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Abstract—Research has shown that the availability of cross-
layer information from different protocol layers enable adaptivity
advantages of applications and protocols which significantly
enhance the system performance. However, the development of
such cross-layer interactions typically residing in the OS is very
difficult mainly due to limited interfaces. The development gets
even more complex for multiple running cross-layer interactions
which may be added by independent developers without coordi-
nation causing (i) redundancy in cross-layer interactions leading
to a waste of memory and CPU time and (ii) conflicting cross-
layer interactions. In this paper, we focus on the former problem
and propose a graph-based redundancy removal algorithm that
automatically detects and resolves such redundancies without any
feedback from the developer. We demonstrate the applicability
of our approach for the cross-layer architecture CRAWLER that
utilizes module compositions to realize cross-layer interactions.
Our evaluation shows that our approach effectively resolves
redundancies at runtime.

I. INTRODUCTION

A promising research concept to deal with volatile network
conditions such as interference, packet loss, and mobility is
the cross-layer design paradigm [1], [14], i.e., the exchange
of information across protocol layers and system components.
Utilizing cross-layer information from other protocols and sys-
tem components such as sensors can improve the performance
and responsiveness of applications and protocols. However,
for a developer, the process of designing and realizing even
a single specific cross-layer interaction is a cumbersome task.
This is mainly because the protocol stack and drivers con-
trolling system components are integrated into the operating
system which provides only a few interfaces. The process gets
significantly worse for multiple cross-layer interactions. One
major problem is the fact that multiple cross-layer interactions
added by different developers running in parallel may lead to:
(1) redundancy, i.e., multiple independently added cross-layer
interactions could have common processing components wast-
ing unnecessary CPU time and memory, and (2) conflicts, i.e.,
unintended interdependencies between cross-layer interactions
leading to peculiar system behavior [9].

For example, assume a cross-layer interaction that pro-
vides fine-grained localization information to an application
by employing both Wi-Fi and GPS related information. In
contrast, another cross-layer interaction provides a coarse-
grained localization information by turning off the Wi-Fi
related hardware to save energy. While both interactions are
designed to improve the system behavior, in this example, they
may have redundant processing (e.g., parts of the localization

or WiFi control might be similar) or contradicting effects (e.g.,
accurateness vs. energy). This is primarily caused due to the
lack of development support for developers to analyze and
experiment with multiple cross-layer interactions.

In this paper we focus on the problem of redundant
processing of multiple cross-layer interactions and provide
a general graph-based approach that automatically detects
redundant parts of cross-layer interactions and removes them
from the system. Our approach uses the cross-layer archi-
tecture CRAWLER [1] which is (re)configurable at runtime,
i.e., allows to add, remove and change cross-layer interactions
at runtime, and facilitates third-party application developers
to independently insert their own set of cross-layer interac-
tions. As a result, it is notably vulnerable to redundantly
running cross-layer interactions, which can be detrimental
for the system performance. Thus, cross-layer architectures
necessitate the need for mechanisms, such as the one presented
in this paper, that can detect and resolve such redundancies.
Since CRAWLER employs module based software development
(i.e., modules are composed together) to realize cross-layer
interactions, redundant parts of cross-layer interactions can be
found by exploring equal module compositions. To achieve
this, our approach iteratively compares each pair of modules
in a composition. To determine whether or not two modules
are equal, it analyzes each module and its connections. Af-
terwards, it rewires the connections of equal modules and
removes the redundant module. As this approach is based
on a generic graph-based algorithm, it is not peculiar to
a specific development platform and can be utilized across
a wide range of modular software development systems or
networking scenarios.

Overall, this paper makes the following key contributions:
• As a first step, we provide a graph-based formal descrip-

tion of redundant module compositions. This description
is generic and relevant for a wide range of modular
development platforms (Section II).

• We then propose an algorithm to automatically find and
merge redundant module compositions (Section III).

• We present an extension of our approach to handle
the more challenging case where cross-layer interactions
change at runtime (Section IV).

• Finally, we demonstrate the applicability of our approach
for the cross-layer architecture CRAWLER (Section V),
and validate that it efficiently detects and resolves redun-
dancies (Section VI).



In the remainder, we discuss prominent related work in Section
VII before concluding the paper in Section VIII.

II. GENERIC DESIGN

Solving the problem of redundancy in cross-layer inter-
actions requires to analyze the semantic of the program to
discover redundant functionality. Without the availability of
semantic knowledge that has been provided with huge effort by
developers, this is an undecidable problem according to Rice’s
theorem [7]. Fortunately, there exist techniques to tackle such
problems and make them practically useful. By composing
modules1 to realize cross-layer interactions the cross-layer ar-
chitecture CRAWLER provides a good basis to relax and tackle
the problem. Before describing a concrete solution, we gener-
alized the problem of redundancy of cross-layer interactions as
redundancy in module compositions which makes our solution
also applicable to other fields.

However, for our solution we opt for an automatic solution
without interaction from the developer and the need for delving
into program semantics because this (i) would require complex
formal description of each module and its connections, and (ii)
overburdens the developers with a significant effort required
to support and create such descriptions. When we talk about
developers, we distinguish between module developers who
create the reusable modules once and module composition
developers who utilize these modules to implement a certain
algorithm. With our approach the former need to put effort
once, while the latter are unburdened.

A. Constraints

The basic idea of our approach is to merge redundant mod-
ule compositions together. But before discussing the technical
details of our solution, we first discuss our primary constraints
and assumptions that form the basis of our approach. For
example, our constraint with regard to merging of redundant
modules is that the modified system has to offer the same
behavior as the unmodified system. Therefore, the basic re-
quirement for handling modules is the ability to determine if
these modules are equal.

Consider that we have two equal modules within a system,
that for each input generate identical output. Any optimization
that merges these modules has to fulfill two major constraints:

(1) Output correctness − If the merging process results in a
modified composition of modules in a system, the output of the
new system must be the same as the output of the unmodified
system.

(2) Modification transparency − If a module composition
developer modifies a composition of modules, the system must
not require her to be aware of the merged compositions. In
other words, a module composition developer should be able to
parameterize modules and their compositions without having
knowledge about the underlying optimized compositions.
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Fig. 1. Example representation of two modules A and B with their
functionals and input and output functions.

B. When are Module Compositions Equal?

With respect to our constraints, to decide if a system (behav-
ior) remains the same after merging modules, the modified and
unmodified system must have the same behavior, i.e., produce
the same output on a given input. In any system, the output of
the system is a subset of the output of the contained modules.
Thus, providing equality between the outputs of all modules in
the original and the modified system is sufficient to prove the
overall equality of the outputs of both systems. To achieve this,
two properties need to hold for every module: (i) the behavior
of the module must remain the same and (ii) the inputs of the
module have to be the same.

Before describing how to verify if both of these properties
hold, we give a formal description of the problem which helps
to describe the idea of the algorithm and simplifies the adap-
tation to other networking problems. The description is based
on the interpretation of a program module as a functional. As
shown in Figure 1, a module M has an input function fM

in and
an output function fM

out. The mapping of the input function to
the output function is done by the module functional FM . For
example, let us consider a Sum-Module M with the following
input function fM

in = (4, 1). Since the module calculates the
the sum of its inputs, the output function is fM

out = (5).
Thus, the functional FM maps an input function fM

in to the
corresponding output function fM

out. If one can verify that two
modules A and B provide the same functional, i.e., FA = FB ,
they both produce the same output, given the same input.

Definition (Equality):
A module A is equal to a module B (and thus mergeable) if
and only if the following two prerequisites hold:

(1) input equality − the input functions of both modules are
equal, i.e., fA

in = fB
in, and

(2) behavior equality − A and B have the same module
functional, i.e., FA = FB .

Based on these two conditions we obtain output equality,
i.e., fA

out = fB
out. In the following, we present an algorithm

that checks particularly for these two conditions.

III. GRAPH-BASED ITERATIVE MERGE ALGORITHM

An intuitive algorithm for merging subsets of equal module
compositions can be directly extracted from the requirements
described in the previous section. Thus, two modules can be
classified as merge-able if they satisfy the input and behavioral
equality property. To achieve this, our algorithm consists of
three main steps: (i) Check if two selected modules satisfy
the equality property, i.e., can be merged, (ii) if yes, merge

1We consider a module as function that contains all the source code and
variables necessary to realize a certain self-contained functionality.



them together, and (iii) repeat the previous two steps until no
merges are possible anymore. Listing 1 shows our algorithm.

We now discuss the major requirements for satisfying input
equality (cf. mark (1) at Listing 1), behavior equality (cf.
mark (2) at Listing 1) and the merging process (cf. mark (3)
at Listing 1) in more detail. Afterwards, runtime and memory
consumption estimates are provided for our algorithm.

input: m_graph
output: m_graph
operation iterative merge begin
changed <- true
while (changed) do
changed <- false
for all (A in m_graph[modules]) do

for all (B in m_graph[modules]) do
if(A!=B AND

(1) inputs_equal(A,B,m_graph) AND
(2) behavior_equal(A,B)) then
(3) m_graph <- merge_modules(A, B, m_graph)

changed <- true

Listing 1. Graph-based iterative merge algorithm

A. Input Equality

In a real system, the equality of inputs of two modules can
be assured if the following three prerequisites hold: (i) The
specific connection has to originate from the same source, i.e,
from exactly the same node in the module composition graph.
(ii) The position of a specific input connection within the input
vector has to be the same, e,g., if we consider the position
of variables a and b, then isLess(a, b) is not the same as
isLess(b, a). (iii) In a system with more than one connection
type (e.g., information flow or detectable events), the type of
a specific input connection has to be equal.

Prerequisites (ii) and (iii) basically enforce that the type
signatures of the modules are identical, while prerequisite (i)
enforces that they are always called with the same input. Com-
bining these three prerequisites leads us to the input equality
computation algorithm, as shown in Listing 2.
input: A, B, m_graph
output: equal
operation inputs_equal begin
size1 = size_of(inputs_module(m_graph[inputs],A))
size2 = size_of(inputs_module(m_graph[inputs],B))
equal <- size1 = size2
if(equal) then
for all (in1 in inputs_module(m_graph[inputs],A))

found <- false
for all (in2 in inputs_module(m_graph[inputs],B))
if( source_of(in1) = source_of(in2) AND

position_of(in1) = position_of(in2) AND
type_of(in1) = type_of(in2)) then

found <- true
equal <- equal AND found

Listing 2. Checking if two modules A and B have the same input.

B. Behavior Equality

Behavior equality in general addresses the problem if one
program behaves the same way as another program does. This
non-trivial property is undecidable according to Rice’s theorem
[7]. Since a module is just a representation of an arbitrary
program, there is no assumption that holds in every module
based software system to solve this problem. As we want to
provide an automatic solution without investing the manual
effort of semantic descriptions, the only possibility to check

for behavior equality is an exhaustive state search. This explo-
ration for each possible state within the complete state space
may lead to the state-explosion problem [4]. Thus, this only
works for applications with a finite and specified runtime.
Moreover, if the exhaustive state search has to be performed
for any possible input, it becomes infeasible and useless in
most cases. To overcome this issue, we identify a possibility to
relax this problem. We assume that there are only deterministic
modules in the system. Thus, one specific instruction set which
is running on one specific state produces exactly the same
output on every run. This allows us to base the decision for
behavior equality on the following two conditions.

Definition (Behavior Equality):
Two modules A and B have an equal behavior if

(1) module type equality − the implementations for both
modules are exactly the same, and

(2) module state equality − the current variable allocation
and execution position, i.e., states of the modules, are identical.

Due to the determinism assumption, equal state and type
implies the exact same behavior on any equal input. Note that
the reverse direction for this implication does not hold. Since
we cannot provide an equivalent property to behaviour equal-
ity, there may be cases where FA = FB holds, which can not
be found with our algorithm. However, it will not lead to false
optimizations, but only oversee merging possibilities related to
modules offending our assumptions. Furthermore, we assume
that it is very unlikely to have two different implementations of
exactly the same functionality. By introducing this relaxation,
we identified a sufficient condition for behavior equality of two
modules A and B, which can be practically implemented.

Although implementations of both conditions are applica-
tion specific, module type equality can often easily be checked
by introducing a numeric type identifier or comparing the
memory. We suggest that the comparison of module states
should reside inside the module since module developers know
best about their modules and relevant states. Accordingly, mod-
ule developers can build in a module state comparison function
to verify if the module’s state is equal to the state of another
module. This only has to be done once and the effort to imple-
ment such a state comparing function should be reasonable.
Afterwards, module composition developers (who are relieved
from putting effort) can utilize modules and combine them
without considering possible optimizations as our approach
will automatically optimize the entire module compositions in
the whole system.

C. Merging Modules

Once the algorithm finds two modules that satisfy the be-
havior equality and the input equality prerequisites, they can
safely be merged. Merging two modules A and B is straight-
forward (cf. Listing 3). Module A is removed together with
all its ingoing connections (as these are already provided by
module B). The outgoing connections of module A are then
rewired to be outputs of module B.
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(c) Merged H and E.
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(d) Merged I and J.
Fig. 2. An run of our algorithm on an example module composition. The type of shapes defines the type of the modules, while the colors define its state.

input: A, B, m_graph
output: m_graph
operation merge_modules begin
for all (inc in in_connections(m_graph[inputs],A))
delete_input(inc)

for all (outc in out_connections(m_graph[inputs],A))
replace_source_of_connection(outc,B)

remove_module(A)

Listing 3. Merging two modules A and B and removing A afterwards.

D. Runtime and Memory Consumption

The runtime of our algorithm is determined by its three
nested loops (cf. Listing 1) and the three marks. The two for
loops iterate twice over all modules in the graph, i.e., O(|V |2)
with V being the set of modules. Within these two for loops
each time the three marks are checked. At mark (1), the
input_equal function, (cf. Listing 2), also iterates over two for
loops. It first iterates over the connections in A and afterwards
over all connections in B where it compares three parameters
and accordingly has a runtime of O(|E|2) with E being the set
of connections. Mark (2) has a runtime of O(1) where the
type and states are compared. The merging at mark (3) has a
runtime of O(|E|) where connections are removed or rewired.
If an equal module is found, all these operations are conducted
again for the remaining modules. Therefore, the outer while
loop requires a runtime of O(|V |), accordingly leading to a
total runtime of O(|V |3 · |E|2) for our algorithm.

With regard to the space complexity, our algorithm has
no recursive calls that would increase the stack size of the
program. Traversing lists requires the amount of space that is
asymptotically equal to its length, i.e., |V | for lists of modules
and |E| for lists of connections, i.e., in total O(|V |+ |E|).

However, in a runtime-adaptable system, where modules
and their compositions are unloaded, it is sometimes neces-
sary to split modules again. This can happen, e.g., when the
input or behavior of a merged module is changed at runtime.
The module has then to be split (similar to the copy-on-write
paradigm) again. How our approach handles this splitting is
described in the next section.

IV. RUNTIME ADAPTATION

After discussing the challenges of the behavior and input
equality constraints, and formulating an appropriate solution
for it, we now turn our focus towards the modification trans-
parency constraint: It requires the optimizations induced by
the merging process to remain transparent to the module com-
position developers who intend to manually modify module
compositions. Although this desired transparency constraint is
inherently achieved in static systems by providing output cor-
rectness, runtime-adaptable systems pose further challenges:
E.g., to ensure modification transparency, the set of commands

required to achieve a desired reconfiguration of the system has
to be the same before and after the merging process.

However, in a runtime-adaptable system this is difficult to
guarantee because of two types of reconfigurations. First, the
reconfigurations that occur due to a change in the function-
ality of modules. These kind of reconfigurations could occur,
for example, when removing modules, modifying the state of
a module, or modifying the function of a module. Second,
the reconfigurations that occur due to a change in module
compositions. Such reconfigurations could occur, for example,
when modifying incoming data connections of a module (e.g.,
adding new connections or modifying connection properties).

Such configurations are usually done in an adaptation engine
encapsulating the construction logic which sends commands
to the adaptable software realizing the actual implementation
[12]. Commands are instructions on how to modify or rather
configure the adaptation software such as creating an object
and connecting it with other objects. Our redundancy removal
system can be placed in between these two parts to track
commands. After receiving a command C, our redundancy
removal system can either modify the command to fit it to the
optimized version of the system obtained after the merging
process, or revert specific merging optimizations to allow C
to be processed normally.
A. Challenges when adding/removing Modules & Connections

The challenging nature of the commands that induce mod-
ifications on modules that have been merged is visualized in
an example depicted in Figure 2. The shape of the modules
represents the type while the color represents its state. For
the sake of simplicity, we assume all data connections to be
equal with respect to their type, ordering and any other feature.
We can see that the modules A and B can be merged after
validating state, type, and input equality. Similarly, the next
iterations of our algorithm will also merge modules H and E
and afterwards I and J .

Now let’s assume a system that consists of the module
compositions shown in Figure 2. Modification transparency
requires that any developer who changes the module compo-
sitions does not need to know about the underlying merging
optimizations. Thus, the developer assumes working on the
first composition of modules (cf. Figure 2(a)) even though the
system has been optimized by the merging process resulting in
modules compositions shown in Figure 2(d). In this example,
the module G can be modified by a developer without violat-
ing output correctness or introducing any further ambiguities.
However, any modifications either to the input of module A or
its functionality, would change the output of A. Clearly, this
modification should not have any effect on module B.
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Fig. 3. Possible problems when not providing a reasonable history of the connections and splitting multiple modules.

In order to avoid modifying node B, there is a need for
the ability to split both modules again. However, the merging
process has also merged modules H and E considering that
A and B are mergeable (cf. Figure 2(b) and 2(c)). Since this
prerequisite will no longer be valid after the modifications
introduced by the developer to module A, we have to split
H and E as well. As modules I and J have been merged
independently of H and E, it is not required to split I and J .
B. Splitting Affected Modules

Splitting modules requires to maintain the knowledge about
both the outgoing connections and the respective modules be-
fore the merging process. We propose a simple two step pro-
cedure which has to be performed before merging modules. In
the first step, we identify all those modules that were merged
with a certain module A due to their equality. In the second
step, we split module A and all the merged modules that
were identified in the previous step by restoring the original
configuration of the system, i.e., reverting back to the original
connections. For this purpose, we also need a mechanism to be
able to access the previously defined connections. Otherwise,
the splitting process could end up in misconfigurations.

To clarify this requirement, let us consider the example in
Figure 3. If there are two or more levels of connected modules
that can be merged as shown in the Figures 3(a) and 3(b),
the original source of data connections can vanish. In Figures
3(c) and 3(d), two different compositions are shown that could
result due to the lack of information about the connections
within the original system. Both wrong compositions result
from splitting the merged state in Figure 3(b). Maintaining
information about all the original connections is dependant
upon the actual implementation of the system, and hence,
beyond the scope of discussion in this paper. Nonetheless,
for the sake of completeness and practical applicability, in the
following section we do provide a domain specific solution to
demonstrate a full fledged implementation of our mechanism
for a cross-layer interaction architecture.
V. DOMAIN SPECIFIC USE CASE: CROSS-LAYER DESIGN

After providing the theoretical basis for our approach, we
now demonstrate its applicability in the domain of cross-layer
interaction using the cross-layer architecture CRAWLER [1].

In CRAWLER many cross-layer interactions can run in paral-
lel and be added/removed/modified at runtime. To achieve this,
CRAWLER utilizes modules to coordinate local information,
e.g., from the network protocol stack and system components
(e.g., sensors, battery, devices, etc.). By combining these mod-
ules any kind of cross-layer interaction can be achieved, e.g.,
switching to a more suitable TCP congestion control algo-
rithm [1] or a audio VoIP codec [2] depending on the network
conditions.

CRAWLER consists of two main components: The logical
component (LC) resides in user space and allows cross-layer
developers to express their monitoring and cross-layer interac-
tion requirements in an abstract and declarative way. For this
purpose, CRAWLER offers a rule-based language customized
to cross-layer design purposes. Using this language, devel-
opers can specify cross-layer interaction at runtime and at a
high level of abstraction without needing to care about imple-
mentation details. The LC further offers a uniform interface
to applications for (i) providing their own set of cross-layer
interactions, and (ii) exchanging information with the proto-
col stack and system components. However, the high level
description of cross-layer interactions given by an application
or preconfigured in CRAWLER are parsed and subsequently
mapped to commands (as described in Section IV). Commands
are instructions about how the modules are composed with
each other. The commands are stored in a repository to keep
track of all adaptations in the system.

The cross-layer processing component (CPC) resides in the
kernel space of our Linux implementation and receives the
commands from the LC. Modules in CRAWLER are stateful,
keeping their private variables between calls and have a uni-
form interface to simplify their composition. Finally, stubs
provide read/write access to protocol information and sub-
system states. In the following we show a mapping from our
general approach to CRAWLER specific properties.

A. Mapping of Equality Parameters to CRAWLER’s Needs

The mapping of our general equality algorithm requires to
map the three functions: (i) input equality, (ii) type equality
and (iii) state equality.

Regarding input equality, CRAWLER provides two differ-
ent types of input (or connections) between modules: (a) a
notify connection that is an event-based signaling and (b) a
query connections that is a polling mechanisms. Redirecting
connections are implemented as simple pointer redirections in
C. While notify connections can be directly mapped onto out-
going data connections of the type notify, query connections
have to be reversed. A query connection from one module A
to another module B is realized by making A ask B for a
piece of information. Thus, in reality information flows from
B to A. Therefore, we interpret an outgoing query connection
as an incoming data connection of type query. Furthermore,
since the order of query connections matters, we have to take
that ordering into account.

Implementing type equality checking in CRAWLER is straight-
forward, since each module carries an identifier. For example,
an object of the AND module contains the numerical identifier
13 indicating the type. Accordingly only this numerical value
has to be compared for type equality.
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CPC, one can get the merged composition which consists of only 3 modules. This example is restricted to query connections.

In contrast, state equality is a bit more complex. Since
a comparison based on the internal state has to be provided
by the module, each module developer has to decide how to
implement the function that determines equality. CRAWLER’s
standard module structure predefines such a state equality in-
terface which is called by our merge algorithm. For example,
the History-module stores an amount of values. When the
equality interface is called, the History-module compares
the values given in its signature with the stored values. Note,
the module developer knows best about its module and accord-
ingly needs to think once about the state equality. Afterwards,
the developer of cross-layer interactions can utilize them with-
out needing to care about our merge algorithm.

So far, we know how to determine equality of modules in
CRAWLER, but we still need to deal with runtime adaptation. In
the following we show how we extended CRAWLER to handle
runtime adaptation of module compositions.
B. Handling Runtime Adaptation

As discussed in Section IV, if module compositions change
at runtime, we need to be able to keep track of the original
module composition. We use CRAWLER’s repository residing
in the LC to keep track of such adaptations. Remember, if a
developer changes a configuration, these changes are translated
into commands that are delivered both to the repository and
CPC. Here, the repository has two advantages: (i) It behaves
similar to a revision control system: Each time the config-
uration changes, the commands are automatically committed
as a new revision. (ii) Unnecessary context switches between
user and kernel space are avoided. As a result, the repository
provides a good overview of running compositions and allows
the developer to roll back to a previous cross-layer interactions
if necessary.

We extended the representation of modules and connec-
tions in the architecture to keep track of modules both in the
original and merged compositions. For this purpose, we store
two different modules IDs for two different views: (i) The
original view consists of original modules and their original
connections which in fact represents the initial and unmodified
composition graph. (ii) The merged view is used for handling
the merged version of module compositions, i.e., the optimized
graph. For clerity reasons, the concept of the original and
merged views is combined in one graph as shown in Figure 4.
Additionally, for the sake of simplicity, we only consider one

type of connections in this example representing the informa-
tion flow in the graph.

Each node in Figure 4 represents one merged module which
encapsulates several original modules. Similarly, a connection
represents a merged connection encapsulating several original
connections. The original module and connections are neces-
sary to recreate the original module compositions. Figure 4(a)
shows the module compositions in the initial unmodified state.
In Figure 4(b), the modules with ID 1 and 2 are merged and
their original IDs A and B are stored in the module along with
one of the merged module IDs, in this case ID 1. Similarly, in
Figure 4(c), modules with IDs 3 and 4 are merged along with
their connections, in this case the merged module with the ID
4 is used for merging the original modules C and D.

In the following we show a real-world example of how our
algorithm merges and splits module compositions automati-
cally after a runtime adaptation occurs.

VI. EVALUATION AND VALIDATION

To verify the correctness of our proposed algorithm, we per-
formed a complete system test. We loaded the CRAWLER archi-
tecture with an empty initial configuration, i.e., no cross-layer
interactions were running in the beginning. Then we started
two applications that use CRAWLER’s API to feed cross-layer
interaction into the system. Although the naming of modules
and the overall compositions differ for both applications, some
parts are equal and thus we expect that our algorithm will
merge them. However, later on we will modify one applica-
tion’s module composition at runtime and accordingly expect
that our algorithm splits affected compositions and conducts
the necessary modifications. In the the following we show the
cross-layer interaction for the two applications.

Cross-Layer interaction of application 1: The first appli-
cation is interested in knowing whether the current received
signal strength indicator (RSSI) of the wireless connection
is good or bad. The RSSI is measured every 250 msec. To
reduce the amount of oscillation in this signal, the base for the
decision is calculated by averaging over the last three values.
If the result does not exceed a threshold of 80, the signal is
defined as being bad. The resulting module composition is
shown in Figure 5(a).

Cross-Layer interaction of application 2: The configura-
tion used by the second application implements a simplified
version of a cross-layer interaction for the TCP congestion
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(a) Module composition for cross-layer interaction 1.
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(b) Module composition for cross-layer interaction 2.

Fig. 5. Module composition of two installed cross-layer interactions. Red border indicates equal composition detected and merged by our algorithm.

control algorithm [1]: It monitors the RSSI of the wireless
device and freezes the congestion window size (CWND) in
TCP if the system operates under bad WiFi conditions. This
prevents the congestion control algorithm to reduce its con-
gestion window and thus entering the slow start phase. As
shown in [5], the slow start of TCP is unsuited for short-term
disturbances on the physical layer. To stop the CWND from
trying to adapt to the conditions, a 0 is written to the stub
accessing the corresponding TCP variable. The composition
for this example is visualized in Figure 5(b).

Runtime Modification: Application 1 feeds its cross-layer
interactions using CRAWLER’s API into the system. Shortly
after, Application 2 also feeds its cross-layer interaction into
the system. Our algorithm automatically detects equal com-
positions. Due to the given input, state and type equality, the
algorithm merges the chains starting at app1less and app2less

respectively. Figure 6(a) depicts the result after the merging
process.

After Application 2 has inserted its cross-layer interaction,
Application 1 adapts its interaction. One possible reason could
be that the resulting information about the link still jitters
too often. To smoothen the output, Application 1 replaces the
history module, which stores three values, by another module
that stores ten values. In CRAWLER this runtime adaptation
could easily be expressed with the following two lines:

app1newhistory:history(app1rssi,10)
replace(app1history,app1newhistory)

The first line creates a new history module with 10 ele-
ments and the second line instructs to exchange the old history
module with the new one. When Application 1 tries to ex-
change app1history by app1newhistory, the connections (incom-
ing notify connections and the outgoing query connections)
of app1avg are modified. Thus, we expect that our algorithm
will split app1history from the module it has been merged
with. Furthermore, we expect that the affected modules app1avg

and app1less are also splitted since they do no longer share
input equality with app2avg and app2less. Figure 6(b) shows
that the modification request conducted by Application 1 has
been successfully and transparently realized by our algorithm.
To conclude our evaluation, our algorithm is able to merge,
i.e., optimize, and split module compositions at runtime. The
reason why we don’t give detailed memory and CPU usage
numbers for that particular example is twofold. First, the mod-
ule compositions are realized in the kernel part of CRAWLER
as loadable kernel modules and retrieving such numbers for
kernel modules are cumbersome. Second, providing numbers

for that particular example is not representative and meaning-
ful: It is easy to construct composition examples with more or
less savings.

VII. RELATED WORK

Modular software development process (or modularization)
[8], [10], [13], [15] is widely used in the scope network-
ing in order to deal with this rising complexity in design-
ing, implementing and maintaining protocols for distributed
systems. Modularization has also be proved to be very prac-
tical in cross-layer interaction domain [1]. But in spite of
that problems occurring with multiple cross-layer interaction
is a very unexplored field. Only the problem of conflicts,
i.e., possible performance degradations [9] caused by multiple,
contradicting interactions have been mentioned. To the best of
our knowledge, the problem of redundancy in multiple cross-
layer interactions have not been addressed so far.

However, abstracting the problem of redundancy in cross-
layer interactions to redundancy in module compositions the
problem can be theoretically considered as using directed and
labeled graphs. Here, a module is mapped to a node, while a
data flow is mapped to a directed edge from the generator to
the receiver. This allows us to research a suitable algorithm
in the field of graph theory. While there are many interesting
findings in the field of subgraph isomorphism, research on
the isomorphic subgraph problem seems rather scarce. While
the isomorphic subgraph problem cannot easily be reduced
to other better known graph isomorphism problems, in [3]
it is proven to be NP-hard by reduction to the 3-partition
problem. If we consider circle free graphs, our algorithm is
able to provide an optimal solution in polynomial runtime.
Nonetheless, if circularities occur, we may miss optimization
possibilities but provide a suboptimal solution in polynomial
time. All in all, the need for a polynomial time algorithm
depends on the use case: (i) If modules and their compositions
are regularly (un)loaded or changed (ii) how big the size of
the modules and their compositions are, and (iii) how fast the
system needs an optimization. Thus, it may be appropriate to
use a variation of the isomorphic subgraph problem. However,
since we provide a polynomial time algorithm, our solution
will fit to all of these three uses.

Practically, in the field of runtime (self)adaptive software
there exists approaches which allow the exchange and modifi-
cation of modules at runtime [11], [12]. But, these approaches
mostly use course granular modules such as in Eclipse, .net
and the OSGi framework making it difficult to use our ap-
proach since the redundancies in such system will appear less.
Another solutions focus more on ontology-based systems [6]
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Fig. 6. Merging equal module compositions and splitting them if necessary, i.e., if changes are conducted at runtime to modules and to their compositions.

which requires the developer to put effort to describe the se-
mantic of their modules. In our approach the module developer
has to implement once what she considerers as state equality,
but from then on due to the reusable nature of the modules,
module composition developer can freely compose without
putting additional effort.

To summarize, we focus on an automated system that is able
to resolve redundancy of multiple cross-layer interactions at
runtime and does not burden the module composition devel-
oper about finding the overall optimal module composition.

VIII. CONCLUSION

In this paper, we propose a graph-based redundancy removal
algorithm to automatically detect and resolve redundancies in
multiple cross-layer interactions. In particular, we used the
cross-layer architecture CRAWLER that utilizes module com-
positions to realize cross-layer interactions. However, we first
provide a general theoretical graph-based description of the
problem, making it applicable for a wide range of modular
systems or networking scenarios. Based on that, we suggest
a general algorithm to automatically find redundant module
compositions (i.e., parts of cross-layer interactions) and merge
them together. With regard to runtime adaptable module com-
positions we show that more adaption then only a rash removal
of redundancies is necessary, since runtime adaptation can lead
to invalid module compositions and accordingly suggest how
to resolve this issue by bookkeeping. We validate the practical
applicability of our approach by implementing it for cross-
layer architecture CRAWLER. Our evaluation demonstrates a
real use-case where we successfully resolve redundancies in
cross-layer interactions at runtime and recreate the original
state if necessary.

Although we have applied this generic approach for the
cross-layer design domain, the problem can also be mapped
to other scenarios such as on to a graph of nodes in the
network (wired and wireless networks) to detect redundant
node compositions, services, and interactions. Detecting such
redundancies can help in turning off services and even nodes,
e.g., to save energy in battery driven devices and improve
network life time. With our generic solution the adaptation to
other fields should be simplified.
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