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Abstract—Applications and protocols for wireless and mobile
systems have to deal with volatile environmental conditions
such as interference, packet loss, and mobility. Utilizing cross-
layer information from other protocols and system components
such as sensors can improve their performance and respon-
siveness. However, application and protocol developers lack a
convenient way of monitoring, experimenting and specifying
optimizations to evaluate their cross-layer ideas.

We present CRAWLER, a novel experimentation architec-
ture for system monitoring and cross-layer-coordination that
facilitates evaluation of applications and wireless protocols. It
alleviates the problem of complicated access to relevant system
information by providing a unified interface for accessing appli-
cation, protocol and system information. The generic design of
this interface further enables a convenient and declarative way
to specify and experiment how a set of cross-layer optimizations
should be composed and adapted at runtime. Our evaluation
demonstrates the usability of CRAWLER by experimenting,
monitoring and improving TCP’s congestion control algorithm.

I. INTRODUCTION

Developing real-world protocols and applications for
wireless and mobile systems is difficult. The volatile nature
of the wireless medium and mobility complicate their de-
velopment. This is further aggravated by the isolated nature
of today’s applications, protocols, and the operating system.
Although the isolation of applications from each other, pro-
tocols, and the operating system attains reasonable software
engineering advantages, it disregards (i) access to relevant
system information, such as protocol states, for monitoring
and experimentation, and (ii) coordination among different
components to optimize the performance.

Network analysis tools, such as wireshark [1], only allow
the inspection of traffic at few specific points in the protocol
stack. However, such tools lack the ability to monitor pro-
tocol states, variables, and system components, e.g., battery,
motion indicators, and CPU utilization. This is mainly be-
cause the protocol stack and system component drivers are
deeply integrated into the operating system which strongly
limits external access to their internal states. Therefore, ap-
plication and system developers are unable to access vital
system information for monitoring, experimentation and per-
formance optimization.

However, recent research [2] has shown that availability
of cross-layer information would allow an application to

be more adaptive. Not only applications, but also protocols
show significant adaptability advantages when following the
cross-layer paradigm. For example, in mobile and wireless
systems, even a single cross-layer optimization at the MAC
layer can achieve throughput speedups of up to 20 times and
latency reduction of up to 10 times over regular TCP [3].
Despite this tremendous potential to enhance system perfor-
mance and boasting a fair share of research investment in
recent years, the cross-layer paradigm has not been able to
leverage its utility beyond few promising yet concentrated
research efforts [4].

Although several static cross-layer architectures have been
proposed, we lack a generic and flexible architecture that
enables developers to specify and experiment with cross-
layer optimizations. A static cross-layer architecture [5]–[8]
facilitates easy manipulation of protocol-stack parameters
and combines several specific cross-layer optimizations. In
current architectures of this type, cross-layer optimizations
are composed offline (i.e., at compile time) and are deeply
embedded within the OS. This approach has two key limi-
tations that motivate the ideas presented in this paper.

First, the process of adding or removing an optimization
is cumbersome: optimizations need to be patched with the
architecture, and because the architecture is deeply embed-
ded with the OS, recompiling the kernel and rebooting the
system are typical consequences. Hence, the developer has
to deal with too many system internals before experimenting
with cross-layer optimizations.

Second, because of this static nature of the existing ar-
chitectures, an optimization will change the system behavior
even if it is not needed. Hence, an application or environment
specific optimization is not required when that application is
not running or the underlying conditions have changed. For
example, energy saving optimizations may not be necessary
if the device is plugged-in to a power supply. Therefore,
this optimization and its interaction with the network stack is
superfluous and may even adversely affect other active appli-
cations. We strongly believe that this is against the original
spirits of the cross-layer paradigm [9] which underlines the
need for dynamic adaptation of the system behavior (i.e.,
protocols, system components, and applications) based on
the application requirements and the network conditions.



In this paper we present CRAWLER, a new experimen-
tation architecture for system monitoring and cross-layer-
coordination that facilitates the evaluation of applications
and wireless network protocols. The target audience of
CRAWLER are application and system developers of wire-
less networks who want to experiment and evaluate their
software. Specifically, CRAWLER provides the following key
features that illustrate its departure from the existing work
and mark the contributions of this paper.

• It simplifies the process of monitoring and experimen-
tation by providing a unified interface for accessing
application, protocol and system information which is
independent of the OS internals.

• The generic design of the unified interface further
simplifies the process of specifying cross-layer opti-
mizations by providing a declarative way to specify
how a set of optimizations should be composed and
adapted at runtime.

• It offers (i) a very high degree of flexibility, to ex-
periment with different compositions of cross-layer
optimizations, and (ii) extensibility, to include hetero-
geneous protocols and system components to find the
right set of optimizations for a certain use-case. Hence,
CRAWLER is well suited as a rapid prototyping tool for
application and system developers.

The remainder of this paper is organized as follows.
Section II presents a system overview, highlights our design
goals, and comprehends the scope of our architecture. Based
on our design goals, Section III describes our architecture
from a conceptual point of view. We evaluate CRAWLER in
Section V. Finally, we discuss related work in Section VI
before concluding the paper in Section VII.

II. DESIGN OVERVIEW

CRAWLER consists of two main components as shown in
Figure 1:

The logical component (LC) allows cross-layer developers
to express their monitoring and optimization needs in an
abstract and declarative way. For this purpose, we have
created a rule-based language customized to cross-layer
design purposes. Using this language, developers can specify
cross-layer signaling at a high level without needing to care
about implementation details. Additionally, the LC offers a
uniform interface to applications for (i) providing their own
optimizations on demand, and (ii) exchanging information
with the protocol stack and system components.

The cross-layer optimizations given by the LC are realized
by the cross-layer processing component (CPC). Here, the
rules are mapped to compositions of small functional units
(FUs). Finally, stubs provide read/write access to protocol
information and sub-system states via a generic interface that
abstracts from a specific implementation. Thus, additions
and changes in the optimization rules can be done at runtime
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Figure 1. Conceptual view of CRAWLER’s components. The logical com-
ponent (LC) abstracts from the implementation of cross-layer optimizations
via an easily usable but powerful rule-based configuration language. The
cross-layer processing component (CPC) realizes the optimizations given
by the LC which can be readjusted flexibly at runtime.

using the LC. These changes are reported to the CPC, which
adapts the FU compositions accordingly.

Before going into further details of the architecture, we
present our design goals and briefly highlight the scope and
the limitations of our approach.

A. Design Goals

Our design is centered around the following goals:
Transparency: Cross-layer interactions should not impair
the key software engineering properties, such as modularity,
maintainability, and usability, of the layered protocol stack
despite introducing dependencies across non-adjacent layers.
Similarly, the cross-layer architecture should not impose
additional requirements when developing new protocols
and system components: Cross-layer optimizations should
be transparent to the system developers. Nevertheless, as
experts of their system it is beneficial if they already provide
access to the protocol and system variables to support cross-
layer interactions.
Application Support: Unlike existing approaches, the ar-
chitecture should provide a unified interface for application
developers to (i) specify and add their own monitoring and
optimization needs into the system, and (ii) bundle these
optimizations with their applications, without needing to
deal with OS level details. Moreover, it should simplify
the process of accessing protocol and system information,
typically placed in the OS, which today is limited to only
a few interfaces and thus requires manual inspection and
adaptation of the very large OS code base.
Runtime Flexibility and Extensibility: The architecture
should offer flexibility that is essential for adjusting and
experimenting with different sets of optimizations, and fur-
ther, the extensibility for involving all possible protocols
and system components. In other words, for designing an
optimization, the exchange of information between any num-
ber of layers and system components and the composition



of any number of specific cross-layer optimizations should
be possible at runtime. To achieve this, the design of an
architecture has to offer sufficient versatility to cope with
the diversity and permanent evolution of protocols and
application requirements.
Runtime Reconfigurability: The architecture should of-
fer the ability to (i) detect the underlying environmental
changes, and (ii) respond to the evolving application moni-
toring and optimization demands, by automatically loading
the adequate set of optimizations at runtime. For example,
energy saving optimizations may not be necessary if the
device is plugged-in to a power supply.

B. Cross-Layering in CRAWLER: Discussion
CRAWLER runs on end-hosts and coordinates local in-

formation such as from the protocol stack and system
components. CRAWLER itself does not provide information
exchange among nodes in a network, such as in [10], because
we believe that a monitoring and cross-layer experimentation
architecture should not be responsible for establishing such
information exchange mechanisms. Rather, this is the do-
main of a communication protocol. Nonetheless, a combina-
tion of such a protocol with CRAWLER could be used to share
cross-layering information between nodes in a network.

Currently, CRAWLER neither provides protection against
mis-configurations of optimizations nor resolves conflicts
among concurrent optimizations. How to automatically de-
tect such mis-configuration and conflicts [11] is a research
challenge in itself, and a detailed exploration of the design
space is beyond the scope of this paper. However, we plan to
extend CRAWLER with features that allow easier detection of
such problems. Nevertheless, CRAWLER is a playground to
observe the effects of applications and protocols, and their
different set of optimizations. Hence such mis-configurations
and conflicts can already be easily detected manually. Sim-
ilarly, it offers a very high degree of flexibility and thus
simplifies the process of experimenting with finding the right
set of optimizations for a certain use case.

III. ARCHITECTURAL DETAILS

We present a goal-driven description of CRAWLER by
highlighting, with the help of simple examples, how our
design achieves the four goals we laid out in Section II-A.

A. Goal 1: Achieving Transparency
The LC is the interface between developers and the CPC.

Its major goal is to increase the usability and maintainability
of cross-layer optimizations for developers, allowing them to
easily express their desired optimizations without paying too
much attention to implementation details. For this purpose,
the LC is divided into four subcomponents as shown in Fig-
ure 2. The configuration subcomponent allows a developer
to express cross-layer optimizations on an abstract level and
thus it hides their implementation details for a particular

Figure 2. The LC comprises four subcomponents. (1) The configuration
is an abstract description of a cross-layer optimization. (2) The interpreter
parses the configuration. (3) The repository saves snapshots of configuration
setups, allowing easy access to the current and past setups. (4) The
application support component provides an interface to applications for
communication with CRAWLER in order to provide own optimizations and
access to parameters.

operating system. The interpreter subcomponent is respon-
sible for parsing and mapping this abstract description to
so-called commands. These commands instruct the CPC on
how to realize the given cross-layer description. In addition,
these commands are stored in a repository subcomponent
that maintains a view of their current state in the CPC.
The application support subcomponent allows applications
to share their variables for cross-layer optimizations. Addi-
tionally, it allows applications to add their own monitoring
and optimization needs. In the following we discuss the
first three subcomponents which are intended to meet our
design goal of transparency. We postpone discussion on the
application support subcomponent to Section III-B because
it meets another design goal, namely design goal 2.

1) Configuration: The first step in CRAWLER’s con-
struction is to allow the developers to specify their cross-
layer optimizations. CRAWLER provides an easy to use but
powerful rule-based language for specifying optimizations
in an abstract and a declarative configuration. Each rule is
a behavioral description of a cross-layer interaction within
an optimization. Rules can be nested within other rules
to form rule chains. In Listing 1, we present an example
configuration with rules that specify how to access and
process protocol-stack information and when to notify it
to the application. Each line in the configuration is a rule.
Figure 3 shows a (slightly extended) graphical representation
of this configuration. The figure is marked with numbers
which correspond to the line numbers, i.e., rules, in the
configuration.

The first rule my_rssi simply specifies which pa-
rameter, determined by a unique fully qualified name,
should be accessed (see Section III-C2 for further de-
tails regarding the access mechanism). The second rule
my_history_of_rssi collects the History of RSSI
(received signal strength indication) values, i.e., the last 4
RSSI values of the wlan0 interface in this case. Similarly,
the third rule my_rssi_is_bad determines if the average
of these RSSI values is below a certain threshold, in this
example 55.



1 my_rssi:get("phy.wlan0.rssi")
2 my_history_of_rssi:History(my_rssi, 4)
3 my_rssi_is_bad:Less(Avg(my_history_of_rssi), 55)
4 my_rssi_is_bad->my_appl_var1
5 my_rssi_is_bad->my_TCP_Freezer
6 my_appl_var1:set("application.app1.voip_var1", "bad")
7 my_TCP_Freezer:set("transport.tcp.cwnd", "0")
8 my_timer:Timer(200)
9 my_Timer->my_rssi_is_bad

Listing 1. A simple cross-layer signaling configuration in CRAWLER. This
configuration file defines the setup illustrated in Figure 3.

So far, we have seen how computations and conditions can
be specified using rules. However, sometimes it is desirable
to react to events, such as a sudden drop in signal strength.
This triggering is denoted by an arrow such as in rules 4 and
5. The link quality condition of rule 3 is used to inform an
application about the bad link quality (rule 6) and to reduce
the sending congestion window of TCP connections to 0
(rule 7), i.e., to avoid triggering its congestion avoidance
due to data corruption.

CRAWLER also allows the developers to modify or add
new rules during runtime. It recognizes these changes in
the configuration and adapts the internal composition of
cross-layer optimizations accordingly. For example, if we
want to change the signal strength threshold, we only need
to modify rule 3. We defer further discussion on dynamic
reconfiguration to Section III-D.

2) Interpreter: In the next step, this high level configu-
ration of cross-layer interactions needs to be transformed
into the actual optimization. To this end, the interpreter
subcomponent of the LC parses the configuration and maps
rules to fine-grained instructions called commands. These
commands hold instructions for the CPC on how to wire and
parameterize different FUs to compose a certain optimiza-
tion. FUs are special stateful functions that keep their private
variables between calls, and that have a uniform interface to
simplify the wiring of FUs. For example, rule 2 in Listing
1 is mapped into the commands createFU(History),
addParameter(my_rssi) and addParameter(4)
which results in the wiring of corresponding FUs as shown
in Figure 3. The handling of commands and the realization of
cross-layer interactions are explained later in Section III-C.

3) Repository: The repository keeps track of all the
changes in a configuration. As the name suggests, it be-
haves similar to a revision control system: Each time the
configuration changes, the commands (as created by the
interpreter) are automatically committed as a new revision.
As a result, several revisions of a configuration can be stored
in a preprocessed state. The benefit of this is twofold: First,
this assists CRAWLER in switching between different opti-
mizations without needing to parse and filter the rules again.
In a running system, this allows more efficient switching
between preprocessed sets of optimizations. Second, while
designing and testing new cross-layer optimizations, the
repository allows the developers to roll back to a previous
optimization for debugging purposes.

Figure 3. A simple cross-layer configuration in CRAWLER. We change
the behavior of the TCP layer and an application based on signal strength.

Summarizing, the declarative approach of specifying
cross-layer interactions and the ability to troubleshoot cross-
layer optimization at the very early stages of development
enhances the usability and maintainability of CRAWLER.
Similarly, because it allows to specify cross-layer optimiza-
tion at a high level of abstraction, CRAWLER does not impose
any specific requirements on protocol and system develop-
ers. Hence, the collaboration of these three subcomponents
of the LC fulfills our design goal of transparency.

B. Goal 2: Application Support

In the previous section, we discussed how a cross-layer
developer specifies rules to describe cross-layer optimiza-
tions. However, to provide rich application support, we also
need an interface between applications and CRAWLER. Such
an interface would offer developers to enable applications
and the OS to work together to make informed joint adapta-
tion decisions. For example, in a handheld device, this could
allow the OS to opt for a low-power mobile connection
for background always-on services and switch over to a
high-speed WiFi connection if the application requires a
high-volume streaming connection. Similarly, an application
could request a certain minimum and maximum required
bandwidth and the OS could inform it about the bandwidth
to be expected. The application can then choose a suitable
transmission quality.

CRAWLER provides a rich interface for developers: It en-
ables the applications to specify their needs (i) by accessing
system information and sharing their own information, and
(ii) by providing own optimizations without needing to deal
with implementation details of the OS or CRAWLER.

Listing 1 presents an example of information exchange
between an application and CRAWLER in rules 4 and 6. A
VoIP application creates a (user space) variable and provides
an accessor my_appl_var1 to it. This variable is set
to a certain value when the RSSI falls below a certain
threshold (rule 4). The application can then react to this
change accordingly. To make use of such a configuration,
CRAWLER applications can register variables that facilitate
signaling of states via a shared library. This only requires an
application to include the library’s header file crawler.h,



provide callback functions to read or write to the application
variables, and link against the library. The interaction be-
tween CRAWLER and applications is performed by the shared
library itself. For monitoring purposes, we have implemented
a monitoring application (works using the shared library)
that relieves the developer from any configuration efforts.
In order to conveniently monitor a set of already available
variables within the OS, the monitoring application can be
simply called from the console with a variable such as
the sending congestion window (snd_cwnd) of TCP as
an argument. This simple call starts the application and
constantly monitors and logs the desired variable.

C. Goal 3: Flexibility & Extensibility at Runtime
The flexibility of CRAWLER is associated with how

a cross-layer optimization is composed and modified.
CRAWLER provides a flexible wiring mechanism between
FUs, the basic building blocks of an optimization, to enable
the developers in experimenting with different compositions
of an optimization. Similarly, extensibility deals with the un-
derlying mechanism employed to access protocol-stack and
system-component information. CRAWLER provides stubs
as an extensible interface between cross-layer optimizations
and the OS.

1) FU Wiring: FUs possess two properties which form
the basis for dynamic reconfigurability and adaptability of
cross-layer optimizations.

First, FUs are stateful functions that maintain record of
the data and provide results based on that record each time
they are called. In contrast to stateless functions, whose
output only depend on the input and the global state of the
system, each FU keeps its private state (variables), much
like an object in an object-oriented language. The output
of an FU therefore depends on input, global system state,
and private state of the FU. For example, every instance of
History keeps its collected values between calls. As long
as a configuration does not delete FUs but only changes
their wiring, they will keep their current state and collected
information.

Second, FUs share a unified interface so that they can be
flexibly wired with each other. For example, by changing
rule 3 in Listing 1, we can exchange the Avg FU in Figure
3 with Min or Max at runtime due to the uniform interface,
and still use the collected data from History. This is
because a change in the wiring does not re-instantiate all
FUs. This uniform interface also facilitates easy extension
of FUs as newly designed FUs can easily be wired with the
existing ones. CRAWLER supports two mechanisms to wire
FUs, queries and events.
Query-based Signaling: The query interface allows to
explicitly request information. If the query interface of an
FU is called, it returns the result to the inquiring FU. The
query result of a FU may depend on the result of further
FUs, leading to cascading queries. However, to reduce the
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Figure 4. Stub for changing TCP’s congestion control algorithm.

computational overhead, each FU can cache its previously
returned value and set a validity time for it. In case of a
new incoming query, the FU can then decide to return the
cached value or recompute a new one.
Event-based Signaling: The query-based interface for com-
positions between FUs results in a polling architecture.
To avoid unnecessary polling, CRAWLER also supports an
event-driven signaling that notifies interested FUs about the
occurrence of an event, for example a significant change in
a certain value measured by another FU.

Finally, to enhance the extensibility of the architecture,
CRAWLER also maintains a toolbox that stores FUs. It helps
in reusing generic FUs, such as Timer and History, or
compose more complex FUs, such as a handoff estimation,
by combining several small FUs.

2) Stubs – Accessing Signaling Information: Stubs pro-
vide read and write access to protocol and system informa-
tion. They act as a glue element between the cross-layer
optimizations and the OS. Stubs offer a common interface
and a very find-grained access to system information: Each
protocol and system variable has its own get and set stubs.
Thus, to access the desired protocol or system variable, stubs
need fully qualified, i.e., unique and hierarchical, names (cf.
rule 1 in Listing 1). In cases where writing values is not
possible, e.g., sensors that provide read-only variables, stubs
with only get functionality can be used.

CRAWLER’s runtime, the CPC, associates set and get FUs
with each stub included in the architecture, as shown in Fig-
ure 3. Protocol information often changes non-periodically
and unpredictably as network conditions change. Because
a stub is accessed by CRAWLER via FUs, these FUs can
use the event-based signaling to notify other interested FUs
about any change in protocol information. This increases the
responsiveness of rules to changing conditions.

Figure 4 shows an example of a stub that changes TCP’s
congestion control algorithm. The basic four steps to change
TCP’s congestion control algorithm are as follows: (1) After
receiving and processing a packet tcp_transmit_skb
is called right before delivering the packet to IP. (2a)
Here, we inject a hook that redirects the processing to
the stub. (2b) The stub receives the current congestion
control algorithm currCongControl. (3) If a change
in the congestion control algorithm is requested, TCP’s
tcp_set_congestion_control algorithm is called



for a certain socket. (4) Afterwards, the packet processing
continues as normal. This stub is later used in the evaluation
section V-A to demonstrate a use case.

Overall, stubs allow CRAWLER to monitor and coordinate
a diverse set of protocols, system components and appli-
cations. Moreover, with a unified wiring interface between
FUs, their different types of interconnection, and the ability
to reuse and wire further FUs, provide a very high degree
of extensibility and flexibility at runtime.

D. Goal 4: Runtime Reconfigurability
Runtime reconfigurability is one of the key features of

CRAWLER. Application support is not possible with a static
set of rules that cannot adapt to application demands.
Specifically, application specific rules might not be known
at system start time; they have to be loaded when the
application starts and removed when it terminates.

In order to dynamically add, modify, and remove rules at
runtime, CRAWLER provides the following three keywords
that can be used in the configuration:
load(rule_name): The rule rule_name is loaded at
runtime. Dependencies are automatically resolved if
rule_name references another rule which is not loaded
in the CPC. For example, for the configuration defined in
Listing 1, load(my_rssi_is_bad) will automatically
load my_history_of_rssi. The new rules are com-
posed into FU compositions as discussed in Section III-A2.
unload(rule_name): The rule rule_name is unloaded
at runtime. The internal handling of unloading a rule is
more complex than loading it since unloading can result
in unreferenced FUs. To address this problem, CRAWLER
associates a reference counter with each FU. As an example,
unload(my_rssi_is_bad) will also unload the rule
my_history_of_rssi unless it is used by another rule
that is not listed in Listing 1.
replace(rule_old, rule_new): The rule rule_old is re-
placed with rule_new at runtime. Note, to achieve this
some connections of the exchanged FU have to be rewired.

These keywords allow reconfiguration of chains at run-
time. CRAWLER also provides mechanisms to automatically
execute the commands associated with these keywords based
on the environmental conditions. For example, Listing 2
shows how application specified rules are automatically
loaded or unloaded at runtime based on different con-
ditions. The [manual] section contains rules that are
parsed by the Interpreter but are not directly applied in the
CPC. [contextEnter] specifies which rules from the
[manual] section should be loaded when a certain condi-
tion (also specified in the form of a rule) is met. Therefore,
lines 12 and 13 specify that the rule setCwndAlg will
be loaded when the application sets its variable loadOpt
to true. Note, this configuration will be later used in the
evaluation section to demonstrate the change of the con-
gestion control algorithm of TCP. contextExit is the

1 [manual]
2 rssiavg:avg(history(get("wlan0.qual.rssi"),10))
3 less1:less(rssiavg,60)
4 packetLossRate:get("app.switchCwnd.packetLossRate")
5 less2:less(4,packetLossRate)
6 changeCwnd:and(less1,less2)
7 cwndAlg:if(changeCwnd,"westwood","vegas")
8 initPort:set("tcp.activate.outgoingPacketsPort",5001)
9 setCwndAlg:set("tcp.cong_control_5001", cwndAlg)"

10

11 [contextEnter]
12 loadOpt:get("app.switchCwnd.loadOpt")
13 loadOpt->load(setCwndAlg)
14

15 [contextExit]
16 removeOpt:get("app.switchCwnd.removeOpt")
17 removeOpt->unload(ALL)

Listing 2. Configuration of an application-specified optimization: TCP’s
congestion control algorithm is changed based on packet loss rate (PLR)
and RSSI values. If the PLR is high and the RSSI is low, TCP’s congestion
control algorithm is set from TCP CUBIC to TCP Westwood. If either of
the conditions is not satisfied, the congestion control algorithm is set back
to TCP CUBIC.

opposite of contextEnter to unload rules when a certain
condition is met. For example, in line 16 and 17 based on the
application’s variable removeOpt all rules are unloaded.

Summarizing, by supplying keywords to load, unload,
and replace rules, CRAWLER achieves reconfigurability at
runtime. It also provides necessary support to automatically
execute these rules depending upon the conditions defined
by the developers.

IV. IMPLEMENTATION

We implemented CRAWLER1 for Linux (kernel 2.6.32).
The LC and all its subcomponents are implemented in C++.
It runs as a daemon in user space. The CPC resides in kernel
space and is implemented in C. This reduces the number of
expensive context switches between kernel and user space
during runtime. The communication between LC and CPC
takes place via flexible interfaces provided by generic netlink
sockets [12]. For using CRAWLER, applications can link
against a shared library that contains all the functionality
to interface with the LC.

The wiring between FUs is implemented using a special
data type that can contain characters, integers, boolean
values, arrays, and a struct-like compounds of these types.

So far, we have implemented about 20 FUs and 160 stubs,
with the numbers growing with every new testing setup.

V. EVALUATION

Our evaluation of CRAWLER focuses on two aspects: First,
we give an example of how to use CRAWLER for monitoring
and cross-layer adaptation purposes by focusing on a well-
known cross-layer example, that is, TCP congestion control
in the wireless world. Second, we evaluate the overhead by
using benchmarks for time critical parts of the architecture.

1This paper focuses on the main features of the CRAWLER architecture
that support our design goals. The source code and documentation of the
whole architecture can be accessed via http://www.comsys.rwth-aachen.de/
research/projects/crawler/
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A. Use case: Monitoring and Adaptation of TCP Congestion
Control Algorithms

To give an insight into how modeling and cross-layer
adaptation with crawler is set up, we now present an ex-
emplary optimization that controls TCP’s congestion control
mechanism. The goal of this optimization is to dynamically
switch between different congestion control algorithms, such
as CUBIC [13] and Westwood [14], depending upon the
underlying network conditions. CUBIC is the standard con-
gestion control algorithm in the Linux kernel since 2.6.19
due to its superior performance and fairness properties under
different network conditions. Westwood is specifically devel-
oped for wireless communications (such as in WLAN), and
provides better throughput in challenging network conditions
with high loss rates.

Our test setup consists of two PCs. One PC runs our
CRAWLER implementation and is equipped with an 802.11g
WLAN card. We use Iperf [15] to create TCP traffic, and
netem [16] to create different packet loss rates (PLRs) and
to produce repeatable results in order to stress test our
architecture. The other PC connects to an 802.11g WLAN
access point and serves as the destination for Iperf traffic.

As a first step, we model different loss conditions and
measure the TCP goodput via Iperf. The results of this
monitoring step can be seen in the first two curves in
Figure 5. It can be seen that Westwood outperforms CUBIC
in high packet loss scenarios.

As a second step, we therefore specified a CRAWLER
optimization that switched between different congestion
control algorithms at runtime without re-initializing the TCP
connection: If the packet loss rate exceeds 4% (a significant
amount for TCP) and the RSSI value falls below 60, TCP
switches from CUBIC to Westwood congestion control.
A switch back to CUBIC is initiated when the network
conditions become stable again. The complete configuration
script (in the form of an application-provided optimization

Figure 6. Goodput of a TCP transmission over time under varying envi-
ronmental conditions and congestion control algorithms. The optimization
is loaded after 60 seconds which triggers the switch from CUBIC to
Westwood. The switch back to CUBIC is triggered when the packet loss
rate (PLR) falls below the application-specified threshold of 4%.

is presented in Listing 2.
The effect of this optimization is shown in Figure 5. The

variation in the results (specified by the 95% confidence
intervals) can be attributed to different environmental condi-
tions observed during the course of 10 repeated experimen-
tal runs in an indoor environment with several co-exiting
WLANs deployments in the same frequency range. Note
that a switch at a lower PLR of 3% could also improve
performance of the optimization. However, as our main
goal is show an exemplary optimization, the switch at 4%
highlights its effects.

Figure 6 shows our results for a longer experimental run,
and also highlights the possibility to load rules at runtime.
For the first 60 seconds, we did not load the optimization
into the CPC, as depicted by the low TCP goodput achieved
during this time. The optimization is loaded at 60 seconds
which triggers the switch from CUBIC to Westwood and
subsequently improves the goodput. Similarly, at 120 sec-
onds, when the PLR falls below its 4% threshold, TCP
switches back to CUBIC and thus achieves a consistently
higher goodput.

As a final step, we investigate if our on-the-fly algorithm
change produces undesirable side effects. For example, the
behavior of TCP’s cwnd (congestion window) across differ-
ent congestion control algorithms could lead to unexpected
behavior. To monitor the behavior during the algorithm
switch, we monitored the cwnd variable via CRAWLER’s
monitoring application by simply executing monitorapp
’transport.tcp.cwnd’ in the console. In contrast,
a manual setup would require changes to the kernel to
introduce hooks and to create an interface to access the
collected data. CRAWLER relieves the developer from these
steps and expedites the testing and monitoring of variables
and setups.

This example demonstrates the correctness of CRAWLER’s



(a) Signaling overhead for query-based signaling
and event-based signaling

(b) Packet processing duration within the protocol
stack

(c) Measured throughput for different FU compo-
sition sizes

Figure 7. Performance measurements of CRAWLER. (a) The signaling overhead has a linear increase of CPU cycles with increasing amount of wired FUs.
(b) As CRAWLER’s rules run asynchronously, packet processing time is independent of the amount of wired FUs. (c) Likewise, throughput is not influenced.

implementation. It also shows that CRAWLER provides trans-
parent and rapid access to system variables and parameters.
A 15-lines configuration can be used to adapt TCP’s con-
gestion control without needing to re-initialize the end-to-
end connection. Similarly, congestion window can easily be
monitored by executing the relevant monitoring application
of CRAWLER.

B. Architecture Overhead

We now measure the runtime overhead of our architecture.
CRAWLER’s runtime, the CPC, provides two main function-
alities: (i) registering and wiring FUs and stubs, (ii) signaling
between FUs and stubs to access protocol and component
information. The registration of FUs and stubs is not time-
critical since this only happens when a new optimization is
loaded into the system. During the registrations, each newly
created FU and stub is checked to prevent duplicates. For
each of them, this has a runtime of O(n + m) where n

and m are the number of already existing FUs and stubs,
respectively.

Query-based and event-based signalling (cf. Section
III-C1) play a vital role in determining the processing
overhead of CRAWLER. To measure this, we use a simple
benchmark of several wired Forwarder FUs. These do not
contain any complex logic: they simply relay the query to
the next FU. The idea here is to keep the complexity of the
FUs as low as possible to measure the signaling overhead
between FUs.

Figure 7(a) shows the results for both the signaling
mechanisms of CRAWLER when compared with a standard
Linux function call (note the logarithmic scale on both
axes). We created chains of Forwarder FUs of different
lengths, from one to one thousand chained FUs. After-
wards, we measured the CPU cycles required to traverse
all Forwarder FUs, repeating each benchmark 100 times.
The results show that query-based and event-based signaling
mechanisms introduce an overhead of a factor 2.1 and 2.8
when compared with native Linux function call, respectively.
However, we can clearly see that the overhead increases
linearly with the length of the chains.

However, this processing overhead does not increase the

processing time of network packets. To show this, we
connect two notebooks via a Gigabit Ethernet. The sender
notebook runs our CRAWLER implementation with an opti-
mization that changes each outgoing packet by manipulating
the TTL field of the IP header. The optimization consists of
two rules: Rule 1 creates a chain of Forwarder FUs of
different lengths. At the end of this FU chain, we added a
simple FU that incremented an integer value. Rule 2 registers
a netfilter hook in the IP output path that sets the TTL to that
value. We then create different amounts of UDP traffic via
Iperf [15]. Figure 7(b) shows the length of rule chains does
not contribute noticeably to the per-packet processing time.
This highlights the fact the runtime overhead of CRAWLER
is asynchronous to packet processing. Figure 7(c) depicts
the throughput measurements for the same experiments.

Overall, these results conclude that, while CRAWLER
introduces processing overhead, this overhead does not de-
teriorate network performance in terms of throughput and
packet processing time.

VI. RELATED WORK

A plethora of specific cross-layer solutions [4], [17],
[18] have been proposed that optimize a specific behavior
of the system rather than creating full-fledged architectures.
The majority of these solutions either enables cross-layer
signaling between two specific layers or between many
layers but in only one direction, e.g., from lower layers to
upper layers but not vice versa. In contrast, CRAWLER is an
architecture that facilitates realization of all these specific
solutions, potentially in parallel.

In recent years, a number of cross-layer architectures
have been proposed that facilitate signaling across all lay-
ers in both directions, i.e., any-to-any layer signaling. For
example, CLASS [5] enables direct signaling between all
layers by message passing. However, any-to-(m)any layer
signaling, i.e., addressing several layers at once, is not pos-
sible with CLASS. CATS [6] provides a management plane
that supports such any-to-(m)any layer signaling. However,
CATS has a monolithic architecture that does not specify
any generic interface for signaling among different layers
and hence is unable to cope with permanent evaluation of



protocols and system components. MobileMAN [7] provides
a database where each layer can store protocol information
and make it accessible to other layers in a unified fashion.
Thus, MobileMAN requires extensive modifications in the
protocol-stack to enable such database interactions. This
limits extensibility and maintainability of this architecture.
ECLAIR [8] is the most advanced cross-layering architecture
that provides a generic interface for accessing protocol stack.
Its generic interface facilitates platform independence but
it does not support dynamic adaptability of cross layer
optimizations at runtime.

Our main departure from the existing work is that our
architecture (i) allows the developers to specify cross layers
optimizations at a very high level of abstraction, (ii) provides
rich application support by enabling applications to interact
with CRAWLER and specify their own optimizations, and
(iii) enable runtime adaptability of cross layer optimizations
depending upon the underlying network conditions. To the
best of our knowledge, these key features are not supported
by the existing cross-layer architectures.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented CRAWLER, a cross-layer
architecture for wireless networks that enables flexible and
versatile adaptation of protocols, system components, and
applications. One key novelty is that CRAWLER can react to
unpredictable changes in a device’s environment by adapting
all its optimization at runtime. Our evaluation demonstrates
the utility and correctness of CRAWLER’s implementation
with help of simple use cases. It also shows that CRAWLER
does not deteriorate the network performance parameters
such as throughput and packet processing time.

Developing novel cross-layer optimizations is our primary
focus as a future work. We plan to extend CRAWLER with
the ability to automatically detect mis-configurations and
conflicting optimizations. This is important since each ap-
plication can specify its own optimizations and load them at
runtime. We want to improve the usability of CRAWLER even
further by providing a visual configuration and monitoring
component. The visualization support for monitoring cross-
layer interactions will provide several advantages such as
observing complex cross-layer interactions and the ensuing
effects.
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