
Analyzing Data Dependencies for Increased Parallelism
in Discrete Event Simulation

Mirko Stoffers∗, Torsten Sehy∗, James Gross‡, Klaus Wehrle∗
∗Communication and Distributed Systems, RWTH Aachen University
‡School of Electrical Engineering, KTH Royal Institute of Technology

stoffers@comsys.rwth-aachen.de, torsten.sehy@rwth-aachen.de,
james.gross@ee.kth.se, wehrle@comsys.rwth-aachen.de

ABSTRACT
To parallelize simulations, independent events have to be
identified, which can be executed concurrently. The high-
est level of parallelism is achieved if the number of events
identified as independent is maximized. Traditionally, this
identification is based on time and location of events, only
allowing parallelization if events on the same simulation en-
tity are executed in timestamp order. To increase the level
of parallelism, we propose a novel approach investigating an-
other criterion for independence: If two events on the same
simulation entity do not access the same data items in a
conflicting manner, they can as well be executed in parallel.
To this end, we propose static analysis of the model code for
data access. To ease this process we develop the simulation
language PSimLa similar to C++ but modified where nec-
essary to increase analyzability without removing essential
C++ features. First evaluation results show the potential of
this approach and increase the confidence that data-depen-
dency analysis can improve future parallel simulation.

Categories and Subject Descriptors
I.6.2 [Simulation and Modeling]: Simulation Languages

General Terms
Languages, Performance, Algorithms

Keywords
Parallel simulation; Static code analysis; Data dependencies

1. INTRODUCTION
The demand for simulation of more complex systems in

higher degree of detail drives the need for parallel execution
of simulation software. The parallelization gain primarily
depends on the number of events identified as independent,
commonly evaluated on time and location of events using
the local causality constraint, which is fulfilled“if and only if
each Logical Process (LP) processes events in nondecreasing

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Copyright is held by the author/owner(s).
SIGSIM-PADS’15, June 10–12, 2015, London, United Kingdom.
ACM 978-1-4503-3583-6/15/06.
http://dx.doi.org/10.1145/2769458.2769487.

timestamp order” [3, p. 32]. While this guarantees correct
results [4], we argue that this is not a necessary condition.
Two events can be independent even if their re-ordering vio-
lates the causality constraint, if they don’t have data-depen-
dencies. Today, there is only a single approach analyzing
data-dependencies at compile time to increase parallel sim-
ulation performance [2]. However, this approach does not
incorporate the challenging part of analyzing data access by
pointers or references, hence it is restricted to a very small
domain of models built without pointer or reference access.
Hence, it is necessary to develop an approach applicable to
Discrete Event Simulation (DES) models implemented in a
structured language without removing essential features.

However, certain features of common general purpose lan-
guages like C++, especially pointers, do render data access
tracking difficult to infeasible [1, 5]. Unfortunately, the huge
set of Domain-Specific Languages (DSLs) for parallel simu-
lation does not help solving this issue since neither of them
is optimized for static analyzability. Instead, we propose
a simulation language similar and compatible to C++, but
aiming at increasing analyzability though not removing es-
sential features without providing proper alternatives.

In this paper, we introduce the basic design of our lan-
guage PSimLa, the current state of our proof-of-concept
compiler implementation, and a first analysis approach. First
evaluation results show that this approach is promising to
speed up otherwise hard-to-parallelize simulation models.

2. THE PSimLa LANGUAGE
We design our DSL PSimLa for data-dependency based

parallel simulation as a derivative of C++. To allow imple-
mentation of any DES model realizable in a general purpose
language, PSimLa must be Turing complete. By maximizing
analyzability the language design aids analyzing the code for
data-dependencies. Under this constraint we optimize ex-
ecution performance of the translated programs. To ease
model development we use well-established concepts where
possible and maintain compatibility to existing C++-code
to enable step-by-step translation of preexisting models.

We base our language on C++ and the simulation ele-
ments of OMNeT++, and shape the compilation process in a
way that PSimLa programs are first code-to-code translated
into C++. During this step we also perform static analysis
of PSimLa code for data-dependencies, which we then rep-
resent by additional C++ code. By compiling the output
with a standard C++ compiler and running it with a mod-
ified version of OMNeT++, the provided dependency infor-
mation can be used to gain additional speedup (see Sec. 3).

module MyMod {
parameters :

int myParam ;
gates :

input myInputGate ;
output myOutputGate ;

private :
int myInt ;
int myFn(int p1) { return p1+myParam ; }

protected :
void i n i t i a l i z e () { myInt=0; }
void handleMessage (Message msg) {

i f (msg . getKind ()==1) myInt=0;
i f (msg . getKind ()==2) myInt=myFn(myInt) ;
sendDelayed (msg , 0 , ”myOutputGate ”) ;

}
}

Figure 1: Example PSimLa Module.

For the language syntax, we adopt the building blocks
and paradigms from OMNeT++. A Module can be defined
similar to a class in C++. It is equivalent to a Simple Mod-
ule in OMNeT++, hence developers need to implement an
event handler and may provide an initialization and a tear-
down function. Additionally, PSimLa provides the standard
syntax elements of C++ like primitive data types, classes,
branches, and loops. However, the proof-of-concept imple-
mentation of our PSimLa compiler does not yet support ev-
ery syntax element, but enough features are implemented to
provide equivalent alternatives. For example, for loops can
be replaced by while loops, changing neither semantics nor
complexity. An example Module is depicted in Fig. 1.

The major difference between PSimLa and C++, how-
ever, is that PSimLa provides no pointer types, but only
references. Under the hood, PSimLa translates references
to C++11 smart pointers, enabling reference counting and
deletion of objects at the end of their life cycles.

3. ANALYSIS TECHNIQUES
To investigate the analyzability of PSimLa we implemented

a first analysis approach that aims at identifying data-depen-
dencies between events. To this end, we assume that each
data item can only be accessed by a single Module at a time.
This is a common assumption in Parallel Discrete Event
Simulation (PDES), e. g., when a simulation is decomposed
into LPs where each LP can only access local data. How-
ever, while the local causality constraint [3] forces the events
at each simulation entity to be executed in-order, our data-
dependency information can help relaxing this constraint
without changing simulation results. Hence, a Module can
already process a future event even if another event with an
earlier timestamp is executed later, finally eliminating too
restrictive synchronization barriers.

Our static analysis works in five steps. 1. We identify and
categorize events into different types. This allows us to store
the derived dependencies on an event type basis, as the con-
crete event instances are not known at compile time. 2. We
track, which data items are accessed by events of the dif-
ferent types. Since different events of the same type might
access different data items and the Turing-completeness of
PSimLa does not allow to reliably detect, for example, which
branch the program flow will take at runtime, we chose to
conservatively overestimate the data accesses. This means
that two independent events might not be executed in par-

allel if we cannot guarantee this independence based on the
information gathered. 3. We determine the scheduling rela-
tions, i. e., which other events an event handler will schedule
at runtime. This is important to avoid conflicts with those
events if another event is executed early. 4. We infer the
event dependencies and store which event types depend on
which other event types. To this end, we generate C++-code
that allows determining the type of a given event instance
and deriving its dependencies. 5. At runtime, we access this
information to yield decisions whether the next event can
be safely executed in parallel immediately, even if the local
causality constraint could not guarantee correctness.

4. EVALUATION AND CONCLUSION
We performed first evaluations of the analysis approach.

Synthetic benchmarks of simple events only performing read
operations – which where previously not parallelizable due
to causal violations – show almost linear speedup on a 12-
core simulation platform, while the same model with write
operations cannot be speeded up. This confirms that the
approach correctly identifies event dependencies and inde-
pendencies in these scenarios. A case study of a 57 node
Wireless Mesh Network, which is speeded up by traditional
parallel simulation only by a factor of 3 to 4, can as well gain
close-to-linear speedup by our data-dependency analysis.

We conclude that data-dependency analysis is a promising
technique for future improvements on parallel simulation.
To this end, it does not suffice to account only for member
variables of modules, but data items accessed by pointers
or references have to be incorporated into the analysis to
include a wide set of simulation models. To circumvent the
infeasible problem of pointer analysis [1, 5], a language de-
signed with analyzability in mind, like PSimLa, can aid the
analysis without restricting the opportunities necessary for
model development. Future efforts in enhancing the PSimLa
compiler implementation and the analysis approach allow in-
vestigation of the feasibility of data-dependency analysis on
a broad range of simulation models.

Acknowledgments
This work has been co-funded by the German Research

Foundation (DFG) within the Collaborative Research Cen-
ter (CRC) 1053 – MAKI.

5. REFERENCES
[1] D. Binkley. Source Code Analysis: A Road Map. In

Proc. of Future of Software Engineering, (Minneapolis,
MN, May 23–25, 2007) IEEE, Los Alamitos, CA,
104–119, 2007.

[2] W. Chen, X. Han, and R. Dömer. Out-of-Order Parallel
Simulation for ESL Design. In Proc. of the 2012 Conf.
on Design, Automation & Test in Eur., (Dresden,
Germany, March 12–16, 2012) IEEE, Los Alamitos,
CA, 141–146, 2012.

[3] R. Fujimoto. Parallel Discrete Event Simulation.
Communications of the ACM, 33(10):30–53, 1990.

[4] R. Fujimoto. Parallel and Distributed Simulation. In
Proc. of the 31st Winter Sim. Conf., (Phoenix, AZ,
Dec. 5–8, 1999) ACM, New York, NY, 122–131, 1999.

[5] M. Hind. Pointer Analysis: Haven’t We Solved This
Problem Yet? In Proc. of the 2001 ACM Workshop on
Prog. Analysis for SW Tools and Eng., (Snowbird, UT,
June 18–19, 2001) ACM, New York, NY, 54–61, 2001.

	Introduction
	The PSimLa Language
	Analysis Techniques
	Evaluation and Conclusion
	Acknowledgments

	References

