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ABSTRACT
The website fingerprinting attack aims to infer the content
of encrypted and anonymized connections by analyzing pat-
terns from the communication such as packet sizes, their
order, and direction. Although recent study has shown that
no existing fingerprinting method scales in Tor when applied
in realistic settings, this does not consider the case of Tor
hidden services. In this work, we propose a two-phase finger-
printing approach applied in the scope of Tor hidden services
and explore its scalability. We show that the success of the
only previously proposed fingerprinting attack against hid-
den services strongly depends on the Tor version used; i.e.,
it may be applicable to less than 1.5% of connections to hid-
den services due to its requirement for control of the first
anonymization node. In contrast, in our method, the at-
tacker needs merely to be somewhere on the link between
the client and the first anonymization node and the attack
can be mounted for any connection to a hidden service.
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1. INTRODUCTION
Tor is the most popular anonymization network. Daily,

millions of people use it to hide their IP addresses while
communicating on the Internet. By encrypting the traffic
in layers and routing it over (at least) three nodes: entry,
middle, and exit, Tor ensures unlinkability between commu-
nication partners. For many people, in particular for those
living in oppressive regimes, the use of Tor is the only way
to freely access information, without fearing consequences,
or to bypass censorship. Besides protecting clients’ privacy,
Tor also allows servers to operate anonymously by offering
(location-)hidden services (HSs). Following a special con-
nection establishment procedure [1], the client can connect
to the HS without needing to know its public identity. Tor
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hidden services allow users, e.g., human right activists and
whistle-blowers, to exercise freedom of speech by publish-
ing and offering access to content without being pursued,
arrested, or forced to shut down their services.

The website fingerprinting (WFP) attack is a special case
of traffic analysis, where a local observer (one of the weakest
attackers in the attacker model for Tor) aims to identify the
content (i.e., the page visited) of encrypted and anonymized
connections by analyzing patterns of communication. Al-
though Tor hides the content and addresses of communica-
tion partners, it is not able to obscure the size, direction and
timing of transferred packets. Exploiting this information,
the adversary, e.g., an ISP, located on the link between the
user and the first Tor node (i.e., entry node) can capture
patterns (i.e., fingerprints) from the transmitted traffic and
discover which page the user visited.

Even though previous works have proposed WFP attacks
feasible in closed-world settings [5, 7], i.e., the pages that a
user may visit are limited to a fixed number1, recent study
has shown that no existing fingerprinting method is effective
when applied in realistic settings [5]. However, the authors
of [5] do not analyze the case of Tor hidden services. Con-
trary to the enormous variety and huge universe size (i.e.,
at least 4.75 billion pages2) of the world wide web (WWW),
there are fewer than 60,000 hidden services3 and only a few
thousand of them provide HTTP(S) access [2]. Hence, if
the adversary is able to reliably distinguish a HS connection
from a regular one, we argue that the WFP attack within
HSs will be a serious threat for the HS clients due to the
small universe size. In this paper, we present our prelimi-
nary work on the WFP attack on Tor hidden services.

Recently, Kwon et al. [4] proposed the first WFP attack
against HSs and their clients. Assuming the adversary con-
trols an entry node, the authors detect the presence of HS ac-
tivity by observing circuit-level information. However, their
attack works only if all circuits to a HS go through a single
entry node. In this work, we show that a user may con-
tact several entry nodes to establish a connection to a HS.
In particular, strongly depending on the Tor version used,
the approach by Kwon et al. may be applicable to less than
1.5% of connections to HSs. In contrast to their method, we
propose a two-phase fingerprinting approach which does not
require an entry node to be controlled and to see circuit-level
information. In our attack, the adversary merely needs to

1High accuracy has been shown for more than 1,500 pages.
2http://www.worldwidewebsize.com/ for July 2016.
3https://metrics.torproject.org/ for July 2016.
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Figure 1: CCDF of the number of entry nodes used
to load a HS vs. a regular web page.

be on the link between the client and the entry nodes. First,
we attempt to detect a connection to a HS from the whole
transmitted traffic. Once HS communication is detected, we
try to determine the visited HS within the HS universe.

2. EXPERIMENTAL SETUP
To extract fingerprints (FPs) of HSs that provide HTTP(S)

access, we first need to collect a representative set of onion
addresses (i.e., URLs). To do this, we automatically crawled
public search engines for HSs. To date, we collected 1,714
accessible onion addresses. As non-HS traffic, we randomly
selected 20,000 unique pages from the TOR-Exit dataset [5]
which represents pages actually accessed through Tor.

Since we assume that the adversary retrieves a certain
amount of HSs and public web pages by himself as training
data for fingerprinting, we applied the experimental setup
presented in [5]. Using a toolbox containing the Tor Browser
Bundle (TBB) 3.6.2 and tcpdump, we automatically recorded
information such as size and direction of the TCP packets
transferred during a page load. Although previous works
have used TLS records and Tor cells to fingerprint pages [7,
5], recent study has shown that the difference in the de-
tection rate among the separate extraction layers is negligi-
ble [5]. We then retrieved multiple traces for each page and
removed faulty traces identifiable either by a Firefox con-
nection error or by a HTTP status error code. We further
excluded traces that have much lower or higher transmission
size than the rest of traces related to the same page [5].

Observations. In contrast to previous work [4, 5, 7],
where the authors assume that a page is loaded over one
circuit, i.e., the clients communicate with only one entry
node, we noticed that our clients typically connect to several
entry nodes to fetch a single HS page. Figure 1 shows a
CCDF of the number of entry nodes used to connect to a HS
vs. a WWW page. While the client uses more than one entry
node for fewer than 20% of WWW pages, almost every HS
trace from our dataset is fetched over multiple entry nodes.
Hence, in this case the WFP attack proposed by Kwon et
al. [4] is applicable to fewer than 1.5% of connections to HSs.

The use of several entry nodes while connecting to a HS
was also noticed by the Tor developers, who have introduced
improvements in the newer TBB versions [6]. To evaluate
these, we selected a sample of onion addresses from our
dataset and collected traces for them by using the exper-
imental setup described above, but applying TBB 5.5.5. As
shown in Figure 2, the fraction of connections to HSs es-
tablished over at least two entries decreased dramatically,
i.e., down to fewer than 10%. As a consequence, contrary to
common belief, at least with respect to HSs, the fingerprint-
ing method of Kwon et al. has become dramatically more
dangerous when recent TBB versions in place of earlier.

3. FINGERPRINTING APPROACH
To take advantage of the leak caused by HS connection

establishment (i.e., the use of multiple entry nodes), we de-
fine the following features for our FPs. We first count the
total number of distinct entry nodes used to load a single
page. Next, we sum the packet sizes transmitted between
the client and each of the entry nodes, denoted by SG1 ,
SG2 , SG3 , SG4 and SG5

4, ordered by size. If a given page
is loaded over smaller number of entry nodes, the remaining
values of these features, SGi for 2 ≤ i ≤ 5, are zero. Fi-
nally, we include features representing the page load in the
form of the chronological sequence of incoming and outgo-
ing packets. To do this, we apply the fingerprinting tech-
nique proposed in [5]. Once the FPs are created, we use
LibSVM [3] with a radial basis function kernel and apply
10-fold cross-validation.

4. HIDDEN SERVICE CLASSIFICATION
Our fingerprinting attack consists of two classification phases.

In phase one, we try to detect a communication to a HS.
Here, we further differentiate two scenarios, depending on
whether the adversary is attempting to detect a commu-
nication establishment to an already-known or a new (i.e.,
not seen before) HS by using fingerprints of already-known
hidden services. Once a HS communication is detected, in
phase two we recognize the particular HS visited by a client.
We leave the evaluation of phase two for future work.

Detection of unknown HS communication. To de-
tect a communication to a HS, we consider two-class scenario
where the whole set of HS pages forms a single class. Here,
we call the set of HS pages, the foreground set, and the set
of public web pages, the background set. For evaluation, we
constructed the foreground set consisting of 1,714 HSs with
one FP per HS, and the background set containing increas-
ing sizes b of public web pages with one FP per page, with
b ∈ {1000, 5000, 10000, 15000, 20000}.

In this phase, the accuracy, i.e., the probability of a true
result (either true positive or true negative), cannot serve
as indicator, since the sizes of the foreground and the back-
ground set are unbalanced. Therefore, we use two metrics
commonly applied in similar domains: precision and recall.
Recall corresponds to the probability that a communication
to a HS is detected. Precision shows the probability that a
classifier is actually correct in its decision when it claims to
have detected a HS communication. Which metric is more
important depends on the objective of the adversary. Since
our primary goal here is to restrict the set of users to those
that may have connected to a HS, recall is more important.
However, from the attacker’s perspective, both precision and
recall should be ideally equal or close to one. In this case,
he can be sure that all users connected to a HS are detected
and the detection is practically always correct.

We calculated precision and recall for all values of b. As
shown in Figure 3 and 4 (red line), although we observe
a slow decrease of both metrics in general, they still re-
main high for increasing background set sizes. In particular,
the users connected to HSs are detectable with a precision
greater than 0.98 if the smallest universe is considered, and
with a precision greater than 0.92 when the background set
is extended to 20,000. We make similar observations for

4The number of distinct entry nodes used varies from one
to five during our experiments.
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Figure 2: CCDF of the number of
entry nodes for distinct TBBs.

Figure 3: Precision for increas-
ing background set sizes.

Figure 4: Recall for increasing
background set sizes.

recall. The adversary is able to detect almost every HS
client if b =1,000 and almost 0.92 of the HS connections for
b =20,000.

To overcome the observed degradation in the results, we
tried to increase the quantity of FPs per HS: instead of one,
we applied eight FPs per HS, while keeping the background
set as described above. The goal is to explore the number
of FPs per a HS that the attacker needs for success. To
ensure that all FPs belonging to a given HS are used only
for training or for testing (but not for both), we applied an
additional enclosing 10-fold cross-validation. Within each
fold, we selected 90% of the data for training, i.e., for the
foreground, 1,543 HSs with eight FPs per HS, and 10% of
the data for testing, i.e., for the foreground, 171 HSs with
eight FPs per HS, and calculated precision and recall for
the all background set sizes. As shown in Figure 3 and 4
(blue line), for the different values of b, precision remains
high, i.e., close to 1.0, and constant. A similar trend is
observed for recall. For b =1,000, the adversary is able to
detect every HS client, and almost 0.97 of the HS clients for
b =20,000. Hence, with a moderate number of FPs per HS,
the adversary is able to correctly recognize communication
with an unknown HS.
Detection of known HS communication. So far we

considered the case where the adversary tries to detect com-
munication to a new HS that has not been seen before. How-
ever, due to the limited number of HSs it is feasible that the
attacker knows of all available HS pages that a user visits.
Hence, we want to study exposure to the WFP attack in the
scenario where the attacker attempts to recognize known
HS communication. To evaluate this, we extended our fore-
ground set by one FP per HS, i.e., we considered 1,714 HSs
with nine FPs per HS, while keeping the same background
set. To apply 10-fold cross-validation, within each fold, we
selected 90% of the HSs for training set, i.e., 1,543 HSs, with
eight FPs per HS. For testing we utilized those FPs that are
not included in the training set, but belong to the same HSs
used to train the classifier. In total, 1,368 HS FPs were
chosen to make the testing set equivalent to those applied
for unknown HS communication. The background set was
divided into training and testing set as above. We then cal-
culated precision and recall for all values of b. As shown in
Figure 3 and 4 (green line), both metrics are greater that
0.98 for all background set sizes, i.e., the classifier is able to
detect almost every client connected to a HS and is always
correct in its decision. Hence, detecting connection estab-
lishment to known HSs is an easier task. However, both
known and unknown HSs can be detected with a high accu-
racy by using only a few thousand FPs for training.

5. CONCLUSION AND FUTURE WORK
In this work, we exposed the drawbacks of the currently

existing method for fingerprinting HSs and showed that it
may be applicable to fewer than 1.5% of connections. To
overcome this, we presented a novel fingerprinting method
which aims to detect connections to HSs without relying on
malicious Tor nodes. Our approach is the first one that needs
only a few collected traces per HS to correctly recognize
almost every HS client. As next steps, we plan to estimate
the scalability of our method by using larger background
set sizes. We further plan to extend our HS dataset and
evaluate phase two of our attack. We also plan to compare
the performance of our approach with existing WFP attacks.

Ethical considerations. By completely gathering our
set of onion addresses from public search engines, we do not
harm HSs whose operators do not want to reveal their exis-
tence. We deployed our own clients to collect traces from the
real Tor network and thus, prevented deanonymization of
other Tor users. The ethical considerations for the TOR-Exit
dataset discussed in [5] are also valid for this work. Con-
cerning our future work and how to deal with HSs’ sensitive
information, we have already contacted the ethical board of
the Tor research community.
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