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The Industrial Internet-of-Things (IIoT) promises significant improvements for the manufacturing industry

by facilitating the integration of manufacturing systems by Digital Twins. However, ecological and economic

demands also require a cross-domain linkage of multiple scientific perspectives from material sciences, engi-

neering, operations, business, and ergonomics, as optimization opportunities can be derived from any of these

perspectives. To extend the IIoT to a true Internet of Production, two concepts are required: first, a complex,

interrelated network of Digital Shadows which combine domain-specific models with data-driven AI meth-

ods; and second, the integration of a large number of research labs, engineering, and production sites as a

World Wide Lab which offers controlled exchange of selected, innovation-relevant data even across company

boundaries. In this article, we define the underlying Computer Science challenges implied by these novel

concepts in four layers: Smart human interfaces provide access to information that has been generated by

model-integrated AI. Given the large variety of manufacturing data, new data modeling techniques should en-

able efficient management of Digital Shadows, which is supported by an interconnected infrastructure. Based

on a detailed analysis of these challenges, we derive a systematized research roadmap to make the vision of

the Internet of Production a reality.
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CCS Concepts: • Applied computing→ Engineering; • Computing methodologies→ Artificial intelli-

gence; • Human-centered computing → Human computer interaction (HCI); • Information systems →
Data management systems; • Networks→World Wide Web (network structure); • Social and professional

topics→ Socio-technical systems; • Software and its engineering→ Software system structures;

Additional Key Words and Phrases: Internet of production, world wide lab, digital shadows, industrial internet

of things
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1 INTRODUCTION

Motivation and Relevance. Industry 4.0 is considered as the fourth industrial revolution focus-
ing on integrating cyber-physical production systems (CPPS) with processes and stakeholders
across the complete value-added chain. The term was announced in 2011 as part of the high-tech
strategy of the German Federal Ministry for Education and Research [26] and became an interna-
tional phenomenon reflected in the Japanese Industrial Value Chain Initiative [71], the Advanced
Manufacturing Initiative in the USA [108], the Made in China 2025 strategy [101], the South Korean
Manufacturing 3.0 [72], and the UK Catapult research center on High Value Manufacturing [30].

A central challenge in Industry 4.0 is aggregating, abstracting, and analyzing the heterogeneous
data required to understand and optimize the processes at hand [35, 57, 140]. However, the required
data is often locked up in silos owned by different interdisciplinary stakeholders. Apart from the
isolation of data within silos, utilizing information is traditionally limited to specific phases of
the product’s lifecycle, i.e., development, production, and usage. Hence, the information carried
by these data is difficult to identify, interpret, and integrate, which prevents, for instance, using it
for cross-functional analytics, human-in-the-loop decision-making, linkage of data with heteroge-
neous semantics and structures, machine learning applications, or simple integrated visualization
to improve production processes. The semantic integration of this information is crucial to provide
a comprehensive picture to decision-makers across the value-added chain.

In this article, we introduce the unprecedented concept, challenges, and approaches of designing
the Internet of Production (IoP) [121] that builds on the ideas of the Internet and the Inter-

net of Things (IoT) to facilitate transparent interconnectivity of production systems. To extend
the Industrial IoT (IIoT) and similar initiatives to a true IoP, two concepts are required: firstly,
a complex, interrelated network of Digital Shadows, which combine domain-specific models with
focused data-driven AI methods inferred by autonomous agents; and second, the integration of a
large number of research labs, engineering, and production sites as a World Wide Lab (WWL),
which offers controlled exchange of selected, innovation-relevant data even across company and
national boundaries. The IoP intends to interconnect all production activities to unlock advances
resulting from information exchange and transfer of knowledge across the complete lifecycles of
products, processes, and resources. To this end, the IoP provides models and interfaces to reliably
integrate, analyze, and use production data and information throughout time and space dimen-
sions. It fosters cross-domain collaboration on multiple levels, across stakeholders, ideally in real-
time. As outlined, these crucial challenges of the IoP are not covered by today’s predominant IoT
approaches.
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Motivating Example. We illustrate the advantages of the IoP with the example of the ongo-
ing shift towards electric vehicles in the automotive industry, which is inherently characterized
by multi-causal uncertainties. While this evolving market is highly attractive for automotive man-
ufacturing companies, suppliers, and infrastructure providers, changing regulations, ambiguous
customer demands, and a stream of new technical developments require a rapid adaptation of
products and production processes [23, 144]. Today’s electric car models consist of a multitude of
components and materials, such as aluminum alloys and carbon composites, which must be as-
sembled according to the specifications of increasingly individual customer orders. Each of these
materials and components is processed differently, requiring a high degree of flexibility in the as-
sembly line, the preceding supply chain, and the managing systems. These challenges have to be
addressed in short-term (e.g., machine configuration), medium-term (e.g., response to customer de-
mands), or long-term decisions (e.g., strategy for new model variants). Rapid and frequent changes
hereby imply that the traditional differentiation of the product cycle into distinct development, pro-
duction, and usage phases is hardly possible, as the different phases are now closely intertwined.
Therefore, the full benefits of the IoP can only be realized if a data, service, and analysis infras-
tructure is established that can provide the required information, which is necessary to make the
appropriate decisions. For example, necessary adaptations to the clearance of a car door, based on
customer feedback, imply changes in machine parameters and in the supply chain if new materials
are demanded. Such a change may affect various stakeholders, e.g., designers, quality managers,
shop floor workers, factory planners, sales experts, logistics partners, or suppliers.

Contributions. Two essential concepts enable the IoP: The WWL and Digital Shadows.
(1) Corresponding to the relationship of the Internet and the World Wide Web (WWW), we envi-
sion the WWL as a core element and major application of the IoP. The WWL aims to be a network
of multi-site labs in which models and data from experiments, manufacturing, and usage are made
accessible even across company borders to gain additional knowledge. This change will increase
the productivity in a similar way as the WWW increased the efficiency of e-commerce transactions,
customer interactions, supply chain management, and so on. (2) As a main driver of the WWL, we
leverage task- and context-dependent, purpose-driven, aggregated, multi-perspective, and persis-
tent datasets which we call Digital Shadows [92]. We postulate that Digital Shadows are a suitable
solution for production engineering applications, as multi-modal views with task-specific granu-
larity can provide high performance, low latency, security, and privacy at the same time.

In this article, we discuss the manifold research challenges towards an IoP comprising a WWL
built on Digital Shadows from a computer science perspective. Therefore, we augment current
research efforts in manufacturing with a dedicated analysis focusing on computer science chal-
lenges and potential contributions towards the IoP. Thereby, we provide engineers with novel in-
sights into fundamental challenges that are related to data processing and information exchange
that cross-cut the various partial solutions towards integrated production. Likewise, we provide
computer scientists with an analysis highlighting future interdisciplinary research directions to
successfully turn the ambitious digital transformation of production into reality.

Therefore, we distinguish four perspectives that address how data will be collected, processed,
and transmitted efficiently in the WWL:

(1) Human–computer interaction plays a major role as the complex, heterogeneous, and
interconnected information carried by data from production planning and operation has to
be presented in a meaningful way to decision-makers; their feedback needs to be collected
in smart user interfaces, integrated into the Digital Shadow, and used for production control.

(2) Model-integrated Artificial Intelligence (AI) as synergy between data-driven AI methods
and model order reduction techniques from engineering must be considered to enrich
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data semantically, to analyze it, to derive new insights, and to act appropriately in
production.

(3) Model-driven engineering is a quintessential prerequisite to relate data to knowledge made
explicit in heterogeneous models provided by different stakeholders and communicate it to
systems engineers, designers, suppliers, and others.

(4) Aspects of network infrastructure, edge computing, and data management have to be
addressed to provide an efficient basic infrastructure for data processing within the IoP.

The holistic horizontal and vertical integration in the IoP offers various tangible benefits to all
stakeholders in a production network—from companies in a value-added chain to the individual
machines and its operators: increased efficiency and closer integration through better exchange of
information between different, previously less integrated, stakeholders and thus higher resource
utilization, faster adjustments of the production to change, and less capital commitment. The ex-
ploitation of data from the development, production, and usage cycle of products facilitate op-
timization of future products and processes towards lower costs or capital commitment, higher
time, material, and energy efficiency, or higher product quality. Furthermore, cross-learning and
semantic knowledge about commonalities and differences between different materials, production
processes, and products and their interrelationships will contribute to a smarter production. To
sum up, our contributions to the IoP from a computer science perspective are:

— The introduction of the concept of Digital Shadows as an enabler of the IoP.
— The introduction of the concept of WWLs to make knowledge globally accessible.
— A discussion of research challenges for the development of the IoP.
— A set of strategic research directions for the IoP.

Article Organization. We present our approach to implement the IoP. In the following,
Section 2 introduces the context of the IoP, before Section 3 explains the IoP, and Section 4 in-
troduces Digital Shadows. Afterward, Section 5 details our concept of the WWL, and Section 6
discusses challenges towards it. Based on these insights, Section 7 presents a strategic research
roadmap and, finally, Section 8 concludes.

2 CONTEXT

The differences between the terms production and manufacturing are not clearly defined in
mechanical engineering. Production is understood as “the conversion of inputs into finished prod-
ucts” [60]. In the US perception [79], manufacturing is “a series of interrelated activities and oper-
ations involving the design, material selection, planning, production, quality assurance, manage-
ment, and marketing of discrete consumer and durable goods” [60]. This definition assumes that
manufacturing is broader than production. However, production can also be understood as the
broader term including additional activities and operations [79] as, e.g., services can be produced
but not manufactured. We follow the latter idea and understand production as the wider term.

The IoP provides semantically adequate and context-aware data for members of production
companies and related fields whenever and wherever it is needed [121]. This article focuses on
technical requirements for realizing the IoP from a computer science research perspective. Of
course, the vision of the IoP can only be successfully addressed, if the new concepts and methods
in information technology are applied in an integrated research agenda that also includes new
technologies for production engineering. We are part of a research cluster with an extraordinary
breadth of more than 30 co-located contributing institutes from different disciplines, such as com-
puter science, engineering, material science, economics, and social-sciences, as well as over 50
industrial partners, such as Robert Bosch GmbH, Samsung Electronics Co. Ltd, and Siemens AG
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Corporate Technology (cf. https://iop.rwth-aachen.de/). We have a holistic perspective on tomor-
row’s production and also address, e.g., new material compositions for additive manufacturing,
the economic perspective of platforms for sharing data between different stakeholders [83], and
also ethical implications of our work. We aim at applying the principles inherent to the Internet,
such as openness, world-wide access, and community-driven standards to the IoP to achieve a
sustainable and effective digital transformation.

2.1 Digital Twins vs. Digital Shadow

To realize the IoP, we suggest Digital Twins, which digitally represent material [15, 24] and im-
material [85, 95] objects and processes of the real world. The challenge here is the integration of
the different levels of scale (temporal, spatial, etc.) of the numerous underlying processes, yielding
large amounts of data, ill-fitted models, and high latencies if data needs to be aggregated and an-
alyzed. There exist various platforms and approaches to realize Digital Twins [8, 77, 94, 106, 143]
or to establish the connection between IoT and Digital Twins, e.g., model-driven approaches for
interface generation [81] or the H2020 funded IoTwins Innovation Action project [11], which aims
to design a reference architecture for distributed and edge-enabled twins and its evaluation in
several industrial test beds.

We do not consider a complete Digital Twin to be feasible due to the massive amounts of data that
a virtual replica of a product, machine, or production plant would require. Also, the Digital Twins
that are used in practice are not complete digital counterparts of physical objects; rather, they
are collections of different datasets and models, each representing a particular aspect of the real
object. The datasets are collected for a specific purpose, e.g., sensor data for prediction, CAD mod-
els for simulation. To model this scenario more exactly, our vision focuses on Digital Shadows,
which we consider as task- and context-dependent, purpose-driven, aggregated, and persistent
datasets that encompass a complex reality from multiple perspectives in a more compact fashion
and with better performance than a fully integrated Digital Twin (cf. Section 4). A Digital Shadow
can be compared to a view in database systems: an aggregated subset of the data of the real object,
computed by a complex function that might include complex algorithms for data reduction and
analysis.

We have already proposed a conceptual model [10] to describe digital shadows and demonstrate
it using a concrete example. The conceptual model was established through interdisciplinary re-
search and intensive discussions and was evaluated in various real-world manufacturing scenarios.
It is a foundation to manage complexity, automated analyses, and syntheses, and, ultimately, fa-
cilitates cross-domain collaboration. For a better understanding on how Digital Shadows could be
used within Digital Twins, we refer the reader to a dedicated example [22].

2.2 Comparison to State-of-the-Art

In comparison to existing approaches, the IoP provides a holistic, cross-domain, and collaborative
perspective on manufacturing processes. Existing approaches can be categorized into the follow-
ing areas: Concrete technologies such as the classical Internet, cloud manufacturing and IIoT, busi-
ness demonstrators and digital transformation strategies such as service-oriented manufacturing
approaches, digital manufacturing or the Global Lighthouse Network, and politically and funding-
driven approaches such as Industry 4.0 and other national initiatives.

In comparison to the Classical Internet, the IoP offers more functionality to a restricted
group of stakeholders. It grants access to world-wide production-focused knowledge bases, pro-
vides aggregated and semantically enriched data from production processes, includes intelligent
algorithms and functionalities to support question-solving, and enables users to analyze their own
data. These functionalities are available to all stakeholders within production processes, such as
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employees of different companies of the production network within all levels of work, e.g., the
workforce, the quality assurance team, marketing experts, production planning, suppliers, or lo-
gistics partners.

Certainly, comparing the IoP to the Classical Internet is a fitting analogy given that the Inter-
net itself started as a lab of labs, an aspect that the IoP, in turn, picks up with the concept of the
WWL. Moreover, today, the Classical Internet serves as an archetype: It revolutionized networking
with its novel idea of packet switching. Other approaches followed up on this idea. For example,
in the domain of logistics, the concept of the Physical Internet [7, 109] also relies on the Internet
analogy, envisioning to establish a physical form of “packet” switching in logistics. In contrast to
the Physical Internet with its cargo and product flows, the IoP itself intends to establish a “knowl-
edge” switching for the manufacturing industry by sourcing information and Digital Shadows
from various stakeholders and across domains, with the goal of a sustainable and effective digital
transformation.

In relationship to Industry 4.0, the IoP can be seen as a concrete initiative to realize aspects
of these strategies in cooperation between research and industry. This includes the integration
of digitized CPPSs with their processes and stakeholders to optimize the complete value-added
chain. However, this idea is also relevant internationally within the US Advanced Manufacturing
Initiative [108], the Chinese Made in China 2025 strategy [101], the Japanese Industrial Value Chain
Initiative [71], the South Korean Manufacturing 3.0 [72], and the UK national Catapult research
center on High Value Manufacturing [30].

The Global Lighthouse Network [151] is an initiative of the World Economic Forum. The
initiative was launched because of the global manufacturing industry’s lag in adopting Industry
4.0 technologies. It has essentially the same goals as the IoP, i.e., namely a move toward globally
networked production. However, it focuses more on the management perspective, whereas the IoP
develops the necessary technical foundations to achieve this goal.

Approaches such as Digital Manufacturing [107] as part of the Fourth Industrial Revolu-

tion [136] refer to the digital transformation of production processes using smart and agile man-
ufacturing and smart factories together with digital manufacturing technologies such as additive
manufacturing (3D printing), laser cutting, and CNC processes. In contrast, the IoP has no limit
regarding specific manufacturing technologies, and integrates the whole value chain.

IoP and IIoT. General efforts, such as the IIoT or Industry 4.0, typically focus on enabling
communication only within the same company [36]. In contrast, our vision of the IoP does not
merely intend to enable communication between different companies, but also aims to realize a
new level of cross-domain collaboration by enabling the exchange of semantically adequate and
context-aware data whenever and wherever it is needed [121].

Cloud Manufacturing is “a service-oriented business model to share manufacturing capa-
bilities and resources on a cloud platform” [48], which encapsulates distributed resources into
cloud services, and allows for their integrated management [153]. According to Siderska and
Jadaan [139], cloud manufacturing focuses on inter-factory integration, whereas Industry 4.0 also
considers intra-factory integration. The IoP shares the Industry 4.0 idea of intra-factory and inter-
factory integration and it does not restrict its technological approach to only one technology such
as cloud applications [48], and service-oriented architectures [134]. Cloud manufacturing plat-
forms can be built for small-medium size enterprises or group enterprises [97]. In contrast to that,
the IoP is not limited to one enterprise or a group of enterprises.

Service-oriented Manufacturing integrates services and physical products into one product
service system and companies involved focus typically on a specific sector [53]. Research in this
area focuses on the business perspective and pricing strategies [154], not the technological and
computer science perspective.
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In summary, there are already approaches towards the digital transformation of production.
They either focus on singular aspects of digital production, take a management perspective without
sufficiently resolving the technical challenges, or lack strategies to enable collaboration across
company boundaries. As outlined in the next sections, the IoP integrates these different approaches
holistically and provides concepts and method to achieve this ambitious goal.

General Challenges that the aforementioned global initiatives are proposing to solve by in-
tegrating manufacturing and IT are of societal and political nature. The proposed solutions have
partially overlapping issues, but each also has its strategic foci and thus associated challenges,
some of which we outline here. Digital Manufacturing, which aims to integrate digital manufac-
turing methods into production processes, leads to typical issues in human-robot collaboration
like unforeseen events that robots cannot handle [107]. Data availability for monitoring and con-
trol, as well as its management and networking are further challenges. Cloud Manufacturing leads
to two major challenges [139]: First, general integration issues of cloud computing, IoT, and high-
performance computing exist. Second, technical issues such as cloud management engines and
visualization in cloud environments surface. For service-oriented manufacturing, Gao et al. [53]
discuss challenges in the cooperation between businesses and adaptations of business models for
outsourcing parts of the value chain as services. They see service-oriented manufacturing as “in-
novation from the perspectives of business model, industry insight, and technology advantages”.

In Section 6, we specifically describe the challenges involved in realizing the IoP. We categorize
these into four layers. In the Outlook, we point out challenges that go beyond these layers, such
as implications for business models.

3 VISION OF THE INTERNET OF PRODUCTION (IoP)

Modern production environments are characterized by highly complex processes and dependen-
cies along the complete production chain [122]. Consequently, optimizing the overall production
requires a performant communication and collaboration not only between different factories of
the same company, but also across company boundaries, as otherwise, changes made by one sup-
plier could have negative effects on other companies in the production chain [147]. Rolled out to
all stages of the production chain, the IoP would, e.g., allow for faster development cycles, as im-
plications of new design changes can be populated along the overall production chain more easily.
Beyond, we identify the main potential of the IoP in the WWL, which combines the information
of hundreds to thousands of (different) processes into one huge (virtual) setting.

Establishing and Utilizing a World-Wide Knowledge Base. The resulting world-wide
knowledge base consequently enables the usage of data-intensive approaches, such as machine
learning, to generate purpose-driven Digital Shadows incorporating deep production knowledge
for optimizing processes, efficiently developing new products, or predicting their life span. In to-
day’s production landscape, such approaches are not feasible due to the scarcity of available data
and the large possible parameter space. This problem is even more pronounced in new production
sectors, such as the aforementioned electric vehicle industry, as well as for newly founded com-
panies that do not have a large pool of information. A newly founded electric car manufacturer,
for example, would not have many benchmarking opportunities yet many options to innovate.
Using the WWL, the manufacturer could now link the current state of its production processes
to processes running in factories of other companies (competitors, suppliers, and customers) or
also experiments at universities [122] to explore new process improvements. Some of these im-
provements can be implemented automatically, especially since the concepts originating from the
broader context of IIoT, Industry 4.0, and the IoP enable wide-spread factory automation and re-
configuration [149]. Yet, uncalled-for automation limits the optimization of production and pro-
cesses [137], which is why the impact of human workers should not be underestimated.
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Fig. 1. A mockup of a search engine for production queries leveraging the (global) knowledge base processed
by intelligent agents to optimize production processes, as envisioned by the IoP.

Access to IoP-Enabled Knowledge. Acknowledging the prominent position of workers and
decision-makers in socio-technical systems, we thus put the human at the top of the IoP and do
not aim for fully automated production. Consequently, it is important to provide task- and user-
centered interfaces to make it easier for human engineers and workers to access the available
information and support them in design, manufacturing, and management tasks. One possible
interface could be modeled after popular web search engines where users can perform queries
to find the desired information. Based on such production queries, data from several, potentially
external, sources need to be integrated, semantically enriched, analyzed, and visualized. In the
context of the mentioned car manufacturer, operators might ask, e.g., how to optimize produc-
tion quality while keeping material properties. Figure 1 illustrates our concept using this query.
Based on contextual data, e.g., previous queries, the user interface can reference the current ma-
terial composition and suggest actions. Intelligent software agents [131] behind this interface
collect relevant information from the WWL and subsequently analyze the influence of changes
in material composition on production as a whole. The data hereby have to be retrieved from
various sources maintained by different stakeholders. Access to the data is thus enabled by the
WWL. The changes could, e.g., plot a projection of the overall quality of the production. The ef-
fects are visually enriched so that the user can understand them more easily. The querying ac-
tor could then use the provided information for management decisions regarding changes to the
material composition. Proposed changes could be directly applied from within the search user
interface.

Establishing the IoP. Smart Human Interfaces are an important component of our envisioned
technology stack to enable the IoP, as illustrated on the left side of Figure 2. More specifically, task-
and user-centered interfaces are required to facilitate the access of human engineers and workers
to the newly gained information. Gathering the corresponding context- and task-specific informa-
tion itself requires a sophisticated underlying infrastructure. Model-Integrated Artificial Intelligence

composes the information in human-understandable form by means of models from different do-
mains combined with AI on the basis of data abstractions and aggregations, which are, in turn,
maintained by Data Modeling techniques which themselves need an Interconnected Infrastructure

that retrieves and integrates data. Besides the challenges and benefits from an engineering point of
view, each of these four layers poses several challenges that are highly relevant from a computer
science perspective and that need to be solved on the way to realizing our vision.
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Fig. 2. In the IoP, task-adaptive Digital Shadows build on interconnected infrastructure, data modeling, and
model-integrated AI to provide smart interfaces that make the right data actionable at the right time during
development, production, and usage. Integration across different production facilities and locations leads to
the WWL.

Smart Human Interfaces. As illustrated above, making it easy for human users like production
managers and shop floor operators to formulate their problems without the necessity of compli-
cated programming languages requires Smart Human Interfaces. Solutions should be provided in
forms that are easy to understand and learn in a micro-learning style [84], so that the human
engineer can take appropriate actions to implement them and consequently achieve a real im-
provement of the production process. What makes this challenging is the volume and diversity
of information that needs to be presented: apart from information about material, product, and
process optimizations derived from continuous data analysis, we also envision integrating new
data from the WWL whenever they are available. Additionally, the current state of the production
has to be accounted for, as well as specific input by operators regarding their needs and problems.
Thus, the interfaces have to be able to present a diverse set of information to the human workers.

Model-Integrated AI. Based on novel combinations of mathematical models, simulations, and
data-driven artificial intelligence, information is gathered from different entities in the WWL,
data is aggregated from various sources, Digital Shadows are built [92, 103], and answers to user
queries are computed. The implementation of intelligent software agents enables model-integrated
AI, meaning various techniques of AI, e.g., knowledge-based systems, machine learning, or data
mining, in synergy with engineering models to give answers for specific purposes in production
scenarios. The challenges lie in the networking of such agents in the WWL, and the integration of
different AI approaches to provide trustworthy aids for manufacturing.

Data Modeling. Furthermore, sophisticated Data Modeling techniques are required to model the
Digital Shadow, i.e., the heterogeneous datasets originating from different production processes.
The data models need to be tightly connected to the engineering models of the machines on the
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shop floor, as their setup determines the type and structure of the data to be collected. Thus, in
addition to describing the static aspects (e.g., schema, provenance, and quality), the ability to de-
rive the data models from the engineering models by applying model transformations must be
considered.

Interconnected Infrastructure. An Interconnected Infrastructure for the WWL is challenged by
increasingly high data rates in the manufacturing industry, where sensors can generate data in
the range of giga- to peta-bytes per second [55]. These data rates are problematic for storage and
semantic analysis in real-time, as well as for sending these vast amounts of data within the WWL.
Therefore, data has to be aggregated and reduced in a semantically meaningful way to still enable
purpose-driven, meaningfully abstracted and aggregated, temporal data subsets. For this, model
and data reduction techniques have to be applied, e.g., in the form of edge computing or in-network
processing, to process the data as early as possible in the WWL.

Organizational Challenges. In addition to the requirements of the various layers of the IoP, some
general issues also apply to several layers. The stakeholders of the WWL need to establish a level
of trust between each other, so that data can be shared [32, 52]. Then, a platform with standardized
interfaces can be established that provides the technological basis for data exchange. For example,
the International Data Spaces (IDS) Association [111, 112] currently develop a platform for
secure, trusted, and reliable data exchange while also guaranteeing the data sovereignty of the data
providers. We plan to apply some key aspects of this platform in the IoP [73]. When considering
the individual local production sites, safety and security aspects play a crucial role as well [63]
because a minimum of guarantees must be in place to ensure a smooth and uneventful operation
of the WWL.

Summarizing, our vision of the IoP addresses the idea of exchanging data on a global level and
using this data to provide task-specific information whenever and wherever needed. Consequently,
the form of data representation used in the IoP is a key concept of our vision. In the following, we
present how we utilize Digital Shadows to realize our envisioned cross-domain collaboration.

4 DIGITAL SHADOWS ENABLE THE INTERNET OF PRODUCTION

Our vision of the IoP demands that the right information is available at the right time, depending
on the task and context. Such information includes data from the production systems and pro-
cesses, shop floor workers, customers, suppliers, and many other sources, which allow optimizing
production, reduce downtimes, and save resources [152]. Figure 2 shows the stepwise construction,
refinement, and application of Digital Shadows. At the bottom layer, physical and virtual produc-
tion steps produce raw data that characterize the product, the process, and the resources. Due to the
volume, variety, and velocity of data, retrieving the right information from the data is figuratively
like searching for a needle in a haystack. Hence, these data need to be abstracted and aggregated
to support meaningful decision-making at different levels and scopes, from real-time machine and
process optimizations to long-term strategic planning. An interconnected infrastructure, including
additional metadata characterizing data points and facilitating remote access, builds the basis for
data aggregation. Data models provide structural information about the available data and thus
enable knowledge gain via purposeful connection of data points. By applying AI methods, such
as machine learning or process mining [145], we can attain further knowledge from the available
data, e.g., quality predictions or bottlenecks in assembly lines. Human interfaces support decision
making, process optimization, error avoidance, and thus improve production performance by pro-
viding user- and target-specific Digital Shadows. They also facilitate human interaction with the
CPPS and allow for analytics and AI methods creating Digital Shadows.
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Fig. 3. Beyond data, Digital Shadows contain models and metadata that provide insight into the data’s
context, traces, and interdependencies.

Digital Shadows are sets of contextual data traces or their aggregation and abstraction collected
from a system or mockup, such that they help to fulfill a specific purpose with respect to the
original system. They are comprised of data, metadata, and models.

Digital Shadows are created on the fly to be semantically sufficiently correct for their specific
purpose. To this effect, they are generated by the application of data analytics and reduced en-
gineering models. The former translate data (in real time) to information (possibly by involving
machine learning algorithms), the latter enable relating that information and giving semantics
(meaning) in the context of the purpose, e.g., the production system or process the information was
produced from. Consequently, digital shadows may contain (parts of) engineering models, simula-
tion models, or other models of the system whose part or activity they represent. Understanding
Digital Shadows as interfaces for production services enables re-using these services with refined
or abstracted Digital Shadows for subsequent tasks. Thereby, Digital Shadows continuously im-
prove with their usage, since the underlying production models are validated and extended with
each additional application. Digital Shadows benefit from interconnected production plants be-
cause they can access and be composed of more data from different data sources. With more data
available, they can become more meaningful and thus more effective in supporting automation.
The technical realization of a Digital Shadow potentially includes different pieces of information
but should at least contain (i) the data (or an abstraction thereof) collected in the monitoring
period; (ii) metadata, such as period of time, the sensors used, the sampling frequency, potential
uncertainties, information about the state of the system during operation (if that is not part of
the sensed data), the intention of the measurement, who was involved, and so on; and (iii) contex-
tual data, such as references to the engineering model (e.g., CAD, Simulink, SysML, or UML) of
the observed system or process, for instance, describing, where sensors are attached to and thus
where measurements are taken from. A Digital Shadow includes the information on how it has
been computed as metadata; thus, we know about the constraints and limitations of the dataset.
This information is crucial when examining the data quality of a Digital Shadow, i.e., by changing
the function that produces the Digital Shadow, we can improve its data quality.

Figure 3 shows the components of Digital Shadows: models, data, and metadata. We refer the
reader to our work [10] for details on the conceptual model of Digital Shadows. Digital Shadows
refine other Digital Shadows by providing more detailed models, by adding up-to-date data, by
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deriving new Digital Shadows using AI methods, or by combining the information contained in
other Digital Shadows into a new Digital Shadow. Individual Digital Shadows not only serve to
control individual production processes, but can be linked together within or across companies.
Combining Digital Shadows across different processes and companies to a WWL delivers added
value by providing more information that can reveal additional insights on the production,
identifying correlations of subsequent process steps or actors along the value chain, as well as
transferring of recognized patterns to similar but new processes.

5 ESTABLISHING THE WORLD WIDE LAB (WWL): MAKING KNOWLEDGE

GLOBALLY ACCESSIBLE

Digital Shadows are an important aspect when capturing information that was generated as part
of the IoP. To realize the main application of the IoP (cf. Section 1), research must also focus on
open aspects of the envisioned WWL, i.e., how to securely realize the exchange of knowledge
across different stakeholders to enable approaches like transfer learning. The WWL complements
Digital Shadows by offering stakeholders the ability to reliably collaborate in an industrial setting
and, ultimately, to improve their existing Digital Shadows, thus tapping into currently unrealized
potentials.

World Wide Lab (WWL). The WWL connects all (existing) data sources in a globally intercon-
nected system and makes them available across company borders to foster a transfer of knowl-
edge and to fuel innovation. To this end, available information is re-used across all phases of
the product cycle, i.e., development, production, and usage. The WWL is not fixed to a single
architecture or set of stakeholders. These decisions are use case-specific.

The term WWL is chosen as an analogy to the WWW as the envisioned WWL should also pro-
vide (unstructured) information in a large-scale system that is maintained by multiple (distrusting)
stakeholders in a similar way as the Internet. Naturally, such a setting also requires in-depth anal-
yses of the underlying security principles and privacy needs to make sure that the new types of
dataflows [122] and data sharing concepts are implemented securely [120]. We envision combining
data sources from different production sites, supply chains, data lakes, and cyber-physical sys-

tems (CPSs). Thus, we make information, potentially provided by competitors, available across
company borders to eventually make it accessible within an established WWL. This change in
boundaries enables companies to improve their decision-making by combining data sources and
Digital Shadows on a larger scale [121]. For instance, comparative process mining using process
cubes [146] allows informed decisions by comparing different processes and their properties.

The Need for (Data) Security and Safety. Traditionally, companies in the production domain
are cautious when sharing data to prevent any leakage of sensitive information [110]. Hence, the
transition from today’s local data silos to a globally accessible knowledge base [122] is a significant
challenge as valuable intellectual property must be protected accordingly. Similarly, even less sensi-
tive data, such as shipment information, might already expose business relationships to the public.
Consequently, the identity of involved companies should be concealed through technical means
whenever practical [64]. In addition to data security, safety aspects are relevant as data sharing can
have a direct impact on the environment, involved workforce, and the local production site [63].
Safety is paramount when using foreign data, as, e.g., incorrect parameter settings applied to a
machine can cause physical damage and, even worse, harm to humans. Here, especially, network
security policies should be revised to account for the shift from isolated production networks to the
global WWL [63, 120]. Simultaneously, improvements in this area can also mitigate the individual
risks of data leakage. Overall, (data) security and safety are fundamental for the WWL.
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Integrating Data Sources into the WWL. Given that a variety of different systems must be
integrated, the required changes to shape the manufacturing industry to the WWL affect differ-
ent areas of today’s production. In production cells, the gathering and sharing of process data of
individual CPSs and production processes must be dealt with. Concerning our exemplary car man-
ufacturer, this view corresponds to information about a single assembly step in production. On the
shop floor, the Digital Shadows of different production cells can be combined for a single produc-
tion site. W.r.t. to our example, the data collected here refers to all local production steps and their
(inter)connections. Finally, on the WWL layer, data and knowledge of different production sites,
potentially even across domains [147], should be available for companies in the WWL [57]. Here,
data sources are not limited to companies along a single supply chain. Instead, we also encourage
an exchange of information across supply chains to maximize the improvements resulting from ex-
changed information. A recent survey [155] underlines that even the usually considered scenario
of smart supply chains is not yet put into practice. To conclude, data sources from different areas in
manufacturing, i.e., production cells, shop floors, and the WWL layer, have to be accessible within
the WWL to provide the needed information and variety.

As highlighted before (cf. Section 3), all available data is part of the current state of knowledge,
which is not in a fixed state, but in continuous change, as new process information and data ideally
help to improve the existing shadows [57]. The car factory could, for example, retrieve machine
parameters gathered in a different setting (by another stakeholder) to react to changes in the hard-
ness of the delivered steel. Overall, reaching decisions is more efficient and reliable with the WWL
because all globally available knowledge is incorporated into the decision-making process.

Estimating the Impact of the WWL. The fully developed and interconnected WWL serves
as the ideal real-world application of the concept of the IoP: a globally accessible knowledge base
that combines the information of numerous data sources. Without further research, we are unable
to fully tap into the expected potentials. In line with the advances made by large standardization
projects, such as Gaia-X [18] or the IDS [111, 112], we realized first prototypes of the WWL to
showcase its potential to companies. For example, beyond our formalization on data interoper-
ability [57], we already provide insights into the accountable and reliable data sharing in supply
chains [5, 117, 118]. While research traditionally focuses on data sharing along the supply chain, we
also particularly explore the data sharing across supply chains, and especially when trust relation-
ships are missing [123]. For example, we revisited the privacy needs in company benchmarking
across supply chains and discovered that existing work does not account for the sensitivity of
the complex computations of key performance indicators [124]. Using readily-available building
blocks from confidential computing, we demonstrate that secure approaches are feasible [124] and
serve as candidates for real-world use in industry and the WWL.

Regarding the sharing of production parameters and associated experiences, we analyzed the in-
dustry needs when commissioning new production lines and correspondingly developed an obliv-
ious exchange platform to facilitate such information sharing [119]. Again, we rely on well-known
concepts from confidential computing to ensure security and real-world deployability in the WWL.
With two distinct use cases (injection molding and machine tools), we showcase our platform’s
universality, i.e., our work is not bound to a specific use case. To conclude, our work proves that
turning the WWL into reality is possible with concepts from confidential computing. Additional
research is needed to transform novel applications into secure, reliable services in the WWL, which
are then re-usable across different domains.

An Outlook into Tomorrow’s WWL. In particular, we identify a significant need for future
research (also concerning readily-available building blocks) in the area of (federated) privacy-
preserving machine learning. We expect the WWL to enable such applications on a large scale
and thus be a source of advancements. For example, when high-pressure die casting parts for cars,
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machine learning-based quality prediction allows discovering defects even when in-situ methods
are not applicable. Enriching the input data with external data would significantly improve the pre-
diction results, allow for properly configured production lines, and thereby reduce scrap rates. Es-
pecially when directly feeding information into live processes, safety needs must be considered in
light of external knowledge sources with its diverse stakeholders. Naturally, more in-depth collab-
orations, data exchanges, and novel, currently unexplored use cases and applications will emerge
once first experiences have been made [122]: Both the perceived advantages and a decrease in reser-
vation against data sharing due to the fear of data leakage will accelerate this development. For
now, our work showcases the WWL’s potentials, and our findings contribute to standardization
efforts, such as Gaia-X or the IDS, that will eventually manifest the WWL in practice.

In the following, we first mention challenges for the WWL, highlight the progress that has
already been made, and then formulate necessary further research directions.

6 SETTING THE STAGE FOR THE INTERNET OF PRODUCTION

The last two sections laid out the methodological foundation of our approach of the IoP. Digital
Shadows provide purpose-driven collections of data, facilitating data-driven decisions. The WWL
connects these Digital Shadows in a global network, paralleling the idea of the web as the prime
application of the Internet. By establishing an interconnected knowledge base consisting of data
sources from various companies, we achieve massive economies of scale, thus increasing the over-
all benefits. However, to the same extent, we enable several new hurdles that need to be tackled. In
the following, we examine these challenges using the top-down layered model shown on the left in
Figure 2. For each layer, we highlight research that has already been started to address these issues.
We will point the reader to other publications by the authors in which more concrete research re-
sults are reported, such as the usage of Digital Shadows in process mining [22] or adaptation of
the production system to the capabilities of the worker [102].

6.1 Humane Interfaces for Interacting with Digital Shadows

The new possibilities of the IoP have given rise to new questions in the area of designing the
interfaces between the human actors and the IoP that have so far been insufficiently addressed
in current research [78]. On the one hand, more and smarter automation raises the question of
responsibility and control [93, 133], and on the other hand, new forms of hybrid intelligence as the
collaboration between human operators and the IoP must be designed that harness the potentials
of both artificial and human intelligence [44, 89].

Despite the obvious potential of increasingly automated production control through IoP-based
Digital Shadows, people will remain an integral component of socio-technical production systems
(STPS) [50, 78]: Either as certain tasks cannot be fully automated for technical, legal, or ethical
constraints, because of a shift from manual activities to monitoring and planning tasks, or as a
final arbitrator when automated systems fail or come into conflict [150].

However, reliable automation leads to the automation conundrum [46]: The more systems are au-
tomated, and the higher the performance of the automation, the lower the supervisors’ situational
awareness and the more difficult supervision, intervention, or manual control becomes. Thus, sev-
eral challenges need to be addressed to support operators’ interaction with Digital Shadow-based
automation at all company levels (e.g., shop floor operation, factory planning, supply chain man-
agement, and strategic planning).

Transparent Automation and Meaningful Control. Operators’ and decision makers’ pro-
cess knowledge and understanding deteriorate through abstraction and automation [6, 9, 46, 150].
However, this situational awareness is crucial should automation fail, to evaluate the functioning
of an automated system, or to handle unmodeled situations (out-of-the-loop loss of situational
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awareness). Consequently, a challenge is to design simple interfaces to automated processes and
decision-support systems that are accessible, transparent, and easy to learn and use.

Although one of our intended interfaces is as simple as an Internet search engine (cf. Figure 1),
processing these queries is more sophisticated than a simple keyword search. As users should not
need deep technical knowledge about the underlying system, autonomous agents interacting on
the WWL can provide this semantic information implicitly. For example, when inquiring about the
ideal type of an electric car battery, the planned production method or driving safety is considered
implicitly. Other forms of automation can draw on transparent explanatory approaches so that
the basis for the system’s decisions can be interpreted, understood, and corrected if necessary. An
emerging research field to increase usability and comprehensibility of models is Explainable AI [4],
whose approaches and methods must be adapted to the specific use cases of the production domain.

Modeling of Tacit Knowledge. A further challenge is the utilization of human expertise
through automated systems. Most machine learning approaches require representations of human
knowledge to create digital models of product and production planning, as well as production and
usage. In some cases, the description of this knowledge is simple and often already exists (e.g.,
image classification for online quality control, if quality can be measured easily). In other cases, a
representation of the expert knowledge is necessary, but this tacit knowledge is difficult to verbal-
ize and hidden in unconscious evaluations and motor memory [126]. Consequently, it is difficult
to communicate this knowledge and expertise to others and other domains, to record and describe
this knowledge digitally, and to use sparse data to train AI algorithms [89].

Bias-Free Interaction with Automated Systems. Trust, reliance, and trustworthiness is a cru-
cial prerequisite for acceptance and use of automation in production and other domains [65]. Ad-
equate and meaningful use of automation by operators must be carefully balanced between disuse

(intentional neglect of decision aids, either due to missing trust or missing perceived benefits) and
misuse (over-utilization of automation by over-trust and neglecting to check its results) [65, 114].
This fine balance relates to automation biases and automation complacency, and sound systems
design helps [19, 58]: if automated systems are designed right, operators have more capacity to
detect malfunctioning automation and to handle exceptions.

Context- and User-Centered Interfaces. Third, a challenge is to make the vast amount of
heterogeneous information from the IoP transparent and accessible through user-, context-, and
task-dependent interfaces [1, 29]. Again, the design of STPSs and interface usability are impor-
tant factors, as good interfaces facilitate the understanding of the systems’ status and functioning,
lower cognitive load, enable successful operation, and offer insights on further optimizations. Fur-
thermore, we need a “natural and trusted” communicative etiquette for enabling a close and trusted
collaboration between the operators and the AI-based systems. For this, understanding the opera-
tors’ basic emotional needs as well as their mental models of and general attitudes towards these
highly complex systems is of importance. Furthermore, the demographic shift and changes in the
workforce pose further challenges, as user interfaces and support systems must take older workers
and their specific requirements, different skill-sets, interests, and abilities into account [34, 47].

In prior work, we have shown that good user interface design is crucial for successful and trust-
ful interaction with automated production systems [125] and robots interacting closely with hu-
mans [14]. Well-designed user interfaces mitigate automation biases by enabling operators to in-
tervene should automation fail [19].

Example. Taking the production of an e-vehicle as an example, the IoP results in changes
for workers along the value chain. Through human-centered design of decision dashboards and
approaches such as Explainable AI, decision support systems can provide transparent sugges-
tions for improving the performance of production processes, quality insurance, or the supply
chain, thus reducing human errors in decision making [19]. Also, by continuously capturing the
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interactions of experienced workers with the production systems, their knowledge can be inte-
grated to improve future recommendations for novices. Furthermore, digital images of the workers’
capabilities and requirements can be generated and used to orchestrate the collaboration between
production systems and workers, for example, by adopting the speed of production process and
human-robot collaboration to the workers’ needs [102].

Takeaway. Overall, the adequacy of these systems and their design should not be determined

by experts from engineering, computer science, or ethics alone, but rather in partnership with the

employees. A participatory design ensures that the technological advances and implementations of

STPSs are harmonized with people’s capabilities, norms, and values.

6.2 Model-Integrated Artificial Intelligence with Autonomous Agents in the IoP

Within the IoP, the goal is to create a synergy between data-driven AI methods and state-of-the-art
model order reduction techniques from engineering mathematics across disciplinary boundaries.
This enables a high level of automation to realize real-time decisions, through built and shared Dig-
ital Shadows. E.g., in e-vehicle manufacturing, sheet metal is still a fundamental material whose
processing consumes large amounts of energy, while deviations are safety-critical. Therefore, inte-
grating reduced engineering models of material properties with machine learning in the hot rolling
process to inform artificial networks as Digital Shadows enables real-time compensations for devi-
ations during the process [103]. This adjustment allows significant energy savings. For this degree
of automation, which is needed to gain all data and knowledge from different sources and do-
mains worldwide to build Digital Shadows and realize model-integrated AI, we need autonomous
agents [131] based on various AI techniques like knowledge-based systems or machine learning to
name but a few. Manual data queries that would otherwise be required would be infeasible given
the level of cross-domain collaboration and networking.

Another example in e-vehicle manufacturing covers sophisticated logistics robots used in mod-
ern modularized factories without assembly lines [25]. In such complex settings, sophisticated
logistics robots controlled by autonomous agents can help to assemble products, integrating dif-
ferent AI methods [66, 67]. Similar methods were used for autonomous agents communicating as
programs with the WWW to realize Semantic Web applications [100, 127]. In addition, further
examples of successful applications of agent technologies in industrial settings exist [90, 91].

In the IoP, we develop autonomous agents, called WWL Agents [21], in a multi-agent network
connected to information sources for semantic information, e.g., ontologies [99] and knowledge
graphs providing provenance information [57]. With the latter, it is possible to get, e.g., the origin
of data used for training an artificial neural network representing a particular Digital Shadow or
the usage history of mathematical models comprised within the Digital Shadow to solve difficult
production steps.

Comparable agent systems in the literature are very often only used to support manufacturing
processes within a single production facility or company [75, 90, 91]. The novelty of our approach
is that the purpose of WWL Agents is realizing interoperability in the WWL and breaking data
silos enabling data-intensive AI approaches, such as machine learning, to generate specific Digital
Shadows. For instance, communicating with agents from other companies, apply different AI meth-
ods for sharing, generating, and using their data and Digital Shadows from different production
domains is their main function. Furthermore, with semantic information about the origin of the
data, they can provide detailed information of solutions found by a WWL Agent to users around
the world. In addition, this approach can incorporate existing local multi-agent production systems
if they provide an interface to the WWL.

Explainable AI. To be able to present comprehensible results for humans as discussed
above, algorithms need to be able to explain why their results are reasonable and accurate. Such
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explainable AI methods [2, 45] can be provided by knowledge-based systems because they repre-
sent the knowledge in a human-understandable way [17]. However, one of the challenges is to
find the right explanations and their representation for production processes. Furthermore, other
AI approaches as, e.g., machine learning or process mining [3], need to be included in trustworthy
explanations.

Furthermore, in the IoP, semantic information about the data in the WWL is available to calcu-
late appropriate answers. Given that the IoP presents a well-understood domain [20], the seman-
tic information is already represented in existing models and methods. However, it is often not
machine-readable and not yet linked to the raw machine-produced sensor data, which need to be
exploited by software agents. Open questions are how to gain machine-readable semantic infor-
mation from the existing models and how to link the semantic information from the engineering
models to the data to build trustworthy software agents [141] dealing with the semantics in Digital
Shadows and supporting the decision process of engineers in the WWL.

WWL Agent Dialogs. In the vision of the IoP, WWL Agents realize user dialogs via interfaces
like shown, e.g., in Figure 1, and help the users to get the appropriate answers to their problem
in the sense that it improves the product and the production processes. These agents need to
be interconnected within the WWL to enable them to integrate information from external data
sources as well. With this information, the agents are able to compute solutions or suggestions
and generate answers to the user requests. Here, the challenges lie in realizing a human-machine
communication that is understandable for the humans working in the production. Additionally, the
relevant information from the WWL has to be identified to give adequate answers, which really
lead to process improvements.

Multi-Agent Network. We claim that only the WWL delivers the amount and variation of
data that is necessary to build Digital Shadows as, e.g., trained artificial neural networks, so that
they can provide aids for specific purposes in a production process. Therefore, WWL Agents in a
world-wide multi-agent network are a key factor in reaching this level of interoperability.

By communicating via the WWL, the agents share services, data, and knowledge, so that other
agents can support their local clients with their production. In that way, it is possible, for instance,
to realize a fully automated on-demand pull production [70], with implications along the whole
supply chain, as long as every participant is connected to the WWL. Thus, production can dy-
namically adapt to local or global changes, such as product design modifications, local production
failures, or supply chain variances in case of a strike, natural disaster, or pandemic. The challenges
range from finding the appropriate network structure for the agents to how requests to agents are
processed.

Standardized and Open Communication Protocols. Similar to the WWW, the WWL can
only unfold its full function if a crucial number of participants is able to share their information in
the network. The success of the WWW was only possible because there was an open access to all
its protocols as HTTP. Therefore, for the IoP we intend to let the autonomous agents use protocols
based on HTTP and other open standards. Furthermore, new protocols which are needed for the
communication between the autonomous agents have to be freely available and standardized in
the long run to let everyone participate in the WWL with their own agent.

Connection to Versioned Data Storages and Ontologies. The agents in the WWL have to be
connected to various information sources to gain the knowledge they need to give proper answers
to the user. For doing so, the agents need semantic information about the posed queries. There-
fore, we want to use semantic techniques, for example, ontologies [116] and versioned knowledge
graphs providing provenance information about data, models, and knowledge from production
processes [57]. With the former, the agents gain semantic information about the terms which are
used in user requests. With the latter, the agent can get provenance information about the origin
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of production data or the history of a product part. Here, challenges are, for instance, how the
semantic information can be used and how the information from different data sources can be
combined to improve production processes.

Example. Assume a setting where an e-vehicle manufacturer wants to improve the material
choice for the main car body. Then the engineer, e.g., instructs a WWL Agent to first collect in-
formation about available steel composites from different steel producers and then analyze them
according to the characteristics of the local production process as described by a Digital Shadow.
This Digital Shadow could be created by another agent in the WWL analyzing the processes in the
car factory and using AI methods such as machine learning. Provided with semantic information
about the processes and the materials which are planned to be used, a WWL Agent can give the
user a detailed answer with explanations and links to the provenance of the agent’s information.

Takeaway. The integration of (mathematical) models from engineering with AI models enables

new opportunities, and makes WWL Agents the enabling factor in the IoP. To this end, they rely on

the connection to various data sources from different production companies, and standardized proto-

cols. Existing knowledge-based agent technology needs further extensions to meet the demands of the

manufacturing industry in the setting of the IoP.

6.3 Model-Driven Digital Shadows

The term model-driven refers to development methodologies that rely on abstract models of sys-
tems as central development artifacts [148]. These models carry explicit domain expertise and
serve as a foundation for communication, documentation, analysis, and synthesis in agile develop-
ment projects [129]. They can be systematically transformed into concrete implementations [49]
such as Digital Twins [13, 43], privacy-preserving IoT systems [104], information systems [54], or
assistive systems [105]. Digital shadows [88, 128, 135] relate to models, can carry models them-
selves, and serve as (aggregated) abstractions of models for automated processing [13, 43].

Cross-Domain Collaboration. Interdisciplinary teams consisting of experts from the produc-
tion domain, computer science, automation, and many more develop a new generation of CPPSs.
All of them contribute individual expertise, perspectives, paradigms, technologies, and solutions
to the IoP. And often, this expertise is encoded in different kinds of models [69, 105, 152]. The
successful and efficient integration of domain-specific knowledge into the IoP is crucial to con-
struct the multi-perspective data and models at design time, simulation time, and run time. In our
vision, Digital Shadows also serve to semantically enrich process data to enable (automated) deci-
sion making in (domain-specific) real time. To this end, they must be semantically integrated with
data and models engineered during design and simulation [80]. This need demands a modeling
of detailed aspects (from manufacturing system details to factory behavior, to strategic goals, to
interface descriptions) in sufficiently formal languages [129, 130].

Systems Engineering. Model-driven systems engineering [12, 42] lifts models to primary de-
velopment artifacts that increase abstraction and engineering efficiency in the interdisciplinary
engineering of cyber-physical (production) systems. These models usually conform to (domain-
specific) modeling languages (such as Simulink [37], SysML [51], or AutomationML [98]), that
provide experts with required functionality and facilitate describing and integrating systems en-
gineering concerns. Consequently, the system description is distributed over several models and
tools that currently are not syntactically and semantically integrated. Designing and engineering
the systems of the IoP, therefore, demands novel solutions for the automated, ad-hoc integration of
modeling languages and their tools, e.g., as presented by Dalibor et al. [41], such that experts of the
different domains can leverage modeling views tailored to their desired level of abstraction across
domain boundaries and optimized for analysis. Software Language Engineering (SLE) [68] is
a discipline that investigates the efficient engineering and integration of heterogeneous modeling
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languages; hence SLE is a crucial prerequisite for providing domain-specific representations and
integrating knowledge from various domains within the IoP.

Integrating Modeling Languages and Tools. This model and language diversity [152] will
also be reflected in Digital Shadows that need to provide optimized structures for handling large
amounts of data, selected engineering models, formalized knowledge about data, models, and their
context. To this end, Digital Shadows need to be able to integrate high-volume structured and un-
structured data with semantically rich, detailed engineering models, and knowledge bases. Thus,
we need techniques capable of linking the different underlying modeling languages [27, 138] at
system design time as well as ad-hoc at runtime. These techniques consider syntactic [62] and
semantic integration [33] to bridge semantic gaps between the languages used to express parts of
the Digital Shadows, as, e.g., realized for the design of experiments in injection molding [13]. A
first concept on how Digital Shadows can be created and are handled during runtime together with
process mining techniques has been derived [22]. Efficiency is crucial to also enable an efficient
application to very large models. Therefore, research should leverage techniques from database
schema modeling [76] and artificial intelligence to enable compositional mechanisms [28] for syn-
tactic and semantic abstraction, aggregation, and integration of data and models.

Example. Domain experts from e-vehicle production define one or more Digital Shadow

Types [22] based on a conceptual model [10] for purposes related to production, e.g., quality moni-
toring or predictive maintenance. These types can be used as blueprints for concrete Digital Shad-
ows recorded from production data at runtime, e.g., a Digital Shadow Type might serve the purpose
to minimize the product rejection rate of the grinding process of front window panes and capture
the related information accordingly. During runtime, the Digital Shadows are created according
to their types and populated with models, data, and metadata. Using such Digital Shadows, the
rejection rates from every window pane are aggregated to every job on a grinding machine. Pe-
riodically, a new Digital Shadow is created that aggregates again the rejection rates based on the
new time slice.

Takeaway. Purpose-driven Digital Shadows can be created and provided at runtime using design

time models; thus, model-driven development supports and simplifies the automation of production.

6.4 Interconnected and Industry-Capable Infrastructure

The concept of Digital Shadows is based on the notion that a problem-specific view on the overall
process can be derived from a sufficient amount of process-related data. To this end, process data
needs to be recorded and collected, ideally in a fine-grained manner and by a variety of different
sensors, to provide a comprehensive description of the process. Subsequently, this description can
be scaled down to match the concrete requirements of a specific problem or task. In general, the
quality of the Digital Shadows correlates with the quality and the richness of the available data, i.e.,
larger amounts of data are generally favorable. Companies are thus incentivized to collect, process,
and store huge volumes and varieties of data, which consequently requires a capable infrastruc-
ture. Setting up this infrastructure and enabling the global WWL and its models introduce several
obstacles.

Data Integration. Availability and accessibility of information with high data quality is an
important issue in many production and business processes. For example, the quality assurance of
production companies could require access to detailed process data a long time after the production
is finished, which cannot be realized by traditional data integration approaches that use carefully
engineered data processing workflows to extract, transform, and load data into an integrated data
store. For the collection of data, we envision a data lake platform in which data is stored in its
raw format without prior integration or aggregation [61, 74]. Compression techniques on sensor
data could be applied to address the real-time requirements by reducing the amount of data, but a
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lossless compression should be guaranteed. For example, in a use case of Laser Powder Bed Fusion,
in which high power-density lasers are used to melt and fuse metallic powders, we apply dynamic
compression techniques to reduce the data volume, but to maintain the information content.

The data lake stores raw data to avoid restricting the data analysis to a predefined inte-
grated schema. The data in the lake should be enriched with semantic metadata and data qual-
ity information (e.g., source, accuracy, and time) to make it interpretable and usable in various
applications.

Data Collection. As the data lake is intended to collect information from many sources in the
WWL, the underlying infrastructure must be able to transfer very large amounts of data. This
requirement is independent of whether the data lake is deployed on-premise or in the cloud.

We already identified that cumulative data rates for a single production cell can easily be in
the range of giga- to peta-bytes for settings where several machines are interconnected [55]. Di-
rectly transmitting all data is thus often infeasible as available data rates are too low. The current
bandwidth limitations dictate pre-processing and aggregation to make the WWL possible at all,
although this form of data reduction techniques technically contradicts our previously stated re-
quirement that data lakes should obtain all information. Thus, it is vitally important to devise
domain knowledge-based methods which can first reduce the amount of data that needs to be
transferred without loss of information, e.g., if some values can be derived from others. In this
context, Lipp et al. [96] propose a process-driven data collection that allows to statically configure
which data needs to be collected in which phase of the process at what granularity. This high level
of control allows to precisely adjust the amount of generated data to the required signal accuracy
as well as the available bandwidths.

Similarly, compute capabilities in the network can also be used to first dynamically detect the
current process phase (opposed to the static definition by Lipp et al.) and then scale the generated
data volume as needed, e.g., ensuring high data quality in times of interesting process behavior
while reducing the load in idle times [87]. Additionally, these in-network processing techniques
allow for handling data at line-rate and can thus more easily further reduce the load by removing
(presumed) irrelevant information or by performing pre-computation steps [55]. Finding the right

trade-off between storing as much raw data as possible while also adhering to infrastructure limita-
tions by reducing the transmitted data is currently a predominant challenge. In the aforementioned
use case of Laser Powder Bed Fusion, for example, the compression techniques automatically adapt
their configuration to the network bandwidth, processing capabilities, and data structures. Provi-
sioning a suitable infrastructure with sufficient bandwidth and storage capabilities is certainly a
long-term goal, enhanced by carefully placed and designed in-network compute functions.

Low-Latency Guarantees. Apart from high data rates, the IoP-enabling infrastructure must
also satisfy tight latency bounds, which, for example, are needed for process control [132]. This
constraint is particularly relevant if decisions are to be made by a remote system or individual
based on broader information from the data lake, rather than by process-near controllers solely
based on local knowledge. In this case, physical latencies between the processes and remote sys-
tems are often already too high for very time-critical applications (sometimes with requirements
in the one-digit millisecond range), rendering pure remote solutions, e.g., over the Internet, in-
feasible. In-network processing again offers a solution as control programs can be deployed in
the network and thus significantly reduce the inherent latencies. These programs currently range
from simple LQR controllers [132] to basic line detection mechanisms [56] and can thus cover a
variety of simple control tasks. Additionally, complementary safety measures, such as emergency
stops, can also be realized in networking hardware, as is demonstrated by Cesen et al. [31]. The ac-
curacy and computing speed of such approaches is generally capable of reaching levels similar to
userspace applications, while networking devices are especially capable of processing significantly
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higher packet rates [86]. Yet, implementing the required functionality on the current generation
of programmable networking hardware is still challenging [86].

Control Loops. Thus, in the context of the IoP, we envision that critical decisions for cyber-
physical control loops are made quickly within the production cell, e.g., emergency shutoffs for
safety reasons. More complex controls are then implemented at the edge, within the network (in-
network processing), or in the cloud, where they can source additional data sources. Consequently,
the (local) decision quality improves with an IoP. Due to the interconnected nature of manufactur-
ing processes, companies even have the chance to account for issues in subsequent process steps.
For example, they can react to slight deviations or inaccuracies with control loop adjustments in
the next production cell, effectively implementing a real-time control loop for the shop floor. Here,
companies can rely on well-known approaches, or, in line with the IoP, they can utilize control
loop adjustments that originate from model-integrated artificial intelligence and the knowledge
base in form of the WWL.

Device Heterogeneity. The immense heterogeneity regarding the involved sensors and ma-
chinery, which often characterizes industrial production settings, is another challenge that needs
to be addressed [1, 35]. For example, depending on the vendor, sensors might differ in their ex-
pressiveness or in the protocols that they support. Addressing this challenge on a system user’s
level, Bodenbenner et al. [16] propose a domain-specific language that abstracts from the sensor-
specific details and allows a unified access to the sensor information. However, their solution does
not directly address how such sensors can actually be integrated and interconnected on a tech-
nical level. Additionally, devices can also change dynamically, e.g., if a process is reconfigured
to allow for the production of different products. High flexibility is thus one of the most impor-
tant infrastructure requirements. Especially when considering the long lifetime of industrial de-
vices, protocols capable of providing security even in these heterogeneous settings are needed [40].
Paniagua et al. [113] provide a survey of different architectural frameworks for Industry 4.0, such
as FIWARE, IDS [112], or BaSys4.0. Although these frameworks also address device heterogeneity,
they are not specific on the level of communication protocols. More specific digital industrial plat-
forms are provided by different Industry 4.0 key players such as Siemens (MindSphere) or Bosch
(IoT Suite) [115]. However, these platforms are often customer-specific solutions, i.e., they claim to
address heterogeneous data and devices, but often require a significant customization effort to fit
the needs of specific use cases. Additionally, we note that despite the trends of security-by-design
and privacy-by-design, devices and protocols must be configured correctly to benefit from these,
which is, however, a frequently neglected aspect [38, 39].

Example. Overall, an interconnected and industry-capable infrastructure will enable the e-
vehicle manufacturer to move away from a traditional assembly line towards a more dynamically
reconfigurable sequence of production steps [25]. In this context, the flexible data collection and
integration centered around the data lake is key for ensuring a sufficient richness of data even in
such dynamic settings; thus, allowing access to detailed process information at all times, e.g., for
quality assurance purposes. While technical advancements, e.g., regarding storage and data rates,
are important to steadily increase the amount of processible data, layered control loops will enable
a fine-grained control of all running processes to improve the overall efficiency of the system and
allow for quick responses to system changes.

Takeaway. The specific characteristics of industrial environments pose challenges that cannot

be addressed by traditional data management and networking solutions, as some aspects require the

inclusion of remote services or edge computing while other aspects simply do not support such ap-

proaches. Instead, a concept is needed, which carefully includes mechanisms to satisfy all of the men-

tioned needs: high-data rates, support for heterogeneous data structures, low-latency data processing,

and flexibility.
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Fig. 4. Matrix of strategic research directions and layers in the IoP. The size of the blue circles corresponds
to the priority (the bigger the more important).

7 STRATEGIC RESEARCH DIRECTIONS FOR THE INTERNET OF PRODUCTION

The challenges discussed above show that a sustainable transition towards smart industrial produc-
tion within the framework of Industry 4.0 is necessary that goes well beyond an interdisciplinary
collaboration between engineers and computer scientists. Several disciplines are being involved
in computer science, as we have demonstrated with the level-based construction of arguments in
the previous section. While we have so far approached the challenges individually by computer
science disciplines, we are now looking at a comprehensive view of necessary research efforts. To
this end, in the following, we present five general research areas in the domain of computer science
that need to be addressed to turn the concept of the IoP into reality. Figure 4 gives an overview of
the research areas and the required research efforts.

Standardized (Data) Interfaces. First, to ensure compatibility between individual components,
standardized interfaces, and communication protocols are necessary. This is an elementary pre-
requisite for a large-scale infrastructure in which heterogeneous data sources and vendor-specific
peculiarities participate. The development of a single all-embracing formalism is unrealistic. In-
stead, mechanisms for linking and mapping between different data sources, models, and systems
need to be developed. These mechanisms finally enable the linking of the current information si-
los. To be able to process queries over such linked data sets, the query processing mechanisms
must take mappings into account and should be able to retrieve and to reconcile data from differ-
ent sources. Model-based systems can facilitate the aggregation of heterogeneous systems. These
systems, in turn, help autonomous agents to communicate with each other and with the devices
in the WWL via standardized interfaces. Thereby, the knowledge representation in the IoP should
also be standardized. As the last element, interfaces to humans need to be included here, which
can, for example, be normalized or specifically adapted for the usage context. Ultimately, the
concept of digital shadows must be further refined here, as their combination with humans can
form an exceptionally smart joint cognitive system. The domain knowledge leads us to the next
aspect.

Interconnecting (Domain) Knowledge. The interconnected domain knowledge must be
shareable and accessible to contribute to the global knowledge base. It must be accessible by au-
tonomous agent networks, as well as operators that want to build on the knowledge from other
domains. To this end, mechanisms and models must be developed, to allow integration and provi-
sion of metadata and context together with the data. Today, most research on security and privacy
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is focused on specific human-specific data. To enable secure collaboration in competitive indus-
trial scenarios, appropriate technical solutions are needed, with a special emphasis on the area
of connecting previously unaffiliated businesses. Here, questions arise that look into the privacy-
preserving matching of relevant resources with an inquiring party. The goal should be to create a
distributed decentralized knowledge service that operates on data in the WWL.

Burden-Free Operation. Some hurdles need to be overcome on the path to a world-scale de-
ployment. A burden-free operation ensures that companies are interested in connecting to the
IoP and integrate it into their production sites. Therefore, an effortless implementation must be
ensured. Model-based approaches need to be seamlessly integrated to allow autonomous informa-
tion sharing for triggered queries, answered by autonomous agents. Hereby, it is essential that au-
tomation without human intervention works flawlessly and that automated support systems with
a human-in-the-loop are designed right to avoid automation bias and the development of mistrust.
The infrastructure needs to ensure low-latency guarantees, despite the underlying unstructured
peer-to-peer topology. Likewise, real-time constraints mandate automated protocols for bargain-
ing, information retrieval, and exchange, as well as for billing. Consequentially, the system must
be adaptable for a diverse set of specific use cases.

Real-World Integration. The large amount of available production scenarios poses a challenge
to the real-world integration of the IoP. Even more, within these scenarios, the vast amount of data
from heterogeneous sources and their representation in interfaces, as well as their management,
are open concerns. In particular, methods for capturing and integrating expertise are missing, es-
pecially on the scale of industrial knowledge and data rates. They are crucial to provide sufficient
input for the AI component of the production queries. At the same time, operation on the data
needs to be transparent to involved humans, including aspects such as explainable AI. Key ques-
tions evolve around what information is relevant and how it can be made accessible, transparent,
and actionable in a meaningful way, while preserving data correctness [117], to maximize the ben-
efits. With regard to the transition of existing systems, some research opportunities arise. On the
one hand, existing model-based representations of expert knowledge need to be re-used. On the
other hand, current data silos need to be added into a distributed data storage infrastructure, to
enable long-term gains.

Long-Term (Information) Usage. Finally, the last aspect of our research roadmap towards the
IoP is long-term usage. Once the required infrastructure is in place, it needs to be flexible enough
to be sustained for future generations of industrial production systems. Research on how to imple-
ment accountability [118, 123] and provenance [57] information in scenarios with wildly-branched
dependencies and origins is still in its infancy. Thereby, versioned data is required for agents for
consecutive information and explainability. Regarding humane aspects, modeling of tacit knowl-
edge and its digital capture needs to be enabled for the long run. Guarantees for data quality and
derived models must be defined to enable not only the usage of data but also to support later
reusability. Hereby, feedback and recovery mechanisms need to ensure the connection between
models and data, in a permanent, traceable, and synchronous manner. Related to this is defining
persistent identifiers for models, data, metadata, and other objects [59]. Further aspects requiring
research are long-term reliability of data storage and derived decisions. Similarly, means for con-
flict resolution need to be integrated into the IoP; only then, the risks for querying and utilizing
the IoP are mitigated.

Next Steps. To arrive at the envisioned global IoP, the mentioned research areas have to ad-
vance simultaneously and in close collaboration. Hence, experts with suitable interdisciplinary
backgrounds are essential. In its entirety, the true value of the WWL as the IoP’s prime ap-
plication will increase through the connection and commitment of as many participants as
possible.
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8 CONCLUSION

Our vision of the IoP and its enabling concepts of the WWL and Digital Shadows extend beyond
singular CPS and aim at the complete vertical and horizontal integration of production systems,
smart data analytics, autonomous agents, and task-, context-, and user-adaptive interfaces.

To implement this vision and to realize significant improvements in production, numerous ac-
tivities in multiple domains are necessary. In this article, we focused on research areas originating
from computer science: Production systems must be securely interconnected between different
locations, heterogeneous data streams from various systems must be captured, processed, aggre-
gated, stored with a sufficient level of detail, and semantically enriched. An infrastructure for syn-
chronous and asynchronous access to the data must be developed, existing data analysis methods
must be applied, and new algorithms that fit the data and processes must be designed. Queries are
not necessarily user-defined as concepts from AI should be implemented to establish new connec-
tions between the collected data and derived Digital Shadows. Finally, the results of these analyses
must be transparently communicated to users of the IoP.

The changes we propose do not have to be implemented overnight, nor can they be. Instead, the
IoP allows for a phased approach. For example, Retrofitting is a suitable approach, which acknowl-
edges existing asset-heavy long-term investments by upgrading them with sensors and actuators
to get smart production systems [82]. This also effectively addresses the issue of sustainable produc-
tion systems [142]. In further enhancement steps, initially limited WWL agents can then integrate
further AI tools as long as open interfaces are available.

Short-term benefits of the IoP result from higher production efficiency through smarter pro-
duction control for faster product and innovation cycles, that learns to adapt to new materials
and products, and interfaces that make production states transparent. In the long term, the WWL
as an application of the IoP will improve production engineering research, increase the viability
of industrial manufacturing, and positively impact society and the environment as a whole: By
uncovering previously unknown relationships along and across process chains, through the iden-
tification of new potential to optimize the production efficiency, energy consumption, and value
creation, and by designing interfaces that increase employee autonomy, integrate their capabilities,
and are aligned with their values.

Beyond process chains in manufacturing, further implications up to the management level of
companies are to be expected by the possibilities the IoP offers. The flexibility unlocked through
new data streams will also impact business models. For example, new, dynamic forms of collabo-
ration in corporate networks through data-driven platforms will emerge, extending the research
scope from engineering, and computer science to economic disciplines.

We conclude that many complex research challenges still remain to be solved to realize the
vision of a trusted, interconnected, and intelligent production landscape. However, the work to-
wards the IoP requires an overarching commitment to provide measurable benefits for industry,
research, and society. Thus, to turn the vision of increasingly networked, smarter, and sustainable
industrial production into reality, all aspects and their comprehensive and interwoven effects must
be well-aligned and understood deeply. Conversely, this requires large, heterogeneous, and inter-
disciplinary teams led by an integrated research framework. We intend to contribute to achieving
these goals within our ongoing research cluster IoP, and invite everyone within computer science
to join us in contributing research towards the challenges laid out in this article.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers and the editor for their valuable feed-
back and comments.

ACM Transactions on Internet of Things, Vol. 3, No. 2, Article 15. Publication date: February 2022.



A Computer Science Perspective on Digital Transformation in Production 15:25

REFERENCES

[1] Mohammad Aazam, Sherali Zeadally, and Khaled A. Harras. 2018. Deploying fog computing in industrial internet of

things and industry 4.0. IEEE Transactions on Industrial Informatics 14, 10 (2018), 4674–4682. DOI:https://doi.org/10.

1109/TII.2018.2855198

[2] Amina Adadi and Mohammed Berrada. 2018. Peeking inside the black-box: A survey on explainable artificial intelli-

gence. IEEE Access 6 (2018), 52138–52160. DOI:https://doi.org/10.1109/ACCESS.2018.2870052

[3] Jan Niklas Adams, Sebastiaan J. van Zelst, Lara Quack, and Kathrin Hausmann, et al. 2021. A framework for explain-

able concept drift detection in process mining. In 19th Int. Conf. on Business Process Management (BPM’21), Vol. 12875.

Springer, 400–416. https://doi.org/10.1007/978-3-030-85469-0_25

[4] Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Alberto Barbado,

Salvador García, Sergio Gil-López, Daniel Molina, Richard Benjamins, Raja Chatila, and Francisco Herrera. 2020.

Explainable artificial intelligence : Concepts, taxonomies, opportunities and challenges toward responsible AI. Infor-

mation Fusion 58 (2020), 82–115. DOI:https://doi.org/10.1016/j.inffus.2019.12.012

[5] Lennart Bader, Jan Pennekamp, Roman Matzutt, David Hedderich, Markus Kowalski, Volker Lücken, and Klaus

Wehrle. 2021. Blockchain-based privacy preservation for supply chains supporting lightweight multi-hop informa-

tion accountability. Information Processing & Management 58, 3 (2021), 102529. DOI:https://doi.org/10.1016/j.ipm.

2021.102529

[6] Lisanne Bainbridge. 1983. Ironies of automation. Automatica 19, 6 (1983), 775–779. DOI:https://doi.org/10.1016/0005-

1098(83)90046-8

[7] Eric Ballot, Benoit Montreuil, and Russell Meller. 2014. The Physical Internet. La Documentation Française.

[8] Barbara Rita Barricelli, Elena Casiraghi, and Daniela Fogli. 2019. A survey on digital twin: Definitions, characteris-

tics, applications, and design implications. IEEE Access 7 (2019), 167653–167671. DOI:https://doi.org/10.1109/ACCESS.

2019.2953499

[9] Gordon Baxter, John Rooksby, Yuanzhi Wang, and Ali Khajeh-Hosseini. 2012. The ironies of automation: Still going

strong at 30?. In Proceedings of the 30th European Conference on Cognitive Ergonomics. ACM, 65–71. https://doi.org/

10.1145/2448136.2448149

[10] Fabian Becker, Pascal Bibow, Manuela Dalibor, Aymen Gannouni, Viviane Hahn, Christian Hopmann, Matthias

Jarke, Moritz Kröger, Johannes Lipp, Judith Maibaum, Judith Michael, Bernhard Rumpe, Patrick Sapel, Niklas Schäfer,

Georg J. Schmitz, Günther Schuh, and Andreas Wortmann. 2021. A conceptual model for digital shadows in industry

and its application. In Proceedings of the 40th International Conference on Conceptual Modeling, Vol. 13011. Springer,

271–281. DOI:https://doi.org/10.1007/978-3-030-89022-3_22

[11] Paolo Bellavista and Alessio Mora. 2019. Edge cloud as an enabler for distributed AI in industrial IoT applications: the

experience of the IoTwins project. In Proceedings of the 1st Workshop on Artificial Intelligence and Internet of Things,

Vol. 2502. CEUR-WS, 1–15.

[12] Luca Berardinelli, Alexandra Mazak, Oliver Alt, Manuel Wimmer, and Gerti Kappel. 2017. Model-Driven Systems

Engineering: Principles and Application in the CPPS Domain. Springer, 261–299. DOI:https://doi.org/10.1007/978-3-

319-56345-9_11

[13] Pascal Bibow, Manuela Dalibor, Christian Hopmann, Ben Mainz, Bernhard Rumpe, David Schmalzing, Mauritius

Schmitz, and Andreas Wortmann. 2020. Model-driven development of a digital twin for injection molding. In Pro-

ceedings of the 32nd International Conference on Advanced Information Systems Engineering, Vol. 12127. Springer,

85–100. https://doi.org/10.1007/978-3-030-49435-3_6

[14] Hannah Biermann, Philipp Brauner, and Martina Ziefle. 2021. How context and design shape human-robot trust and

attributions. Paladyn, Journal of Behavioural Robotics 12, 1 (2021), 74–86. DOI:https://doi.org/10.1515/pjbr-2021-0008

[15] Florian Biesinger, Davis Meike, Benedikt Kraß, and Michael Weyrich. 2019. A digital twin for production planning

based on cyber-physical systems: A case study for a cyber-physical system-based creation of a digital twin. Procedia

CIRP 79 (2019), 355–360. DOI:https://doi.org/10.1016/j.procir.2019.02.087

[16] Matthias Bodenbenner, Mark Pascal Sanders, Benjamin Montavon, and Robert H. Schmitt. 2020. Domain-specific

language for sensors in the internet of production. In Proceedings of the 10th Congress of the German Academic

Association for Production Technology, Vol. 20. Springer, 448–456. DOI:https://doi.org/10.1007/978-3-662-62138-7_45

[17] Ronald J. Brachman and Hector J. Levesque. 2004. Knowledge Representation and Reasoning (1st ed.). Morgan Kauf-

mann. DOI:https://doi.org/10.1016/B978-1-55860-932-7.X5083-3

[18] Arnaud Braud, Gaël Fromentoux, Benoit Radier, and Olivier Le Grand. 2021. The road to european digital sovereignty

with gaia-x and IDSA. IEEE Network 35, 2 (2021), 4–5. DOI:https://doi.org/10.1109/MNET.2021.9387709

[19] Philipp Brauner, Ralf Philipsen, André Calero Valdez, Martina Ziefle, and Ralf Philipsen. 2019. What happens when

decision support systems fail? – The importance of usability on performance in erroneous systems. Behaviour &

Information Technology 38, 12 (2019), 1225–1242. DOI:https://doi.org/10.1080/0144929X.2019.1581258

ACM Transactions on Internet of Things, Vol. 3, No. 2, Article 15. Publication date: February 2022.

https://doi.org/10.1109/TII.2018.2855198
https://doi.org/10.1109/ACCESS.2018.2870052
https://doi.org/10.1007/978-3-030-85469-0_25
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.ipm.2021.102529
https://doi.org/10.1016/0005-1098(83)90046-8
https://doi.org/10.1109/ACCESS.2019.2953499
https://doi.org/10.1145/2448136.2448149
https://doi.org/10.1007/978-3-030-89022-3_22
https://doi.org/10.1007/978-3-319-56345-9_11
https://doi.org/10.1007/978-3-030-49435-3_6
https://doi.org/10.1515/pjbr-2021-0008
https://doi.org/10.1016/j.procir.2019.02.087
https://doi.org/10.1007/978-3-662-62138-7_45
https://doi.org/10.1016/B978-1-55860-932-7.X5083-3
https://doi.org/10.1109/MNET.2021.9387709
https://doi.org/10.1080/0144929X.2019.1581258


15:26 P. Brauner et al.

[20] Christian Brecher, Sabina Jeschke, Günther Schuh, Susanne Aghassi, Jens Arnoscht, Fabian Bauhoff, Sascha Fuchs,

Claudia Jooß, Wilhelm Oliver Karmann, Stefan Kozielski, Simon Orilski, Anja Simone Richert, Andreas Roderburg,

Michael Schiffer, Sebastian Stiller, Johannes Schubert, Florian Welter, and Stefan Tönissen. 2012. Integrative Produc-

tion Technology for High-Wage Countries. Springer, 17–76. DOI:https://doi.org/10.1007/978-3-642-21067-9_2

[21] Florian Brillowski, Lars Gleim, Martin Liebenberg, Thomas Schemmer, Liam Tirpitz, Stefan Decker, Gerhard Lake-

meyer, Martina Ziefle, Christoph Greb, and Thomas Gries. 2021. Towards a continuously improving composites

manufacturing by employing the internet of production. In Proceedings of the Composites and Advanced Materials

Expo Conference.

[22] Tobias Brockhoff, Malte Heithoff, István Koren, Judith Michael, Jérôme Pfeiffer, Bernhard Rumpe, Merih Seran Uysal,

Wil M. P. van der Aalst, and Andreas Wortmann. 2021. Process prediction with digital twins. In Proceedings of the

Companion Proceedings ACM/IEEE 24th International Conference on Model Driven Engineering Languages and Systems.

IEEE. DOI:https://doi.org/10.1109/MODELS-C53483.2021.00032

[23] Manfred Broy. 2006. Challenges in automotive software engineering. In Proceedings of the 28th International Confer-

ence on Software Engineering. ACM, 33–42. DOI:https://doi.org/10.1145/1134285.1134292

[24] Koen Bruynseels, Filippo Santoni de Sio, and Jeroen van den Hoven. 2018. Digital twins in health care: Ethical

implications of an emerging engineering paradigm. Frontiers in Genetics 9 (2018), 31. DOI:https://doi.org/10.3389/

fgene.2018.00031

[25] Armin F. Buckhorst, Benjamin Montavon, Dominik Wolfschläger, Melanie Buchsbaum, Amir Shahidi, Henning

Petruck, Ike Kunze, Jan Pennekamp, Christian Brecher, Mathias Hüsing, Burkhard Corves, Verena Nitsch, Klaus

Wehrle, and Robert H. Schmitt. 2021. Holarchy for line-less mobile assembly systems operation in the context of the

internet of production. Procedia CIRP 99 (2021), 448–453. DOI:https://doi.org/10.1016/j.procir.2021.03.064

[26] Bundesministerium für Bildung und Forschung. 2015. Industrie 4.0. Retrieved May 26, 2021 from https://www.bmbf.

de/de/zukunftsprojekt-industrie-4-0-848.html.

[27] Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann. 2018. Modeling language

variability with reusable language components. In Proceedings of the 22nd International Systems and Software Product

Line Conference. ACM, 65–75. DOI:https://doi.org/10.1145/3233027.3233037

[28] Arvid Butting, Jerome Pfeiffer, Bernhard Rumpe, and Andreas Wortmann. 2020. A compositional framework for

systematic modeling language reuse. In Proceedings of the 23rd ACM/IEEE International Conference on Model Driven

Engineering Languages and Systems. ACM, 35–46. DOI:https://doi.org/10.1145/3365438.3410934

[29] André Calero Valdez, Philipp Brauner, Anne Kathrin Schaar, Andreas Holzinger, and Martina Ziefle. 2015. Reducing

complexity with simplicity - usability methods for industry 4.0. In Proceedings of the 19th Triennial Congress of the

International Ergonomics Association. IEA. DOI:https://doi.org/10.13140/RG.2.1.4253.6809

[30] Catapult. 2013. High Value Manufacturing Catapult. Retrieved May 26, 2021 from https://hvm.catapult.org.uk/.

[31] Fabricio E. Rodriguez Cesen, Levente Csikor, Carlos Recalde, Christian Esteve Rothenberg, and Gergely Pongrácz.

2020. Towards low latency industrial robot control in programmable data planes. In Proceedings of the 6th IEEE

Conference on Network Softwarization. IEEE, 165–169. DOI:https://doi.org/10.1109/NetSoft48620.2020.9165531

[32] Arnab Chakrabarti, Christoph Quix, Sandra Geisler, Jaroslav Pullmann, Artur Khromov, and Matthias Jarke. 2018.

Goal-oriented modelling of relations and dependencies in data marketplaces. In Proceedings of the 11th Interna-

tional i* Workshop co-located with the 30th International Conference on Advanced Information Systems Engineering,

Vol. 2118.

[33] Benoit Combemale, Jörg Kienzle, Gunter Mussbacher, Olivier Barais, Erwan Bousse, Walter Cazzola, Philippe Col-

let, Thomas Degueule, Robert Heinrich, Jean-Marc Jézéquel, Manuel Leduc, Tanja Mayerhofer, Sébastien Mosser,

Matthias Schöttle, Misha Strittmatter, and Andreas Wortmann. 2018. Concern-oriented language development : Fos-

tering reuse in language engineering. Computer Languages, Systems & Structures 54 (2018), 139–155. DOI:https:

//doi.org/10.1016/j.cl.2018.05.004

[34] Sara J. Czaja, Walter R. Boot, Neil Charness, and Wendy A. Rogers. 2009. Designing for Older Adults: Principles and

Creative Human Factors Approaches (3rd ed.). CRC Press. DOI:https://doi.org/10.1201/b22189

[35] Li Da Xu, Wu He, and Shancang Li. 2014. Internet of things in industries: A survey. IEEE Transactions on Industrial

Informatics 10, 4 (2014), 2233–2243. DOI:https://doi.org/10.1109/TII.2014.2300753

[36] Li Da Xu, Eric L. Xu, and Ling Li. 2018. Industry 4.0: State of the art and future trends. International Journal of

Production Research 56, 8 (2018), 2941–2962. DOI:https://doi.org/10.1080/00207543.2018.1444806

[37] James B. Dabney and Thomas L. Harman. 2003. Mastering Simulink (1st ed.). Pearson.

[38] Markus Dahlmanns, Johannes Lohmöller, Ina Berenice Fink, Jan Pennekamp, Klaus Wehrle, and Martin Henze. 2020.

Easing the conscience with OPC UA: An internet-wide study on insecure deployments. In Proceedings of the ACM

Internet Measurement Conference. ACM, 101–110. DOI:https://doi.org/10.1145/3419394.3423666

[39] Markus Dahlmanns, Johannes Lohmöller, Jan Pennekamp, Jörn Bodenhausen, Klaus Wehrle, and Martin Henze. 2022.

Missed opportunities: Measuring the untapped TLS support in the industrial Internet of Things. In Proceedings of the

ACM Transactions on Internet of Things, Vol. 3, No. 2, Article 15. Publication date: February 2022.

https://doi.org/10.1007/978-3-642-21067-9_2
https://doi.org/10.1109/MODELS-C53483.2021.00032
https://doi.org/10.1145/1134285.1134292
https://doi.org/10.3389/fgene.2018.00031
https://doi.org/10.1016/j.procir.2021.03.064
https://www.bmbf.de/de/zukunftsprojekt-industrie-4-0-848.html
https://doi.org/10.1145/3233027.3233037
https://doi.org/10.1145/3365438.3410934
https://doi.org/10.13140/RG.2.1.4253.6809
https://hvm.catapult.org.uk/
https://doi.org/10.1109/NetSoft48620.2020.9165531
https://doi.org/10.1016/j.cl.2018.05.004
https://doi.org/10.1201/b22189
https://doi.org/10.1109/TII.2014.2300753
https://doi.org/10.1080/00207543.2018.1444806
https://doi.org/10.1145/3419394.3423666


A Computer Science Perspective on Digital Transformation in Production 15:27

17th ACM ASIA Conference on Computer and Communications Security. ACM. DOI:https://doi.org/10.1145/3488932.

3497762

[40] Markus Dahlmanns, Jan Pennekamp, Ina Berenice Fink, Bernd Schoolmann, Klaus Wehrle, and Martin Henze. 2021.

Transparent end-to-end security for publish/subscribe communication in cyber-physical systems. In Proceedings of

the 1st ACM Workshop on Secure and Trustworthy Cyber-Physical Systems. ACM, 78–87. DOI:https://doi.org/10.1145/

3445969.3450423

[41] Manuela Dalibor, Nico Jansen, Judith Michael, Bernhard Rumpe, and Andreas Wortmann. 2019. Towards sustainable

systems engineering-integrating tools via component and connector architectures. In Antriebstechnisches Kolloquium

2019: Tagungsband zur Konferenz. Books on Demand, 121–133.

[42] Manuela Dalibor, Nico Jansen, Bernhard Rumpe, Louis Wachtmeister, and Andreas Wortmann. 2019. Model-driven

systems engineering for virtual product design. In Proceedings of the ACM/IEEE 22nd International Conference on

Model Driven Engineering Languages and Systems Companion. IEEE, 430–435. DOI:https://doi.org/10.1109/MODELS-

C.2019.00069

[43] Manuela Dalibor, Judith Michael, Bernhard Rumpe, Simon Varga, and Andreas Wortmann. 2020. Towards a model-

driven architecture for interactive digital twin cockpits. In Proceedings of the 39th International Conference on Con-

ceptual Modeling, Vol. 12400. Springer, 377–387. DOI:https://doi.org/10.1007/978-3-030-62522-1_28

[44] Dominik Dellermann, Philipp Ebel, Matthias Söllner, and Jan Marco Leimeister. 2019. Hybrid intelligence. Business

& Information Systems Engineering 61, 5 (2019), 637–643. DOI:https://doi.org/10.1007/s12599-019-00595-2

[45] Derek Doran, Sarah Schulz, and Tarek R. Besold. 2017. What does explainable AI really mean? A new conceptualiza-

tion of perspectives. In Proceedings of the 1st International Workshop on Comprehensibility and Explanation in AI and

ML, Vol. 2071.

[46] Mica R. Endsley. 2017. From here to autonomy: Lessons learned from human–automation research. Human Factors

59, 1 (2017), 5–27. DOI:https://doi.org/10.1177/0018720816681350

[47] Paola Fantini, Marta Pinzone, and Marco Taisch. 2020. Placing the operator at the centre of industry 4.0 design:

Modelling and assessing human activities within cyber-physical systems. Computers & Industrial Engineering 139

(2020), 105058. DOI:https://doi.org/10.1016/j.cie.2018.01.025

[48] Oliver Fisher, Nicholas Watson, Laura Porcu, Darren Bacon, Martin Rigley, and Rachel L. Gomes. 2018. Cloud

manufacturing as a sustainable process manufacturing route. Journal of Manufacturing Systems 47 (2018), 53–68.

DOI:https://doi.org/10.1016/j.jmsy.2018.03.005

[49] Robert France and Bernhard Rumpe. 2007. Model-driven development of complex software: A research roadmap. In

Proceedings of the Future of Software Engineering. IEEE, 37–54. DOI:https://doi.org/10.1109/FOSE.2007.14

[50] Enzo Morosini Frazzon, Jens Hartmann, Thomas Makuschewitz, and Bernd Scholz-Reiter. 2013. Towards socio-cyber-

physical systems in production networks. Procedia CIRP 7 (2013), 49–54. DOI:https://doi.org/10.1016/j.procir.2013.05.

009

[51] Sanford Friedenthal, Alan Moore, and Rick Steiner. 2014. A Practical Guide to SysML: The Systems Modeling Language

(3rd ed.). Morgan Kaufmann.

[52] Günter Gans, Matthias Jarke, Stefanie Kethers, and Gerhard Lakemeyer. 2003. Continuous requirements management

for organisation networks: A (dis) trust-based approach. Requirements Engineering 8, 1 (2003), 4–22. DOI:https://doi.

org/10.1007/s00766-002-0163-8

[53] Jie Gao, Yinliang Yao, Valerie C. Y. Zhu, Linyan Sun, and Lin Lin. 2011. Service-oriented manufacturing: A new

product pattern and manufacturing paradigm. Journal of Intelligent Manufacturing 22 (2011), 435—446. DOI:https:

//doi.org/10.1007/s10845-009-0301-y

[54] Arkadii Gerasimov, Judith Michael, Lukas Netz, Bernhard Rumpe, and Simon Varga. 2020. Continuous transition from

model-driven prototype to full-size real-world enterprise information systems. In Proceedings of the 25th Americas

Conference on Information Systems. AIS, 1–10.

[55] René Glebke, Martin Henze, Klaus Wehrle, Philipp Niemietz, Daniel Trauth, Patrick Mattfeld, and Thomas Bergs.

2019. A case for integrated data processing in large-scale cyber-physical systems. In Proceedings of the 52nd Hawaii

International Conference on System Sciences. AIS, 7252–7261. DOI:https://doi.org/10.24251/HICSS.2019.871

[56] René Glebke, Johannes Krude, Ike Kunze, Jan Rüth, Felix Senger, and Klaus Wehrle. 2019. Towards executing com-

puter vision functionality on programmable network devices. In Proceedings of the 1st ACM CoNEXT Workshop on

Emerging in-Network Computing Paradigms. ACM, 15–20. DOI:https://doi.org/10.1145/3359993.3366646

[57] Lars Gleim, Jan Pennekamp, Martin Liebenberg, Melanie Buchsbaum, Philipp Niemietz, Simon Knape, Alexander

Epple, Simon Storms, Daniel Trauth, Thomas Bergs, Christian Brecher, Stefan Decker, Gerhard Lakemeyer, and Klaus

Wehrle. 2020. FactDAG: Formalizing data interoperability in an internet of production. IEEE Internet of Things Journal

7, 4 (2020), 3243–3253. DOI:https://doi.org/10.1109/JIOT.2020.2966402

[58] Kate Goddard, Abdul Roudsari, and Jeremy C. Wyatt. 2012. Automation bias: A systematic review of frequency, effect

mediators, and mitigators. Journal of the American Medical Informatics Association 19, 1 (2012), 121–127. DOI:https:

//doi.org/10.1136/amiajnl-2011-000089

ACM Transactions on Internet of Things, Vol. 3, No. 2, Article 15. Publication date: February 2022.

https://doi.org/10.1145/3488932.3497762
https://doi.org/10.1145/3445969.3450423
https://doi.org/10.1109/MODELS-C.2019.00069
https://doi.org/10.1007/978-3-030-62522-1_28
https://doi.org/10.1007/s12599-019-00595-2
https://doi.org/10.1177/0018720816681350
https://doi.org/10.1016/j.cie.2018.01.025
https://doi.org/10.1016/j.jmsy.2018.03.005
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1016/j.procir.2013.05.009
https://doi.org/10.1007/s00766-002-0163-8
https://doi.org/10.1007/s10845-009-0301-y
https://doi.org/10.24251/HICSS.2019.871
https://doi.org/10.1145/3359993.3366646
https://doi.org/10.1109/JIOT.2020.2966402
https://doi.org/10.1136/amiajnl-2011-000089


15:28 P. Brauner et al.

[59] Pavel Golodoniuc, Nicholas J. Car, and Jens Klump. 2017. Distributed persistent identifiers system design. Data Science

Journal 16, 34 (2017), 34:1–34:12. DOI:https://doi.org/10.5334/dsj-2017-034

[60] David Gunning. 2019. APICS Dictionary, (16th ed.). ASCM.

[61] Rihan Hai. 2020. Data Integration and Metadata Management in Data Lakes. Ph. D. Dissertation. RWTH Aachen

University. DOI:https://doi.org/10.18154/RWTH-2020-08233

[62] Robert Heim, Pedram Mir Seyed Nazari, Bernhard Rumpe, and Andreas Wortmann. 2016. Compositional language

engineering using generated, extensible, static type-safe visitors. In Proceedings of the 12th European Conference on

Modelling Foundations and Applications, Vol. 9764. Springer, 67–82. DOI:https://doi.org/10.1007/978-3-319-42061-5_5

[63] Martin Henze. 2020. The quest for secure and privacy-preserving cloud-based industrial cooperation. In Proceed-

ings of the Conference on Communications and Network Security. IEEE. DOI:https://doi.org/10.1109/CNS48642.2020.

9162199

[64] Jens Hiller, Jan Pennekamp, Markus Dahlmanns, Martin Henze, Andriy Panchenko, and Klaus Wehrle. 2019. Tailoring

onion routing to the internet of things: Security and privacy in untrusted environments. In Proceedings of the 27th

International Conference on Network Protocols. IEEE. DOI:https://doi.org/10.1109/ICNP.2019.8888033

[65] Kevin Anthony Hoff and Masooda Bashir. 2015. Trust in automation: Integrating empirical evidence on factors that

influence trust. Human Factors 57, 3 (2015), 407–434. DOI:https://doi.org/10.1177/0018720814547570

[66] Till Hofmann, Nicolas Limpert, Victor Mataré, Alexander Ferrein, and Gerhard Lakemeyer. 2019. Winning the

robocup logistics league with fast navigation, precise manipulation, and robust goal reasoning. In Proceedings of the

RoboCup 2019: Robot World Cup XXIII, Vol. 11531. Springer, 504–516. DOI:https://doi.org/10.1007/978-3-030-35699-

6_41

[67] Till Hofmann, Nicolas Limpert, Victor Mataré, Sebastian Schönitz, Tim Niemueller, Alexander Ferrein, and Gerhard

Lakemeyer. 2018. The Carologistics RoboCup Logistics Team 2018. Technical Report. RWTH Aachen University and

Aachen University of Applied Sciences.

[68] Katrin Hölldobler, Bernhard Rumpe, and Andreas Wortmann. 2018. Software language engineering in the large:

Towards composing and deriving languages. Computer Languages, Systems & Structures 54 (2018), 386–405. DOI:https:

//doi.org/10.1016/j.cl.2018.08.002

[69] Gregor Höpfner, Georg Jacobs, Thilo Zerwas, Imke Drave, Joerg Berroth, Christian Guist, Bernhard Rumpe, and Jens

Kohl. 2021. Model-based design workflows for cyber-physical systems applied to an electric-mechanical coolant

pump. In Proceedings of the 19th Drive Train Technology Conference, Vol. 1097. IOP Publishing. DOI:https://doi.org/

10.1088/1757-899X/1097/1/012004

[70] Wallace J. Hopp and Mark L. Spearman. 2004. To pull or not to pull: What is the question? Manufacturing & Service

Operations Management 6, 2 (2004), 133–148. DOI:https://doi.org/10.1287/msom.1030.0028

[71] Industrial Value Chain Initiative. 2019. What is IVI? – Industrial Value Chain Initiative. Retrieved May 26, 2021 from

https://iv-i.org/wp/en/about-us/whatsivi/.

[72] International Trade Administration. 2021. Korea - Manufacturing Technology - Smart Factory. Retrieved May 26,

2021 from https://www.privacyshield.gov/article?id=Korea-Manufacturing-Technology-Smart-Factory.

[73] Matthias Jarke. 2020. Data sovereignty and the internet of production. In Proceedings of the 32nd International Confer-

ence on Advanced Information Systems Engineering, Vol. 12127. Springer, 549–558. DOI:https://doi.org/10.1007/978-

3-030-49435-3_34

[74] Matthias Jarke and Christoph Quix. 2017. On Warehouses, Lakes, and Spaces: The Changing Role of Conceptual Mod-

eling for Data Integration. Springer, 231–245. DOI:https://doi.org/10.1007/978-3-319-67271-7_16

[75] Szilárd Jaskó, Adrienn Skrop, Tibor Holczinger, Tibor Chován, and János Abonyi. 2020. Development of manu-

facturing execution systems in accordance with industry 4.0 requirements: A review of standard- and ontology-

based methodologies and tools. Computers in Industry 123 (2020), 103300. DOI:https://doi.org/10.1016/j.compind.

2020.103300

[76] Manfred A. Jeusfeld, Matthias Jarke, and John Mylopoulos. 2009. Metamodeling for Method Engineering. The MIT

Press.

[77] David Jones, Chris Snider, Aydin Nassehi, Jason Yon, and Ben Hicks. 2020. Characterising the digital twin: A sys-

tematic literature review. CIRP Journal of Manufacturing Science and Technology 29, Part A (2020), 36–52. DOI:https:

//doi.org/10.1016/j.cirpj.2020.02.002

[78] Bzhwen A. Kadir, Ole Broberg, and Carolina Souza da Conceicao. 2019. Current research and future perspectives on

human factors and ergonomics in industry 4.0. Computers & Industrial Engineering 137 (2019), 106004. DOI:https:

//doi.org/10.1016/j.cie.2019.106004

[79] Ravi Kalaiarasan, Jan Olhager, Magnus Wiktorsson, and Yongkuk Jeong. 2020. Production logistics visibility – per-

spectives, principles and prospects. In Proceedings of the 9th Swedish Production Symposium on Advances in Transdis-

ciplinary Engineering, Vol. 13. IOS Press, 501–510. DOI:https://doi.org/10.3233/ATDE200188

ACM Transactions on Internet of Things, Vol. 3, No. 2, Article 15. Publication date: February 2022.

https://doi.org/10.5334/dsj-2017-034
https://doi.org/10.18154/RWTH-2020-08233
https://doi.org/10.1007/978-3-319-42061-5_5
https://doi.org/10.1109/CNS48642.2020.9162199
https://doi.org/10.1109/ICNP.2019.8888033
https://doi.org/10.1177/0018720814547570
https://doi.org/10.1007/978-3-030-35699-6_41
https://doi.org/10.1016/j.cl.2018.08.002
https://doi.org/10.1088/1757-899X/1097/1/012004
https://doi.org/10.1287/msom.1030.0028
https://iv-i.org/wp/en/about-us/whatsivi/
https://www.privacyshield.gov/article?id=Korea-Manufacturing-Technology-Smart-Factory
https://doi.org/10.1007/978-3-030-49435-3_34
https://doi.org/10.1007/978-3-319-67271-7_16
https://doi.org/10.1016/j.compind.2020.103300
https://doi.org/10.1016/j.cirpj.2020.02.002
https://doi.org/10.1016/j.cie.2019.106004
https://doi.org/10.3233/ATDE200188


A Computer Science Perspective on Digital Transformation in Production 15:29

[80] Nasr Kasrin, Maliha Qureshi, Simon Steuer, and Daniela Nicklas. 2018. Semantic data management for

experimental manufacturing technologies. Datenbank-Spektrum 18, 1 (2018), 27–37. DOI:https://doi.org/10.1007/

s13222-018-0274-0

[81] Jörg Christian Kirchhof, Judith Michael, Bernhard Rumpe, Simon Varga, and Andreas Wortmann. 2020. Model-driven

digital twin construction: Synthesizing the integration of cyber-physical systems with their information systems. In

Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems. ACM,

90–101. DOI:https://doi.org/10.1145/3365438.3410941

[82] István Koren. 2021. A standalone webassembly development environment for the internet of things. In Proceedings of

the 21st International Conference on Web Engineering, Vol. 12706. Springer, 353–360. DOI:https://doi.org/10.1007/978-

3-030-74296-6_27

[83] István Koren, Stefan Braun, Marc Van Dyck, and Matthias Jarke. 2021. Dynamic strategic modeling for alliance-

driven data platforms: The case of smart farming. In Proceedings of the 33rd International Conference on Advanced

Information Systems Engineering, Vol. 424. Springer, 92–99. DOI:https://doi.org/10.1007/978-3-030-79108-7_11

[84] Dejan Kovachev, Yiwei Cao, Ralf Klamma, and Matthias Jarke. 2011. Learn-as-you-go: New ways of cloud-based

micro-learning for the mobile web. In Proceedings of the 10th International Conference on Advances in Web-Based

Learning, Vol. 7048. Springer, 51–61. DOI:https://doi.org/10.1007/978-3-642-25813-8_6

[85] Sathish A. P. Kumar, R. Madhumathi, Pethuru Raj Chelliah, Lei Tao, and Shangguan Wang. 2018. A novel digital

twin-centric approach for driver intention prediction and traffic congestion avoidance. Journal of Reliable Intelligent

Environments 4, 4 (2018), 199–209. DOI:https://doi.org/10.1007/s40860-018-0069-y

[86] Ike Kunze, René Glebke, Jan Scheiper, Matthias Bodenbenner, Robert H. Schmitt, and Klaus Wehrle. 2021. Investi-

gating the applicability of in-network computing to industrial scenarios. In Proceedings of the 4th IEEE International

Conference on Industrial Cyber-Physical Systems. IEEE, 334–340. DOI:https://doi.org/10.1109/ICPS49255.2021.9468247

[87] Ike Kunze, Philipp Niemietz, Liam Tirpitz, René Glebke, Daniel Trauth, Thomas Bergs, and Klaus Wehrle. 2021.

Detecting out-of-control sensor signals in sheet metal forming using in-network computing. In Proceedings of the

30th International Symposium on Industrial Electronics. IEEE.

[88] Asma Ladj, Zhiqiang Wang, Oussama Meski, Farouk Belkadi, Mathieu Ritou, and Catherine Da Cunha. 2021. A

knowledge-based digital shadow for machining industry in a digital twin perspective. Journal of Manufacturing

Systems 58, Part B (2021), 168–179. DOI:https://doi.org/10.1016/j.jmsy.2020.07.018

[89] Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum, and Samuel J. Gershman. 2017. Building machines that

learn and think like people. Behavioral and Brain Sciences 40, 2017 (2017), 253:1–253:72. DOI:https://doi.org/10.1017/

S0140525X16001837

[90] Paulo Leitão and Stamatis Karnouskos. 2015. Industrial Agents: Emerging Applications of Software Agents in Industry

(1st ed.). Morgan Kaufmann.

[91] Paulo Leitao, Stamatis Karnouskos, Luis Ribeiro, Jay Lee, Thomas Strasser, and Armando W. Colombo. 2016. Smart

agents in industrial cyber–physical systems. Proceedings of the IEEE 104, 5 (2016), 1086–1101. DOI:https://doi.org/10.

1109/JPROC.2016.2521931

[92] Martin Liebenberg and Matthias Jarke. 2020. Information systems engineering with digital shadows: Concept and

case studies. In Proceedings of the 32nd International Conference on Advanced Information Systems Engineering,

Vol. 12127. Springer, 70–84. DOI:https://doi.org/10.1007/978-3-030-49435-3_5

[93] Luca Liehner, Philipp Brauner, Anne Kathrin Schaar, and Martina Ziefle. 2021. Delegation of moral tasks to automated

agents – The impact of risk and context on trusting a machine to perform a task. IEEE Transactions on Technology

and Society (2021). DOI:https://doi.org/10.1109/TTS.2021.3118355

[94] Kendrik Yan Hong Lim, Pai Zheng, and Chun-Hsien Chen. 2020. A state-of-the-art survey of digital twin: Techniques,

engineering product lifecycle management and business innovation perspectives. Journal of Intelligent Manufactur-

ing 31, 6 (2020), 1313–1337. DOI:https://doi.org/10.1007/s10845-019-01512-w

[95] Fábio Lima, Caroline Nogueira de Carvalho, Mayara B. S. Acardi, Eldiane Gomes dos Santos, Gabriel Bastos de

Miranda, Rodrigo Filev Maia, and Alexandre Augusto Massote. 2019. Digital manufacturing tools in the simulation

of collaborative robots: Towards industry 4.0. Brazilian Journal of Operations & Production Management 16, 2 (2019),

261–280. DOI:https://doi.org/10.14488/BJOPM.2019.v16.n2.a8

[96] Johannes Lipp, Maximilian Rudack, Uwe Vroomen, and Andreas Bührig-Polaczek. 2020. When to collect what? Opti-

mizing data load via process-driven data collection. In Proceedings of the 22nd International Conference on Enterprise

Information Systems. SCITEPRESS, 220–225. DOI:https://doi.org/10.5220/0009439502200225

[97] Yongkui Liu and Xun Xu. 2017. Industry 4.0 and cloud manufacturing: A comparative analysis. Journal of Manufac-

turing Science and Engineering 139, 3 (2017), 034701:1–034701:8. DOI:https://doi.org/10.1115/1.4034667

[98] Arndt Lüder and Nicole Schmidt. 2017. AutomationML in a Nutshell. Springer, 213–258. DOI:https://doi.org/10.1007/

978-3-662-53248-5_61

ACM Transactions on Internet of Things, Vol. 3, No. 2, Article 15. Publication date: February 2022.

https://doi.org/10.1007/s13222-018-0274-0
https://doi.org/10.1145/3365438.3410941
https://doi.org/10.1007/978-3-030-74296-6_27
https://doi.org/10.1007/978-3-030-79108-7_11
https://doi.org/10.1007/978-3-642-25813-8_6
https://doi.org/10.1007/s40860-018-0069-y
https://doi.org/10.1109/ICPS49255.2021.9468247
https://doi.org/10.1016/j.jmsy.2020.07.018
https://doi.org/10.1017/S0140525X16001837
https://doi.org/10.1109/JPROC.2016.2521931
https://doi.org/10.1007/978-3-030-49435-3_5
https://doi.org/10.1109/TTS.2021.3118355
https://doi.org/10.1007/s10845-019-01512-w
https://doi.org/10.14488/BJOPM.2019.v16.n2.a8
https://doi.org/10.5220/0009439502200225
https://doi.org/10.1115/1.4034667
https://doi.org/10.1007/978-3-662-53248-5_61


15:30 P. Brauner et al.

[99] Deborah L. McGuinness and Frank van Harmelen. 2004. OWL Web Ontology Language Overview. W3C Recommen-

dation.

[100] Sheila A. McIlraith and Tran Cao Son. 2002. Adapting golog for composition of semantic web services. In Proceed-

ings of the 8th International Conference on Principles of Knowledge Representation and Reasoning. Morgan Kaufmann,

482–496.

[101] MERICS. 2016. Made in China 2025. Retrieved May 26, 2021 from https://merics.org/en/report/made-china-2025.

[102] Alexander Mertens, Sebastian Pütz, Philipp Brauner, Florian Brillowski, Nadine Buczak, Hannah Dammers, Marc

van Dyck, Iris Kong, Peter Königs, Frauke Kordtomeikel, Niklas Rodemann, Anne Kathrin Schaar, Linda Steuer-

Dankert, Shari Wlecke, Thomas Gries, Carmen Leicht-Scholten, Saskia K. Nagel, Frank T. Piller, Günther Schuh,

Martina Ziefle, and Verena Nitsch. 2021. Human digital shadow: Data-based modeling of users and usage in the

internet of production. In Proceedings of the 2021 14th International Conference on Human System Interaction. IEEE.

DOI:https://doi.org/10.1109/HSI52170.2021.9538729

[103] Richard Meyes, Hasan Tercan, Thomas Thiele, Alexander Krämer, Julian Heinisch, Martin Liebenberg, Gerhard Hirt,

Christian Hopmann, Gerhard Lakemeyer, Tobias Meisen, and Sabina Jeschke. 2018. Interdisciplinary data driven

production process analysis for the internet of production. Procedia Manufacturing 26 (2018), 1065–1076. DOI:https:

//doi.org/10.1016/j.promfg.2018.07.143

[104] Judith Michael, Lukas Netz, Bernhard Rumpe, and Simon Varga. 2019. Towards privacy-preserving IoT systems using

model driven engineering. In Proceedings of the Workshop on Model-Driven Engineering for the Internet of Things,

Vol. 2442. CEUR Workshop Proceedings, 15–22.

[105] Judith Michael, Bernhard Rumpe, and Simon Varga. 2020. Human behavior, goals and model-driven software engi-

neering for assistive systems. In Proceedings of the 10th International Workshop on Enterprise Modeling and Information

Systems Architectures, Vol. 2628. CEUR Workshop Proceedings, 11–18.

[106] Roberto Minerva, Gyu Myoung Lee, and Noel Crespi. 2020. Digital twin in the IoT context: A survey on technical

features, scenarios, and architectural models. Proceedings of the IEEE 108, 10 (2020), 1785–1824. DOI:https://doi.org/

10.1109/JPROC.2020.2998530

[107] Dietmar P. F. Möller. 2016. Digital Manufacturing/Industry 4.0. Springer, 307–375. DOI:https://doi.org/10.1007/978-3-

319-25178-3_7

[108] Michael F. Molnar. 2017. The U.S. Advanced Manufacturing Initiative. Technical Report. NIST. Retrieved from https:

//www.nist.gov/system/files/documents/2017/04/28/Molnar_091211.pdf.

[109] Benoit Montreuil. 2011. Toward a physical internet: Meeting the global logistics sustainability grand challenge. Lo-

gistics Research 3, 2 (2011), 71–87. DOI:https://doi.org/10.1007/s12159-011-0045-x

[110] Julian M. Müller, Johannes W. Veile, and Kai-Ingo Voigt. 2020. Prerequisites and incentives for digital information

sharing in industry 4.0–an international comparison across data types. Computers & Industrial Engineering 148 (2020),

106733. DOI:https://doi.org/10.1016/j.cie.2020.106733

[111] Boris Otto, Sören Auer, Jan Cirullies, Jan Jürjens, Nadja Menz, Jochen Schon, and Sven Wenzel. 2016. Industrial Data

Space: Digital Souvereignity over Data. White Paper. Fraunhofer. DOI:https://doi.org/10.13140/RG.2.1.2673.0649

[112] Boris Otto and Matthias Jarke. 2019. Designing a multi-sided data platform: Findings from the international data

spaces case. Electronic Markets 29, 4 (2019), 561–580. DOI:https://doi.org/10.1007/s12525-019-00362-x

[113] Cristina Paniagua and Jerker Delsing. 2020. Industrial frameworks for internet of things: A survey. IEEE Systems

Journal 15, 1 (2020), 1149–1159. DOI:https://doi.org/10.1109/JSYST.2020.2993323

[114] Raja Parasuraman and Victor Riley. 1997. Humans and automation: Use, misuse, disuse, abuse. Human Factors 39, 2

(1997), 230–253. DOI:https://doi.org/10.1518/001872097778543886

[115] Tobias Pauli, Erwin Fielt, and Martin Matzner. 2021. Digital industrial platforms. Business & Information Systems

Engineering 63, 2 (2021), 181–190. DOI:https://doi.org/10.1007/s12599-020-00681-w

[116] Pieter Pauwels and Walter Terkaj. 2016. EXPRESS to OWL for construction industry: Towards a recommendable and

usable ifcOWL ontology. Automation in Construction 63 (2016), 100–133. DOI:https://doi.org/10.1016/j.autcon.2015.

12.003

[117] Jan Pennekamp, Fritz Alder, Roman Matzutt, Jan Tobias Mühlberg, Frank Piessens, and Klaus Wehrle. 2020. Secure

end-to-end sensing in supply chains. In Proceedings of the Conference on Communications and Network Security. IEEE.

DOI:https://doi.org/10.1109/CNS48642.2020.9162337

[118] Jan Pennekamp, Lennart Bader, Roman Matzutt, Philipp Niemietz, Daniel Trauth, Martin Henze, Thomas Bergs, and

Klaus Wehrle. 2020. Private multi-hop accountability for supply chains. In Proceedings of the International Conference

on Communications Workshops. IEEE. DOI:https://doi.org/10.1109/ICCWorkshops49005.2020.9145100

[119] Jan Pennekamp, Erik Buchholz, Yannik Lockner, Markus Dahlmanns, Tiandong Xi, Marcel Fey, Christian Brecher,

Christian Hopmann, and Klaus Wehrle. 2020. Privacy-preserving production process parameter exchange. In Pro-

ceedings of the 36th Annual Computer Security Applications Conference. ACM, 510–525. DOI:https://doi.org/10.1145/

3427228.3427248

ACM Transactions on Internet of Things, Vol. 3, No. 2, Article 15. Publication date: February 2022.

https://merics.org/en/report/made-china-2025
https://doi.org/10.1109/HSI52170.2021.9538729
https://doi.org/10.1016/j.promfg.2018.07.143
https://doi.org/10.1109/JPROC.2020.2998530
https://doi.org/10.1007/978-3-319-25178-3_7
https://www.nist.gov/system/files/documents/2017/04/28/Molnar_091211.pdf
https://doi.org/10.1007/s12159-011-0045-x
https://doi.org/10.1016/j.cie.2020.106733
https://doi.org/10.13140/RG.2.1.2673.0649
https://doi.org/10.1007/s12525-019-00362-x
https://doi.org/10.1109/JSYST.2020.2993323
https://doi.org/10.1518/001872097778543886
https://doi.org/10.1007/s12599-020-00681-w
https://doi.org/10.1016/j.autcon.2015.12.003
https://doi.org/10.1109/CNS48642.2020.9162337
https://doi.org/10.1109/ICCWorkshops49005.2020.9145100
https://doi.org/10.1145/3427228.3427248


A Computer Science Perspective on Digital Transformation in Production 15:31

[120] Jan Pennekamp, Markus Dahlmanns, Lars Gleim, Stefan Decker, and Klaus Wehrle. 2019. Security considerations for

collaborations in an industrial IoT-based lab of labs. In Proceedings of the 3rd IEEE Global Conference on Internet of

Things. IEEE. DOI:https://doi.org/10.1109/GCIoT47977.2019.9058413

[121] Jan Pennekamp, René Glebke, Martin Henze, Tobias Meisen, Christoph Quix, Rihan Hai, Lars Gleim, Philipp Niemietz,

Maximilian Rudack, Simon Knape, Alexander Epple, Daniel Trauth, Uwe Vroomen, Thomas Bergs, Christian Brecher,

Andreas Bührig-Polaczek, Matthias Jarke, and Klaus Wehrle. 2019. Towards an infrastructure enabling the internet of

production. In Proceedings of the International Conference on Industrial Cyber Physical Systems. IEEE, 31–37. DOI:https:

//doi.org/10.1109/ICPHYS.2019.8780276

[122] Jan Pennekamp, Martin Henze, Simo Schmidt, Philipp Niemietz, Marcel Fey, Daniel Trauth, Thomas Bergs, Christian

Brecher, and Klaus Wehrle. 2019. Dataflow challenges in an Internet of Production: A Security & Privacy Perspective.

In Proceedings of the ACM Workshop on Cyber-Physical Systems Security & Privacy. ACM, 27–38. DOI:https://doi.org/

10.1145/3338499.3357357

[123] Jan Pennekamp, Roman Matzutt, Salil S. Kanhere, Jens Hiller, and Klaus Wehrle. 2021. The road to accountable and

dependable manufacturing. Automation 2, 3 (2021), 202–219. DOI:https://doi.org/10.3390/automation2030013

[124] Jan Pennekamp, Patrick Sapel, Ina Berenice Fink, Simon Wagner, Sebastian Reuter, Christian Hopmann, Klaus

Wehrle, and Martin Henze. 2020. Revisiting the privacy needs of real-world applicable company benchmarking. In

Proceedings of the 8th Workshop on Encrypted Computing & Applied Homomorphic Cryptography. HomomorphicEn-

cryption.org, 31–44. DOI:https://doi.org/10.25835/0072999

[125] Ralf Philipsen, Philipp Brauner, Sebastian Stiller, Simone Runge, Robert Schmitt, and Martina Ziefle. 2014. Under-

standing and Supporting Decision Makers in Quality Management of Production Networks. CRC Press, 94–105.

[126] Michael Polanyi. 1966. The Tacit Dimension. University of Chicago Press.

[127] Jinghai Rao and Xiaomeng Su. 2004. A survey of automated web service composition methods. In Proceedings of

the 1st International Workshop on Semantic Web Services and Web Process Composition, Vol. 3387. Springer, 43–54.

DOI:https://doi.org/10.1007/978-3-540-30581-1_5

[128] Michael Riesener, Günther Schuh, Christian Dölle, and Christian Tönnes. 2019. The digital shadow as enabler for

data analytics in product life cycle management. Procedia CIRP 80 (2019), 729–734.

[129] Bernhard Rumpe. 2017. Agile Modeling with UML: Code Generation, Testing, Refactoring (1st ed.). Springer.

[130] Bernhard Rumpe, Katrin Hölldobler, and Oliver Kautz. 2021. MontiCore Language Workbench and Library Handbook:

Edition 2021. Shaker.

[131] Stuart J. Russell and Peter Norvig. 2009. Artificial Intelligence: A Modern Approach (3rd ed.). Pearson.

[132] Jan Rüth, René Glebke, Klaus Wehrle, Vedad Causevic, and Sandra Hirche. 2018. Towards in-network industrial

feedback control. In Proceedings of the Morning Workshop on In-Network Computing. ACM, 14–19. DOI:https://doi.

org/10.1145/3229591.3229592

[133] Filippo Santoni de Sio and Giulio Mecacci. 2021. Four responsibility gaps with artificial intelligence: Why they

matter and how to address them. Philosophy & Technology 34, 4 (2021), 1057–1084. https://doi.org/10.1007/s13347-

021-00450-x

[134] Frank Schnicke, Thomas Kuhn, and Pablo Oliveira Antonino. 2020. Enabling industry 4.0 service-oriented architec-

ture through digital twins. In Proceedings of the 14th European Conference on Software Architecture, Vol. 1269. Springer,

490–503. DOI:https://doi.org/10.1007/978-3-030-59155-7_35

[135] Günther Schuh, Constantin Häfner, Christian Hopmann, Bernhard Rumpe, Matthias Brockmann, Andreas Wort-

mann, Judith Maibaum, Manuela Dalibor, Pascal Bibow, Patrick Sapel, and Moritz Kröger. 2020. Effizientere produk-

tion mit digitalen schatten. ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb 115, Special (2020), 105–107. DOI:https:

//doi.org/10.3139/104.112339

[136] Sculpteo. 2017. Digital Manufacturing – The Factory of the Future is Here Today. Retrieved August 31, 2021

from https://www.industryweek.com/technology-and-iiot/article/21995642/digital-manufacturing-the-factory-of-

the-future-is-here-today.

[137] Ajit Sharma, Philip Zanotti, and Laxmi P. Musunur. 2019. Enabling the electric future of mobility: Robotic automation

for electric vehicle battery assembly. IEEE Access 7 (2019), 170961–170991. DOI:https://doi.org/10.1109/ACCESS.2019.

2953712

[138] Vladimir A. Shekhovtsov, Suneth Ranasinghe, Heinrich C. Mayr, and Judith Michael. 2018. Domain specific models

as system links. In Proceedings of the Advances in Conceptual Modeling Workshops, Vol. 11158. Springer, 330–340.

DOI:https://doi.org/10.1007/978-3-030-01391-2_37

[139] Julia Siderska and Khair S. Jadaan. 2018. Cloud manufacturing: A service-oriented manufacturing paradigm. A review

paper. Engineering Management in Production and Services 10, 1 (2018), 22–31. DOI:https://doi.org/10.1515/emj-2018-

0002

ACM Transactions on Internet of Things, Vol. 3, No. 2, Article 15. Publication date: February 2022.

https://doi.org/10.1109/GCIoT47977.2019.9058413
https://doi.org/10.1109/ICPHYS.2019.8780276
https://doi.org/10.1145/3338499.3357357
https://doi.org/10.3390/automation2030013
https://doi.org/10.25835/0072999
https://doi.org/10.1007/978-3-540-30581-1_5
https://doi.org/10.1145/3229591.3229592
https://doi.org/10.1007/s13347-021-00450-x
https://doi.org/10.1007/978-3-030-59155-7_35
https://doi.org/10.3139/104.112339
https://www.industryweek.com/technology-and-iiot/article/21995642/digital-manufacturing-the-factory-of-the-future-is-here-today
https://doi.org/10.1109/ACCESS.2019.2953712
https://doi.org/10.1007/978-3-030-01391-2_37
https://doi.org/10.1515/emj-2018-0002


15:32 P. Brauner et al.

[140] Emiliano Sisinni, Abusayeed Saifullah, Song Han, Ulf Jennehag, and Mikael Gidlund. 2018. Industrial internet of

things: Challenges, opportunities, and directions. IEEE Transactions on Industrial Informatics 14, 11 (2018), 4724–4734.

DOI:https://doi.org/10.1109/TII.2018.2852491

[141] Shirin Sohrabi, Nataliya Prokoshyna, and Sheila A. McIlraith. 2009. Web service composition via the customization

of golog programs with user preferences. In Proceedings of the Conceptual Modeling: Foundations and Applications,

Vol. 5600. Springer, 319–334. DOI:https://doi.org/10.1007/978-3-642-02463-4_17

[142] Tim Stock and Günther Seliger. 2016. Opportunities of sustainable manufacturing in industry 4.0. Procedia CIRP 40

(2016), 536–541. DOI:https://doi.org/10.1016/j.procir.2016.01.129

[143] Fei Tao, He Zhang, Ang Liu, and Andrew Y. C. Nee. 2018. Digital twin in industry: State-of-the-art. IEEE Transactions

on Industrial Informatics 15, 4 (2018), 2405–2415. DOI:https://doi.org/10.1109/TII.2018.2873186

[144] Syed A. M. Tofail, Elias P. Koumoulos, Amit Bandyopadhyay, Susmita Bose, Lisa O’Donoghue, and Costas Charitidis.

2018. Additive manufacturing: Scientific and technological challenges, market uptake and opportunities. Materials

Today 21, 1 (2018), 22–37. DOI:https://doi.org/10.1016/j.mattod.2017.07.001

[145] Wil M. P. van der Aalst. 2016. Process Mining: Data Science in Action (2nd ed.). Springer. DOI:https://doi.org/10.1007/

978-3-662-49851-4

[146] Wil M. P. van der Aalst, Shengnan Guo, and Pierre Gorissen. 2015. Comparative process mining in education: An

approach based on process cubes. In Proceedings of the 3rd International Symposium on Data-Driven Process Discovery

and Analysis, Vol. 203. Springer, 110–134. DOI:https://doi.org/10.1007/978-3-662-46436-6_6

[147] Birgit Vogel-Heuser, Markus Böhm, Felix Brodeck, Katharina Kugler, Sabine Maasen, Dorothea Pantförder, Minjie

Zou, Johan Buchholz, Harald Bauer, Felix Brandl, and Udo Lindemann. 2020. Interdisciplinary engineering of cyber-

physical production systems: Highlighting the benefits of a combined interdisciplinary modelling approach on the

basis of an industrial case. Design Science 6 (2020), 5:1–5:36. DOI:https://doi.org/10.1017/dsj.2020.2

[148] Markus Völter, Thomas Stahl, Jorn Bettin, Arno Haase, Simon Helsen, and Krzysztof Czarnecki. 2013. Model-Driven

Software Development: Technology, Engineering, Management. Wiley.

[149] Jiafu Wan, Shenglong Tang, Di Li, Muhammad Imran, Chunhua Zhang, Chengliang Liu, and Zhibo Pang. 2019. Re-

configurable smart factory for drug packing in healthcare industry 4.0. IEEE Transactions on Industrial Informatics

15, 1 (2019), 507–516. DOI:https://doi.org/10.1109/TII.2018.2843811

[150] Chris Wickens, Justin G. Hollands, Simon Banbury, and Raja Parasuraman. 2013. Engineering Psychology and Human

Performance (4th ed.). Prentice Hall. DOI:https://doi.org/10.1146/annurev.ps.27.020176.001513

[151] World Economic Forum and McKinsey & Company. 2021. Global Lighthouse Network: Reimagining Operations for

Growth. White Paper. World Economic Forum.

[152] Andreas Wortmann, Olivier Barais, Benoit Combemale, and Manuel Wimmer. 2020. Modeling languages in industry

4.0: An extended systematic mapping study. Software and Systems Modeling 19, 1 (2020), 67–94. DOI:https://doi.org/

10.1007/s10270-019-00757-6

[153] Xun Xu. 2012. From cloud computing to cloud manufacturing. Robotics and Computer-Integrated Manufacturing 28,

1 (2012), 75–86. DOI:https://doi.org/10.1016/j.rcim.2011.07.002

[154] Lu Zhen. 2012. An analytical study on service-oriented manufacturing strategies. International Journal of Production

Economics 139, 1 (2012), 220–228. DOI:https://doi.org/10.1016/j.ijpe.2012.04.010

[155] Ting Zheng, Marco Ardolino, Andrea Bacchetti, and Marco Perona. 2021. The applications of industry 4.0 technolo-

gies in manufacturing context: A systematic literature review. International Journal of Production Research 59, 6 (2021),

1922–1954. DOI:https://doi.org/10.1080/00207543.2020.1824085

Received July 2020; revised October 2021; accepted November 2021

ACM Transactions on Internet of Things, Vol. 3, No. 2, Article 15. Publication date: February 2022.

https://doi.org/10.1109/TII.2018.2852491
https://doi.org/10.1007/978-3-642-02463-4_17
https://doi.org/10.1016/j.procir.2016.01.129
https://doi.org/10.1109/TII.2018.2873186
https://doi.org/10.1016/j.mattod.2017.07.001
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-662-46436-6_6
https://doi.org/10.1017/dsj.2020.2
https://doi.org/10.1109/TII.2018.2843811
https://doi.org/10.1146/annurev.ps.27.020176.001513
https://doi.org/10.1007/s10270-019-00757-6
https://doi.org/10.1016/j.rcim.2011.07.002
https://doi.org/10.1016/j.ijpe.2012.04.010
https://doi.org/10.1080/00207543.2020.1824085

