ∈ {10, 50, 100, 1000}

𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ ∈ {10, 20, ..., 90, ..., 120}
𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑠𝑝𝑙𝑖𝑡 ∈ {2, 6, 10}

5 EVALUATION
After detailing our filter implementations’ methodology, we outline
scenarios to test their effectiveness, featuring mixes of known and
unknown devices for specific assessment aspects. We first cover the
evaluation metrics used, then describe the evaluation scenarios, and,
finally, share and discuss our findings.

5.1 Evaluation Metrics
To thoroughly evaluate our filters’ effectiveness in accurately ex-
cluding events from unknown devices, we have implemented several
constraints within the NILM pipeline. Each filter configuration em-
ploys the same set of identified events to ensure consistency, thereby
minimizing variability that might arise from the event detection
stage and making it easier to directly associate the outcomes with
the filter setup in use. Additionally, we assess the performance of
each filter immediately after its application, bypassing any further
steps such as classification or energy disaggregation. This decision
is made to avoid the complexity of evaluating the combined ef-
fectiveness of multiple components in the pipeline, which would
complicate attributing performance changes exclusively to the filter.
Given the significant impact that filtered events can have on subse-
quent stages of the pipeline, our evaluation focuses on the precision
with which events are processed by the filters.

To this end, we employ several standard metrics: Precision, Recall,
F1-Score, and Accuracy, whereby the discussion of results is mostly
based on the former two as they provide more detailed insight into
the behavior of the models. The latter (F1-Score and Accuracy) are
instead drawn upon for comparison to other approaches in the
literature. In our analysis, the class of unknown devices is treated
as the positive class, while known devices are the negative class,
aligning with our task of filtering out events from the positive class.

5.2 Scenarios
We consider four scenarios to evaluate our filters, each designed to
test different aspects of their performance under various conditions.

• Scenario 1 - Balanced Device Split: Eight devices are
divided into equal groups of known and unknown, includ-
ing both high and low power consumers and multi-state
appliances. This setup, with a relatively high number of un-
knowns, aims to mimic real-world conditions more closely
than typical novelty detection setups in NILM, which often
test only a couple of new devices [9, 12, 20, 30].

Table 3. Composition of devices in each scenario

Category Scen. 1 Scen. 2 Scen. 3 Scen. 4

Known E. Machine Fridge E. Machine Fridge
K. Spotlight Kettle K. Spotlight Kettle
Oven TV Oven TV
Fume Extr. C. Grinder Fume Extr.

C. Grinder

Unknown Fridge E. Machine Fridge1 Fridge1
Kettle K. Spotlight Kettle1 Kettle1
TV Oven TV1 TV1
C. Grinder Fume Extr.

1 = Device from UK-DALE [18]

• Scenario 2 - Reversed Split Evaluation: This scenario
swaps the known and unknown device groups to test the
robustness of our findings and confirm they are not due to
chance. It acts as an initial test for filter effectiveness, with
the potential for more complex combinations to be explored.

• Scenario 3 - Cross-Domain Challenge with New De-
vices: Known devices from one dataset are tested against
unknown devices from another, assessing filter performance
in a new domain and simulating deployment in a different
household. This specific use case does not appear to have
been addressed in previous work on detecting new devices.

• Scenario 4 - Matching Device Types Across Domains:
This tests filter adaptability to domain shifts while keeping
device types constant, examining if filters can recognize
known devices despite changes in domain or if cross-domain
signature differences hinder detection. The cross-validation
on novelty detection referenced in [9] was performed on
houses within the same electrical grid. In contrast, we chose
to use a dataset from a completely different domain.

Table 3 details the known and unknown device sets per scenario. As
clearly shown by the power distribution of the devices (Figure 2),
the unknown devices can easily be mistaken for known devices
based solely on power consumption—e.g., in Scenario 1, the fridge
could be confused with an espresso machine, the kettle with an oven,
and the TV and coffee grinder with a fume extractor. Our analysis
evaluates filters’ effectiveness within the same domain (Scenarios 1
and 2) and in cross-domain contexts (Scenarios 3 and 4), expanding
the typical evaluation scope of novelty detection in NILM.

5.3 Scenarios 1 & 2: Familiar Domain
Our analysis begins within the filters’ trained domain, focusing
on confidence-based classifiers. Despite distinct training datasets
for Scenarios 1 and 2, we maintained a consistent decision bound-
ary, leading to high precision in Scenario 1 across all models (SVM,
LR, RF, and ensembles) but a notable precision drop for LR in Sce-
nario 2, as shown in Figure 3a. This drop, potentially due to an unfit
threshold or classification bias, prompts a deeper investigation into
model-specific feature prioritization, revealing LR’s preference of
Tristimulus over Active (P) and Reactive (Q) Power, in contrast to
RF’s prioritization, as a likely cause for low performance.

ACM SIGENERGY Energy Informatics Review Volume 4 Issue 5, December 2024



Esp
res

so 
Mach

ine

Kit
che

n S
po

tlig
ht

Ove
n

Fum
e E

xtr
act

or
Frid

ge
Ke

ttle TV

Coff
ee

 Grin
de

r

Device

0

250

500

750

1000

1250

1500

1750

P

Scenario 1
Unknown
Known

Fig. 2. The power distribution of chosen devices.

Single classifiers showed generally low recall, identifying less
than 35% of events from unknown devices, except for RF exceeding
50% recall in one instance. Ensembling techniques improved robust-
ness, detecting over 70% of unknown events without compromising
precision, underscoring their potential in NILM systems.
PC slightly reduced precision but notably improved recall for

single classifiers, enhancing their ability to identify unknown de-
vices. However, ensemble methods did not benefit from PC, showing
decreased performance in recognizing some known device states.
Ensemble methods emerge as superior in maintaining precision-
recall balance, showing their effectiveness for diverse scenarios.
Specialized filters like MoE ensembles and density-based mod-

els (OC-SVM and LOF) were explored; surprisingly, MoE did not
perform as well as other ensembles. OC-SVM struggled with low
precision and recall, failing to correctly identify several devices.
Specifically, it failed to identify the fridge, kettle, and coffee grinder
as unknown devices, while mistakenly classifying the kitchen spot-
light and fume extractor as known devices. In Scenario 2, OC-SVM
missed identifying the oven and espresso machine as unknown de-
vices and incorrectly classified the TV, coffee grinder, and fridge
as known. These results closely align with the division between
high and low power consuming devices, as outlined in Table 1. The
OC-SVM seems to struggle with creating a sufficiently nuanced
decision boundary for effective binary classification across multiple
devices. Even when used in an MoE configuration, while there was
an increase in recall, the precision remained disappointingly low,
indicating that OC-SVM’s limitations are not effectively addressed
by reducing the number of devices in the known device group. In
contrast, LOF exhibited exceptional performance, with precision
and recall rates exceeding 93%, misclassifying less than 7% of known
device events as unknown. These findings hint at its significant po-
tential for NILM applications, especially when integrated into MoE
ensembles for robust filtering and classification across scenarios.

Validation. Our analysis identified MoE-LOF as the most reliable
performer, with LOF as a strong contender. To further validate MoE-
LOF, we conducted an additional evaluation across all detectable
events for all devices and phases within the labeled timeframe of
FIRED, employing a realistic setting without oversampling events.
Using the same two sets of known devices from Scenarios 1 and 2,
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(a) Filters without (base) and with PC.
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(b) MoE- and density-based Filters.

Fig. 3. Precision and recall of different filters

but introducing a wider variety of unknown devices, we achieved
F1-scores of at least 93% in both cases. However, for the known
models in Scenario 1, recall decreased to 87% due to the increased
diversity of unknown devices. Importantly, the models were not
tuned but were trained using consistent parameters.

5.4 Scenarios 3 & 4: Domain Transfer
Exploring domain transfer in NILM systems, our analysis targets un-
derstanding filter efficacy in unfamiliar settings, aiming to simplify
NILM setup expansion.

Scenario 3: Unknown Devices. Preliminary tests on domain trans-
fer highlight challenges in recognizing unknown devices from the
UK-DALE dataset. Filters showed variable success, as seen in Fig-
ure 4a; notably, the LR classifier exhibited a 0% recall, indicating a
complete inability to correctly identify events from the unknown
devices. Other classifiers also struggled, particularly with the kettle
and, to some extent, the fridge. The introduction of PC significantly
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improved the recall for the kettle, achieving 100% across all classi-
fiers, and ameliorated some difficulties with the fridge.

TheMoE ensemble using RF and the stacking ensemble performed
comparably, indicating potential benefits of applying PC to MoE
configurations. OC-SVM underperformed, even when extended to
an MoE setup. In contrast, LOF excelled, maintaining 100% recall,
illustrating its robustness in cross-domain applications.

Scenario 4: Known Devices. Investigating the impact of domain
shifts on recognizing known device classes revealed a stark perfor-
mance variation (Figure 4b). Training filters on similar device events
from the FIRED dataset altered recognition rates, with some filters
achieving 100% recall. Notably, the addition of PC does not nega-
tively impact the filters’ performance with the kettle, an exception
to the general trend of reversed performance.

Ensemblingmethods, however, seem to reduce the ability of filters
to recognize devices as known in a new domain. Most strikingly, the
LOF filter, while exceptionally sensitive and effective in its original
domain, fails entirely in this domain transfer scenario, demonstrat-
ing a 0% success rate across all tests.
This analysis underscores the complexities associated with do-

main transfer in NILM systems. It reveals that while some filters
adapt well to new environments, others, particularly those highly
sensitive to specific device signatures like LOF, may require retrain-
ing or recalibration to maintain effectiveness.

5.5 Discussion
Our evaluation revealed key insights into the proposed filtering
methods for events from unknown devices. Simple thresholding
is found inadequate, regardless of the extent of hyperparameter
tuning, suggesting its effectiveness is less reliant on these settings.
Instead, the device mix significantly impacts performance. Device-
specific issues, like distinguishing between different power levels
and multi-state appliances, suggest the need for specialized models
or classes for distinct device states.
Integrating a secondary clustering algorithm substantially en-

hances threshold-based filters, though improvements are device-
dependent. Ensemble methods emerge robust across scenarios, yet
adding PC analysis in this case shows minimal benefits. For density-
based approaches, OC-SVM lacks versatility for diverse devices and
does not improve with a MoE ensemble. Instead, it mainly discrim-
inates between high- and low-power consuming devices. On the
flipside, LOF displays promising accuracies, despite sensitivity to
device signature variations, which might improve with more diverse
data. With consistent F1-scores and accuracies above 93% in detect-
ing multiple unknown devices, it shows potential to be the most
promising prospect within a known domain when compared to the
literature [9, 12, 13, 20, 30, 32], calling for a study with comparable
data between the approaches.
LOF’s efficacy in a MoE setup suggests potential for future re-

search in device composition correlation, training sample require-
ments, and runtime adaptability. The prospect of MoE-LOF fulfilling
both filtering and classification roles in the NILM process warrants
further exploration. In future work, we plan to explore incorpo-
rating the filtered events directly into the classifiers to extend the
system’s ability to distinguish a larger number of devices.
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Fig. 4. The recall of different filters for unknown (Scenario 3) and known
devices (Scenario 4) in a new domain.

6 CONCLUSION
In addressing the challenge of accurately disaggregating energy con-
sumption in dynamic household environments, our study introduces
a novel filtering mechanism to the NILM pipeline, significantly en-
hancing its ability to differentiate between known and unknown de-
vice events. Through the innovative use of confidence-based cluster-
ing ensembles and density-based techniques, we achieved a notable
reduction of over 93% in false positives from unknown devices, with
a minimal loss of known device events (under 7%). This advance-
ment increases NILM systems’ accuracy and practical applicability
in energy monitoring and conservation efforts.

Our findings underscore the potential of refined event detection
and classification methodologies to improve the effectiveness of
NILM technologies. By enhancing the system’s ability to adapt to
new and changing appliance signatures, we pave the way for more
reliable energy consumption insights, contributing to the broader
objectives of reducing energy waste and aiding in climate change
mitigation.
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