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Abstract—Moving computation functionality into the network
and onto networking devices has recently shown great promise for
performance improvements, e.g., by reducing path lengths and
processing latencies, or by increasing bandwidth efficiency. Yet,
In-Network Computing (INC) is challenged by the limitations of
networking hardware which is generally not designed for complex
calculations. Thus, while possible, developing INC approaches is
a constant struggle between desired and available functionality.

In this paper, we demonstrate the applicability of INC to
industrial contexts by offloading a seemingly simple task from
an industrial assembly scenario – coordinate transformations – to
programmable switches and SmartNICs. We find that even such
a task puts heavy demands on the devices, but that the right dose
of approximation and diligent problem reformulation can enable
the necessary operations on all platforms, thus setting the stage
for improving latencies by significantly reducing communication
paths. Yet, our results further indicate that these gains in latency
come in hand with a trade-off regarding the achievable accuracy.

Index Terms—in-network computing, latency, approximation
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The recent advent of programmable networking devices
(PNDs) has reignited the interest in moving computations
into the network. Ranging from key-value stores [1] and data
aggregation [2] to network telemetry [3], many studies have
already demonstrated the potential of this new generation
of In-Network Computing (INC), largely capitalizing on the
privileged positions of PNDs within the network.

Conceptually building upon the generic pipeline structure
described by Bosshart et al. [4], the approaches are imple-
mented using a variety of platforms with widely differing
capabilities and restrictions. On the one hand, ASIC-based
switches map the pipeline structure to specialized hardware,
enabling them to process several terabits per second, but at the
same time restricting them to such functionality that can be
executed predictably and fast [5]. On the other hand, CPU-
based software implementations allow great computational
flexibility but cannot provide the strict performance guarantees
and extremely high data rates of dedicated hardware. Hybrid
platforms, which express pipelines as programs on specialized
but still computationally restricted network processing units
(NPUs), aim to provide a middle ground between high achiev-
able speed and computational flexibility. The performance of
INC approaches thus heavily depends on their suitability to the
available computation platforms: approaches naturally map-
ping to traditional networking hardware can fully use the high

throughput of ASICs, while more demanding applications may
require higher flexibility at the cost of slower performance.

Differences in performance especially impact applications
with strict requirements, such as latency-critical industrial
scenarios. For these, INC has already been shown to be
beneficial through a shortening of communication paths and
thus a reduction of (horizontal) communication latency [6].
Yet, little work investigates the tangible impact of (a) the
inherent trade-off regarding the hardware platforms and (b) the
design choices needed to implement the INC functionality.

In this work, we thus analyze inherent performance trade-
offs between different INC platforms and explore different
ways to implement a critical task from a real-world industrial
assembly scenario. Specifically, we contribute the following:
• We show the efficacy of INC for latency-critical industrial

environments using the example of an in-network coordinate
transformation task.

• We explore methods harnessing the capabilities of different
platforms (ASIC, SmartNIC, Linux PC) and languages
(P416, eBPF, C) to enable required, yet absent mathematical
functionality (multiplications, trigonometric functions).

• We evaluate the implications of our design choices in a
testbed study by analyzing the accuracy, speed, and through-
put of our conceived variants whose code is available at [7].

Structure. Sec. II introduces the peculiarities of our INC
platforms before Sec. III presents the specific requirements of
industrial INC and our real-world use case. Sec. IV highlights
challenges and trade-offs when implementing a coordinate
transformation on our platforms, and we evaluate the perfor-
mance of our approaches in Sec. V. We discuss related work
in Sec. VI before concluding in Sec. VII.

II. COMPUTING RESOURCES IN THE NETWORK

INC functionality can be placed on various platforms at
different positions in or close to the network, entailing inherent
performance implications. The two most prominent variants
are PNDs, commonly programmed using P4, and offloading
features offered by some modern operating system kernels. In
the following, we briefly present the available methods.
PISA. The protocol-independent switch architecture (PISA)
and the corresponding P4 programming language [4] enable
a flexible programmability of network devices. PISA maps to
the requirements of forwarding-related packet processing and



consists of the following main components: (a) programmable
parsers/deparsers responsible for (de-)serializing packets at the
start/end of a pipeline; (b) a fixed number of match-action unit
(MAU) stages in between, which allow for table lookups and
packet modifications; and (c) a programmable bus carrying
information through the pipeline. The actual functional scope,
e.g., regarding possible operations in the MAUs, and the
respective performance depend on the concrete PISA platform.
PISA in Hardware. ASIC-powered switches, such as the Intel
Tofino, map PISA’s pipeline directly onto hardware, offering
the significant advantage of line-rate processing capabilities.
They are programmable using P4, but physical resources are
limited, and operations are conceptually restricted to those
that can be performed fast and with predictable delay [5].
For example, multiplications can only be performed when one
factor is statically defined, and more complex functionality not
needed for general networking tasks, e.g., the evaluation of
trigonometric functions, is not natively supported.
PISA in Software. More flexible PNDs build upon the
P4 behavioral model, a software implementation of PISA
targeting processor-based systems. It alleviates some of the
restrictions—for example, multiplications of two variables are
usually possible—but comes at the cost of lower and less
predictable performance. Additionally, for some PNDs, such as
the Netronome SmartNIC, P4 is internally compiled into a re-
stricted C dialect which can be directly used for programming.
Some devices also allow calling C functions from within P4
via externs. This enables constructs such as loops, and lifts the
constraints of the pipeline-based approach of P4 even further.
In-Kernel Processing. On Linux machines, small programs
can be placed into the kernel using the extended Berkeley
Packet Filter (eBPF), a sandboxed, lightweight VM first in-
troduced for BSD. Using a RISC-like instruction set, eBPF
supports computations on packets without passing them to
user space applications, but can only access a subset of
kernel functionality, rendering, e.g., mathematical libraries
unavailable.

While the functional scope of INC methods is limited and
approaches are thus challenging to implement, their privileged
positioning in the network provides opportunities for industrial
settings, which we next demonstrate with a concrete use case.

III. INDUSTRIAL IN-NETWORK COMPUTING

The industrial sector is becoming increasingly intercon-
nected, commonly captured by the term Industrial Internet
of Things (IIoT). Ideas such as the Internet of Production
(IoP) [8] provide holistic concepts going beyond intercon-
necting the different components, as they also focus on how
gathered data can be leveraged and how the systems can
be operated. The IoP is further characterized by diverse
application fields, ranging from processes requiring extremely
low latencies [6] to approaches needing high bandwidths to
transmit all sensor data [8]. In this context, INC provides a
novel solution space: the volume of sensor data can already
be lowered in the network, and latencies can be reduced by
giving earlier responses from within the network. In this paper,

Fig. 1. Line-less Mobile Assembly Systems (LMASs) require sharing precise
position measurements of machinery and objects in real-time [9]. We aim to
harmonize readings from multiple sources through In-Network Computing.

we focus on the latter setting, i.e., speeding up processes by
shortening communication paths. We showcase the benefits of
INC functionality for the IIoT by mapping the requirements
of an example from industrial assembly onto PNDs.

A. Setting and Requirements: Industrial Assembly

Setting. Industrial assembly is an essential part of production
and describes processes that permanently merge bodies and
parts. Novel assembly paradigms such as Line-less Mobile
Assembly Systems (LMASs) [10] replace conventional assem-
bly lines by fully mobilized products and resources and
greatly benefit from a backbone of metrological coordinate
measurements for accurate positioning and collaboration of the
mobile entities. For example, when mounting a windscreen to
a moving truck cabin using a robot, as illustrated in Fig. 1, the
positions of the cabin and the robot’s end-effector are tracked
to reduce misalignments during the mounting process.

One approach to meet the requirements of all subtasks
in an LMAS is to combine multiple large-scale metrology
systems with varying capabilities [11]. For this, the coordinate
measurement systems have to be joined to a reference frame,
i.e., local coordinate measurements are first transformed into
a global coordinate system and then into the respective local
coordinate systems of the controlled robots [9].
Requirements. In general, all measurement-related operations
must be conducted in real-time to meet usual control loop
cycle times of industrial robots in the single-digit millisec-
ond range (10−3 s) [12]. For the illustrated mounting of the
windscreen this includes the measurement itself, the coor-
dinate transformations, and the intermediate communication.
Additionally, some manufacturing processes, such as drilling,
require maximum uncertainties in the order of tens of micro-
meters (10−5 m) [13], so that the coordinate transformations
also have to be performed with high accuracy.

Such demanding requirements are characteristic of the in-
dustrial domain. Ideally, a supporting coordinate transforma-
tion framework should be able to satisfy both requirements,
i.e., speed and accuracy. As the main benefit of INC is
speeding up communication, we especially investigate its
applicability to this task subject to the accuracy requirements.
Before we describe our system in detail in Sec. IV, we first
define the concrete operations that it has to perform.
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Fig. 2. Network devices in our scenario first transform spherical coordinates
from sensors (r, θ, φ; left) into a local Cartesian representation (x, y, z). An
affine transformation then yields a global representation (x′, y′, z′; bottom).

B. Problem Outline: Coordinate Transformation

In our LMAS, the global reference frame uses a standard 3-
dimensional Cartesian system, but parts of our equipment pro-
duce readings in spherical coordinates. Our aim, as visualized
in Fig. 2, is to use INC to first transform the spherical readings
(r, θ, φ) to a local Cartesian representation (x, y, z) (Step 1©).
This local transformation entails five multiplications and five
evaluations of the trigonometric functions sine and cosine. We
next transform the local representation into a global Cartesian
system and then to the local system of the receiving robot
(Step 2©). These two affine transformations each require one
vector-matrix multiplication and one subsequent translation.
For simplicity, we combine these transformations into a single
“global” transformation entailing nine distinct multiplications
and additions. Overall, we perform one spherical to Cartesian
transformation followed by one affine Cartesian transforma-
tion. Their combined complexity already puts heavy demands
on some PNDs, as we elaborate in the following.

IV. IN-NETWORK COORDINATE TRANSFORMATION

The tailoring of PNDs and eBPF towards high-throughput
packet processing introduces several restrictions that we have
to overcome to implement our coordinate transformation. Most
notably, our PNDs only offer integer arithmetic. To support
calculations on all possible scales of readings in our use case,
we employ a restricted fixed-point (FP) arithmetic on top
of the available integer representations. Since mathematical
libraries are unavailable on our platforms, we additionally
have to emulate the sine and cosine functions using our
FP arithmetic. For this, we devise two variants: (i) pre-
computed values in lookup tables, which is a natural fit to the
architecture of PNDs, and (ii) an approximation variant based
on Chebyshev polynomials [14]. We next give the ideas behind
our approaches before presenting platform-specific details.

A. Restricted Fixed-Point Arithmetic

All our platforms support integer calculations of at least
32 bits. We consequently store each FP number in variables
of this common minimum width so that all platforms can
support at least parts of the necessary operations natively. In
our FP representation, FPd ∈ {±[0 . . . 2d].[0 . . . 231−d]}, the
most significant bit stores the sign, the following d bits the
decimal part, and the rest the fractional part, with d fixed.

Choice of fixed-point position. The fixed format of our FP
representation necessarily induces inaccuracies in calculations,
e.g., due to rounding [15]. We hence need to choose the fixed
point such that the resulting decimal range is sufficiently large,
while the number of bits for the fractional part is maximized.
To support medium-sized shop floors with linear dimensions
of up to 50 m, we choose d = dlog2(50)e = 6 bits for the
decimal part. The remaining 31−6 = 25 bits provide sufficient
space to support the needed minimal fractional accuracy of
10−5 m. Note that the required dimensions and accuracies are
highly use-case-specific and we can adapt d to accommodate
for changing requirements. For example, when less accuracy is
needed we can support higher dimensions. We represent angles
using the same format with d = 6 to keep a common data type,
although a tighter representation is generally possible.
Required operations. For our coordinate transformation prob-
lem, we need to support addition and multiplication. Since
d is fixed, the position of the fixed point stays at the same
position during addition, so that we can simply apply the native
addition routines. Likewise, for multiplication, eventual native
routines suffice, but we need to right-shift the product by d bits
to obtain a number in our FP format again. Bit shifting is a
basic operation supported by all platforms.

B. Trigonometric Functions

To calculate the spherical transformation, we need to pro-
vide the trigonometric functions using our FP representation.
Accounting for typical strengths of our PNDs, we first ex-
plore the possibility to pre-compute the required values and
store them in match-action tables. Alternatively, we use the
extended computational abilities of our CPU-based platforms
and devise an approximation method that allows a fast, ad-hoc
computation of the needed values.
Lookup tables. For our lookup approach, we generate tables
with possible radian values of θ and ϕ, the angles in the
spherical representation (see Fig. 2), as keys. The associ-
ated actions write the respective sine and cosine values into
metadata fields to be used in the multiplications. A naı̈ve
table setup containing all 232 possible key-value pairs would
become prohibitively large. We thus use several techniques to
reduce the table size, resulting in three concrete table layouts:
(i) LayoutL, (ii) LayoutM , and (iii) LayoutS .
LayoutL. Leveraging the periodicity and symmetry of sine and
cosine, we restrict the inputs to the range [0, 2π], reducing the
table size to 228. We then employ the sum of angle identity,
i.e., sin(x) = sin a+ b = sin a ·cos b+cos a · sin b, to split an
input x into a higher part a and a lower part b as exemplified
in Fig. 3. By placing the values for the first bits (blue) in
one table (left) and the remaining bits (green) in a second
table (right), we can essentially trade table size against two
additional multiplications and an addition. By splitting the bit
representation of the values exactly in half, we thus further
reduce the needed space to two tables with 214 entries each.
LayoutM /LayoutS . We additionally experiment with smaller
table configurations. Making full use of the periodicity and
symmetry of sine and cosine, we can restrict the inputs to



Trig_θhigh

θhigh

0.000000
0.000488
0.000977

…
6.282714

(sin θhigh, cos θhigh)
(0, 1)

(0.000488, 0.9999999)
(0.000977, 0.9999995)

…
(-0.000470, 0.999999)

Trig_θlow

θlow

000000
000001
000002

…
000488

(sin θlow, cos θlow)
(0, 1)

(2.980232e-8, 1)
(5.960464e-8, 1)

…
(0.000488, 0.999999)

≈ sin 𝜃ℎ𝑖𝑔ℎ cos 𝜃𝑙𝑜𝑤 + cos 𝜃ℎ𝑖𝑔ℎ sin 𝜃𝑙𝑜𝑤
≈ −0.000470 ∙ 1 + 0.999999 ∙ 5.960464 ∙ 10−8

≈ −0.000470

sin 6.282714000002 ≈ −0.000471

(All values rounded.)

Fig. 3. The sum of angle identity allows us to save table space by
performing split lookups on the high (blue, left) and low (green, right) bits
of trigonometric functions.

the range [0, π/2], yielding 226 overall values and 213 entries
for each of the split tables (LayoutM ). For LayoutS , we
additionally sacrifice some accuracy and cut off the least
significant 4 bits, resulting in 222 overall values and 211 entries
in the split tables.
Approximation via polynomials. We survey several tech-
niques for approximating the trigonometric functions on our
CPU-based platforms (see, e.g., [16] for an overview of avail-
able options). Due to the absence of mathematical libraries,
we focus on such techniques that minimally rely on functions
and operations not natively available on our platforms. We
choose a technique based on Chebyshev polynomials described
by Wallace [14], which we adapt to our setting. For brevity
reasons, we omit the derivation of our approximation formula;
in essence, it yields a polynomial of degree 6, which requires
a total of 9 multiplications and 7 additions to approximate
the sine using our FP arithmetic. The domain of the function
is [−π, π], which suffices due to the periodicity of the sine;
we use the modulo operation to restrict our inputs accordingly.

C. Platform-specific Details

The different architectures of our platforms do not allow us
to use a shared codebase. We leverage this fact to tailor our
solutions to the main peculiarities of the platforms.
Userspace. As a baseline variant, we implement a single-
threaded Linux C program (Userspace) that busy-waits on a
socket and performs a transformation once a packet arrives.
To harness the higher calculation accuracy available, it takes
input in our FP format but casts it into doubles and uses the
trigonometric functions from the standard library.
eBPF. We implement four flavors for eBPF: a lookup variant
for each of the presented table layouts (Large, Medium, and
Small) and one variant for our Chebyshev approximation. After
compiling to eBPF using the bcc compiler collection1, we
attach the resulting programs at two different points in the
Linux stack: as a traffic control action2 (TC) and in the XDP
datapath in the device driver3 (XDP).
Netronome SmartNIC. We implement the same four flavors
for the SmartNICs (N). The lookup variants are purely P4-

1https://github.com/iovisor/bcc
2https://www.kernel.org/doc/html/latest/networking/filter.html
3https://www.kernel.org/doc/html/latest/networking/af xdp.html

based, while the Chebyshev approximation version uses P4
for parsing only and performs calculations in C.

Since the multiplications may yield intermediate results
larger than 32 bits, we split the factors using temporary
variables and reassemble the resulting products at the ends of
our calculations. (We employ a similar method in our Tofino
variant below.) Note that this is only necessary for the P4
versions; the C externs allow us to use 64-bit integers so that
our two 32-bit inputs cannot cause overflows.
Intel Tofino. On Tofino, multiplications are only possible with
at least one static factor. Our variant (Tofino) thus emulates the
multiplication of two payload values, a and b, using a scheme
that mimics the classic “long multiplication” method: We first
initialize a product accumulator value c = 0. In each step i
(0 ≤ i ≤ 31), we then calculate a� i, i.e., we left-shift a by
i bits, right-filling with zeros. Then, if bit i of b equals 1, we
add the result to the accumulator, i.e., c = c+ (a� i). After
the last iteration, we have c = a · b.

The parallelization capabilities of Tofino allow us to perform
one such multiplication per pipeline pass. Reusing the result
of r · sin θ (see Fig. 2) and accounting for our table splitting
technique, the spherical transformation requires twelve multi-
plications. The Chebyshev approximation variant incurs even
more multiplications but yields less precise values. We thus
only implement the lookup-based variant. Since table sizes
do not affect performance on Tofino, we only apply the most
accurate variant, i.e., LayoutL.

Adding the Cartesian transformation, entailing nine multi-
plications, overstretches the pipeline resources. In our solution,
we split the program onto two distinct pipelines which causes
one additional pipeline pass for each multiplication to finish
the preceding multiplication and prepare the subsequent one.
Overall, our approach for transforming the original spherical
format to the final Cartesian format requires 42 pipeline
passes. We realize these using the internal recirculation en-
gines, thus reducing the available throughput to 1/42.

We next investigate how our highly device-specific design
decisions and the device limitations themselves actually impact
the achievable performance.

V. PERFORMANCE EVALUATION

We experimentally evaluate our implementations on a local
testbed consisting of two 32-port Intel Tofino switches and two
25G Netronome SmartNICs, as shown in Fig. 4, with userspace
programs running on an Intel Core i5-4590 CPU.

In our general setup, the host of SmartNIC 1 creates
107 Byte UDP packets containing random values for the
(r, θ, ϕ) tuple introduced in Fig. 2 and sends them to Switch 1
(Step 1©). Switch 1 then forwards the packets to the test targets
for transformation into the target Cartesian (x, y, z) coordi-
nates, inserting a timestamp T1 upon transmission (Step 2©).
On the targets, we take timestamps directly before (T2) and
after (T3) the actual transformation (Step 3©). We then return
the packets to Switch 1, which inserts timestamp T4 upon
arrival and forwards them to the host of SmartNIC 1 for
evaluation (Step 4©). We evaluate the conformance of our

https://github.com/iovisor/bcc
https://www.kernel.org/doc/html/latest/networking/filter.html
https://www.kernel.org/doc/html/latest/networking/af_xdp.html
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Fig. 4. Our testbed comprises two Intel Tofino switches and two Netronome
SmartNICs. We timestamp on Switch 1 (T1, T4) and on our targets (T2, T3).

implementations to the requirements stated in Sec. III-A using
the following metrics: (i) the total transformation time as seen
by Switch 1 (T4 − T1); (ii) the raw calculation time on the
platforms (T3−T2); (iii) the accuracy of the transformations
(based on (r, θ, ϕ) and (x, y, z)); and (iv) the reliability based
on the sustainable throughput and the packet loss.

For investigating the reliability, we leave out Step 1© and
instead use the packet generation capabilities of Switch 1 to
generate high numbers of slightly larger UDP test packets
(111 Byte). We forward them to the targets for transformation
and afterward return them to Switch 1 where we count the
number of departing and arriving packets for certain intervals.
This allows us to determine the throughput in packets per
second as well as the number of lost packets.

A. Processing Times

To analyze the processing speeds of our implementations,
we perform 15 000 coordinate transformations for each ap-
proach. Fig. 5 shows our results. The light bars denote the
mean total time for a single transformation, including the
respective mean calculation times represented by the darker
bars, both shown with 99% confidence intervals.
High-level findings. The userspace and eBPF variants yield
the fastest calculation times as they are executed on a CPU,
but most of the total time is consumed by the communication
overhead of handling the packets in the device driver and/or
traversing the stack. Consequently, NCheby and Tofino have
the fastest total times as their placement deep in the network
incurs little additional processing overhead. This effect is
also visible for the eBPF variants, which have slightly faster
total times than the userspace. The lookup-based Netronome
variants perform worst, with NLarge and NMedium not being
able to satisfy the required speed.
Caching and Table Sizes. The main reason for the bad
performance of NLarge and NMedium is that the layout of
our problem forbids a sensible use of caching. Typically, first
memory lookups are slow, but when entries are often queried,
as is the case for general networking-related lookups, the
entries are cached and can then be retrieved much faster. As the
coordinate values change frequently, the table access is random
and the Netronomes cannot benefit from these caching effects.
However, we can observe that smaller tables, as evidenced by
NSmall, can improve the lookup time of non-cached values.
This effect is not visible for our eBPF variants.

100 ns 1 `s 10 `s 100 `s 1 ms 10 ms
Time

Required
Speed

Userspace
TC
Large

XDP
Medium

Netronome
Small

Tofino
Chebyshev

Fig. 5. Mean calculation (dark) and total times (light) of a single coordinate
transformation on the different platforms given in seconds. Note the logarith-
mic scale of the x-axis.

Effect of Chebyshev Approximation. We also investigate
the potential of entirely replacing the table lookups by direct
computation strategies. Our NCheby variant yields a significant
speedup and improves both the calculation and total time
by one to two orders of magnitude. This demonstrates the
usefulness of approximation techniques for improving process-
ing speeds or, in our specific case, the benefits of replacing
slow non-cached memory lookups by explicit calculations.
In contrast, using the approximation even seems to slightly
increase the compute time for TCCheby .
Impact of PISA Platform. Despite using numerous recircu-
lations, Tofino achieves a performance in the same order of
magnitude as NCheby . The extended capabilities of SmartNICs
thus come with a significant performance penalty.

B. Calculation Accuracy

The accuracy of calculations is critical in the industrial
domain, yet highly use-case-specific: some domains, e.g.,
aviation, require strict bounds on the maximum error while
others tolerate fluctuations as long as the mean is stable. Ana-
lyzing the 15 000 (x, y, z) coordinates calculated in Sec. V-A,
we capture these notions using two metrics: (i) the mean
Euclidean distance between the points computed by our FP
approaches and a reference point calculated using a floating-
point implementation, and (ii) the percentage of transforma-
tions violating the 10 µm threshold of the drilling use case
(see Sec. III-A) in any dimension.

As the accuracy values are similar for the same approaches
on the different platforms, we combine the results for our
analysis and present average values across all variants in
Table I. Note that Tofino uses LayoutL and is thus grouped
together with TCLarge, XDPLarge, and NLarge.
Baseline and Lookup Variants. Using doubles and native
libraries for calculation, Userspace achieves the highest accu-
racy. Our lookup-based PND variants using LayoutL achieve
a slightly worse accuracy due to the calculations in our FP
arithmetic. Yet, they easily satisfy the required uncertainties
with no observed violations. The same is true for LayoutM ,
which supports our motivation of leveraging periodicity and
symmetry of sine and cosine to reduce the table sizes as a
worthwhile option. However, decreasing the table size further,
we observe that LayoutS induces higher yet still tolerable



mean errors but can no longer provide absolute guarantees.
Table size reductions show speed gains only for the SmartNICs
but not for eBPF (see Fig. 5) so that they can become crucial
trade-off parameters depending on the type of device used.
Effect of Chebyshev Approximation. Violating the 10 µm
threshold on average, our Chebyshev variants have the worst
accuracy; roughly 50 % of the transformations show at least
one violation in any dimension. This means that we can neither
give hard nor average guarantees and shows that, in the case
of our SmartNICs, speeding up the computations by avoiding
costly lookups yields a drastic penalty on accuracy.

C. Reliability

A coordinate transformation system must be able to reliably
transform high rates of coordinate measurements. We thus
judge the reliability of our variants based on the sustainable
throughput rates as well as the corresponding packet loss. We
generate our test packets at nine different rates from 1 Mbps
to 25 Gbps and add some variant-specific rates to achieve
a higher resolution around the region of first loss. Fig. 4
visualizes our results with the input rate in packets per second
(PPS) on the x-axis and corresponding mean throughput values
observed over 30 seconds on the y-axis. Values on the diagonal
are loss-less; values below the diagonal are subject to loss.
High-level findings. Most of our variants achieve perfect
reliability until they get close to their maximum throughput
levels. The throughput then stabilizes at this maximum level
and higher input rates only increase the loss. Userspace, e.g.,
can support up to 300 000 PPS without loss with a maximum
throughput of around 450 000 PPS.
Netronome. Most of our Netronome variants can achieve
slightly higher maximum throughput values than what they
stabilize on for higher input rates. This is, e.g., visible for
NLarge which slightly drops in throughput once first packet
loss sets in. Operating the Netronomes at these sweet spots
can thus ensure higher throughput rates at no loss while higher
input rates will increase the loss and decrease the throughput.
Tofino. A similar observation can be made for Tofino. As can
be seen, Tofino supports very high throughput rates at no loss
despite using a high number of recirculations. However, there
is a drastic increase in loss and decrease in throughput once the
sweet spot is passed. This is due to the use of recirculations.
In contrast to the other approaches, an increasing load on
Tofino will not only cause incoming packets to be dropped,
but also packets that are currently recirculating in the pipeline.
Consequently, fewer transformations will finish successfully,
resulting in a lower throughput rate. Note that we only
investigate performance on a single input port and that higher
rates are possible when using multiple ports.

D. Discussion

Based on our findings, we can draw several conclusions.
Lookup-based PND. Our lookup-based variants generally
achieve a sufficient level of accuracy to support the scenarios
described in Sec. III-A. However, the Netronome implemen-
tations suffer from inefficient table lookup support so that

Layout
Userspace Chebyshev Large Medium Small

Eucl. Dist. [µm] 0.2 19.7 0.5 0.4 2.9
Violations [%] 0 48.5 0 0 0.7

TABLE I
MEAN EUCLIDEAN DISTANCE AND PERCENTAGE OF 10−5 m THRESHOLD

VIOLATIONS FOR THE DIFFERENT CALCULATION VARIANTS.

NLarge and NMedium cannot provide the required computa-
tional speed. Sacrificing some accuracy on average and lifting
the hard guarantee requirement, as illustrated by NSmall, can
help to improve the performance. In contrast, Tofino and eBPF
are able to satisfy both the accuracy and speed requirements,
despite Tofino requiring numerous recirculations.
Chebyshev Approximation. The Chebyshev approximation
significantly speeds up calculations when the lookups are
the bottleneck (NCheby). This goes in hand with a severe
accuracy penalty, with mean errors increasing by two orders
of magnitude. Consequently, the Netronome variants currently
cannot outright support systems that require both high speeds
and high accuracy, as described in Sec. III-A, yet offer an
intriguing potential for trading off accuracy against speed. For
eBPF, we notice no positive effect of the approximation.
Userspace vs. PND. Userspace, the eBPF variants, and Tofino
satisfy both the speed and accuracy requirements. They also
represent the two extremes of INC: leaving functionality on
end-hosts versus pushing it into the middle of the network. Our
results suggest that INC is generally well-suited to speed up
processes where forwarding latency significantly contributes
to the total time. However, implementing tasks such as the
coordinate transformation is challenging as the required cal-
culations do not fit the original purpose of the devices. In
contrast, userspace implementations are more straightforward
but are tied to end-hosts which might add additional latency if
no such devices can be placed deep in the network. Similarly,
offloading in the form of eBPF is also tied to end-hosts. Over-
all, we conclude that some well-chosen industrial applications
can profit from INC, but that careful design is paramount to
satisfy common requirements.

VI. RELATED WORK

A prominent part of the work on INC aims to bring
“classical” network functionality, such as congestion control
and load balancing [5], network monitoring [3], [17], or heavy-
hitter detection [18] into the data plane. Other work applies
INC to support application-level functionality, such as in data
centers [1], [2], [19]. Also falling into the latter category, we
focus on cyber-physical system control, for which support
via INC has already been studied in, e.g., [6], [20], [21].
However, the considered systems have no explicit or more
lenient requirements than our LMAS setting, and we also
examine the trade-off between latency and accuracy in INC.
Table lookups and approximations. Sharma et al. [5] use
lookup tables to express multiplications as additions by lever-
aging the logarithmic realm. Ding et al. [17] develop solutions
for approximating the logarithm in pure P4. Both works
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Fig. 6. Mean throughput of the different platforms in packets per second
(PPS) subject to different input rates. Both axes have a logarithmic scale and
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also evaluate the impact of variable sizes on the achievable
accuracy. We investigate the idea of splitting lookup tables
to minimize space requirements while maintaining accuracy
when facing very large input domains. Our results indicate
that the native variable sizes and key lengths of PNDs can
suffice for scenarios such as LMAS. Our experiments with
Chebyshev polynomials further show that, while accuracy may
be a concern, “nearly least maximum approximations” [16] are
possible on PNDs with very satisfactory run-times.
Guidelines. Ports and Nelson [22] propose principles for
INC and postulate that only stateless, reusable, common-case
application primitives should be offloaded to the network, not
whole applications. Our work suggests that on-path sensor
value processing is a viable candidate for such primitives.
Further techniques. We include eBPF and userspace imple-
mentations as baselines for processing on end-hosts, but leave
out further technologies such as netmap [23] and DPDK4 as
we focus on PNDs. We similarly do not consider FPGA-
based variants based on, e.g., P4FPGA [24]. Investigating
these technologies would help to complete the picture.

VII. CONCLUSION

The advent of programmable networking devices (PNDs)
has been the spark to reignite the idea of In-Network Comput-
ing (INC). While many approaches already demonstrate that its
time might actually have come [2], the development of new ap-
proaches is generally challenged by limitations and restrictions
of the PNDs. Consequently, many new techniques build upon
carefully designed trade-offs to achieve their respective goals.
In this study, we showcase a common trade-off: processing
speed versus achievable accuracy.

Implementing our scenario from industrial assembly, we
find that it is generally feasible to support industrial applica-
tions on PNDs. This is especially beneficial if placing the func-
tionality into the network can shortcut communications paths
as this has both latency and throughput benefits. However, si-
multaneously achieving the required speed and accuracy is not
always possible, and we find that we can trade some accuracy
for significant gains in speed, e.g., by adjusting lookup table
sizes or using approximation. We thus argue that the use of

4https://www.dpdk.org

INC in industrial settings should focus on settings with simple
computations as the investigated coordinate transformation
task already puts a heavy burden on our PNDs.
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