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ABSTRACT
Mobile devices have become a popular medium for deliver-
ing multimedia services to end users. A large variety of solu-
tions have been proposed to flexibly compose such services
and to provide quality-of-service guarantees for the result-
ing contents. However, low-level mobility artifacts resulting
from network transitions (disconnected operation, reconfig-
uration, etc.) still prevent a seamless user experience of
these technologies. This paper presents an architecture for
supporting legacy applications with such solutions in mobile
scenarios. Through network virtualization, it hides mobil-
ity artifacts and ensures connectivity at the network and
transport level. Its adoption for multimedia applications
poses unique challenges and advantages, which are discussed
herein.

Categories and Subject Descriptors
C.2.2 [Computer Systems Organization]: Computer-
Communication Networks—Network Protocols

General Terms
Design, Experimentation

Keywords
Legacy Support, Mobility, Multimedia, Service Composition

1. INTRODUCTION
Mobile devices form an increasingly attractive platform

for multimedia applications. Corporate environments in par-
ticular obviate such mobile applications. Users ubiquitously
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access multimedia data through a variety of devices in their
offices, meeting rooms, cars, at their customers’ site, or at
home. In these settings, video, audio, and textual data need
to be continuously adapted. For example, users may expect
a text-to-speech conversion of their e-mails while driving
or tools for rich-media collaboration in real time over wire-
less links. Many of the challenges of providing multimedia
services to users in such scenarios have been addressed by
recent research in the areas of adaptability to changing net-
working environments, quality of service, and service com-
position [10, 6, 4].

However, to take advantage of these services, changes to
the applications themselves and the underlying operating
systems become necessary. Consequently, it is difficult and
expensive to evaluate novel protocols, frameworks, and mid-
dleware, and to deploy them on end systems, resulting in low
rates of adoption. Furthermore in today’s systems, mobile
users experience artifacts of mobility which impair service
availability and quality. Thus, moving between such diverse
environments as wired and cellular networks burdens users
with administrative tasks. Multimedia and streaming me-
dia applications in particular exhibit sub-optimal quality or
experience complete loss of services under varying network
conditions or network transitions.

To address these issues, we propose a network virtualiza-
tion layer with three main responsibilities in mobile scenar-
ios: (1) to relieve the user of system re-configuration due
to a changing networking environment (e.g., the transition
from a wireless LAN to a GSM-based connection); (2) to
hide changes in the networking environment from legacy ap-
plications; (3) to perform a mapping between legacy traffic
and richer communication paradigms ranging from solutions
for enhanced multimedia services and service composition to
overlay-based routing or IPv4/IPv6 tunneling.

Our architecture achieves these tasks by allowing flexible
protocol transformations on the end-system and leveraging
overlay routing systems, service composition frameworks,
and higher-level protocols in general at the network level.
On the end system, network traffic needs to be intercepted,
analyzed, transformed if necessary, and forwarded without
requiring changes to applications or the operating system.
At the network level, we use overlay routing services such as
i3 [12] which provide mobility support and generic support
for service composition. By combining both aspects, multi-
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Figure 1: Example scenario of mobile multimedia applications.

media and other services can be delivered seamlessly to mo-
bile legacy applications. This forms a flexible research plat-
form for evaluating new multimedia protocols and frame-
works with legacy applications in mobile environments.

While our architecture is generic and applies to a large
variety of applications, this paper discusses opportunities
and challenges of using it for mobile multimedia and service
composition. It is organized as follows: section 2 introduces
an application scenario which illustrates the necessity for
seamless mobility support for multimedia applications; our
architecture addressing this challenge is described in section
3; section 4 discusses architectural issues arising specifically
in the context of mobile multimedia applications; section 5
analyzes related work and section 6 concludes.

2. MOBILE MULTIMEDIA SCENARIOS
Many mobile applications serve as prime scenarios for mo-

tivating multimedia service composition. Here, the user ex-
perience of multimedia services can particularly benefit from
customization and adaptation of contents: data needs to
be available in formats matching the capabilities of mobile
devices. Furthermore, formats and their properties should
adapt to the changing social, networking, and administrative
environments in which the users move. In the remainder of
this paper, we will use the following three scenarios to illus-
trate the challenges of mobile multimedia applications (cf.
Figure 1).

In scenario A, a company employee uses a hand-held de-
vice in a docking station for a video conference with col-
leagues. When the device is undocked in scenario B, it
should switch to the company wireless LAN, perform the
necessary authentication through a VPN client, and adjust
the quality of the video and audio streams to match the new
connection properties. On their way home, the user may be
engaged in a VoIP call with a friend and enter a cafe after
leaving the company site (scenario C). Here, the device can
choose between GPRS and a commercial Wi-Fi hotspot to
maintain connectivity. Next to the VoIP or video conference
application, the user then starts to download a file from a
company server for which additional encryption is desired.

These scenarios call for modular solutions to implement
multimedia services. The costs and effort of re-implementing
components and frameworks for each service and system in
a monolithic manner are prohibitive. Ideally, these service
components can be orchestrated into service compounds,

which are delivered to the end user. Our architecture facili-
tates and augments such solutions to make them available to
legacy applications. It also allows to enrich legacy services
to increase the functionality or enhance their quality.

The changes of network links and their properties due to
user mobility manifest in two aspects. The first aspect is
that connectivity needs to be maintained, not only by con-
figuring network devices appropriately, but also by adapt-
ing to protocol requirements. From the scenario above, the
transition from the wired to wireless link including the nec-
essary VPN authentication illustrates this point. Therefore,
the first goal of our architecture is to automate this tasks
and require as little administrative interaction with the user
as desired. The second aspect of mobility artifacts applies to
applications. Most applications use TCP or UDP over IPv4
and can not handle mobility seamlessly. Thus, our second
goal is to provide mobility support for legacy applications.

The third goal is to leverage new overlay networks and
network architectures. In a multimedia context, this would
allow novel protocols and frameworks (such as [6, 4]) to pro-
vide service composition and QoS guarantees to, e.g., a leg-
acy video player. Furthermore, the reuse of legacy applica-
tions can significantly reduce the effort required to create
realistic test and evaluation environments. Thus, our ar-
chitecture can serve as a research platform to ease the de-
velopment and evaluation of new protocols, platforms, and
distributed systems.

3. ARCHITECTURE OVERVIEW
The overall goal of our end-system architecture is to in-

troduce new protocols and additional functionality into the
standard network stack without requiring changes to legacy
applications or operating systems. We call the software im-
plementing these features (and instances of it) a proxy as it
is responsible for intercepting and relaying network traffic.
In contrast to remotely deployed application-level proxies
(e.g., remote caching HTTP proxies), our proxy resides on
end systems and intercepts network traffic locally.

The network-related part of our architecture augments
legacy protocols and applications with additional functional-
ity. It exploits network-based services such as routing, trans-
coding, or encryption. In particular, the i3 overlay routing
infrastructure provides support for host mobility [19] and
service composition [13], and further protocols can be lay-
ered on top of it.
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Figure 2: Proxy architecture with packet filter and
protocol transformers.

3.1 End-System Architecture
As illustrated in Figure 2, the two main components of the

proxy are a packet filter and a set of protocol transformers.
While standard protocols like TCP/IP are implemented as
part of the operating system kernel, the proxy is a regular
user-level application. This fact substantially reduces the ef-
fort of developing and debugging protocol transformers and
new protocols within the proxy. Depending on the underly-
ing operating system, the packet filter cannot be integrated
directly with the proxy but must instead be implemented as
an in-kernel component. However, the packet filter and the
protocol transformers connect through a generic interface
which abstracts from these platform-dependent details.

3.1.1 Packet Interception
The packet filter is responsible for intercepting packets go-

ing from applications to the network and vice versa. Here,
interception means that packets leave their normal flow of
processing in the operating system and are delivered to the
proxy. Furthermore, it must be possible to inject arbi-
trary packets into this flow. In scenario B, the packets of
the video-conferencing application need to be transmitted
through the VPN tunnel. For outgoing packets, the packet
filter intercepts them before they leave the system. It passes
them to the proxy which encapsulates them with the VPN
protocol and returns them to the packet filter. The filter
then injects them into the network stack of the operating
system from where they are sent to the wireless network.
Incoming packets are handled symmetrically to decapsulate
them and pass them to the conferencing application.

On many Unix systems, tun/tap devices [16] allow us to
implement this form of packet interception as part of the
proxy implementation and no in-kernel code is necessary.
On Microsoft Windows systems, the proxy uses a Windows
driver providing similar functionality to tun/tap devices.
The driver also allows for conditional packet interception
in order to deliver only relevant packets to the proxy appli-
cation. The implementation as a driver requires no changes
in the operating system.

3.1.2 Application Transparency
The support for unmodified legacy applications is a cen-

tral aspect of our end-system architecture. It is achieved by

Application Adaptation and transformation of data
and protocols, integration of new proto-
cols, service discovery & composition

Transport Adaptation to link properties, link
maintenance, QoS management

Network Mobility support, (overlay) routing,
encryption, authentication

Adapter Link detection & selection

Table 1: Protocol transformations can be grouped
by network layer.

leaving the application programming interface and appli-
cation binary interface between application and operating
system intact. Instead, the proxy only interacts with ap-
plications by intercepting and relaying their network traffic.
Thus, application transparency needs to be ensured at the
protocol level.

Due to the almost exclusive use of the IPv4 protocol in
legacy applications and the benefits of i3 for mobility and
service composition, the mechanisms for protocol transpa-
rency will be briefly illustrated on the example of this com-
bination of protocols. While tunneling IP traffic over i3
itself is straightforward, service discovery is not because i3
communication endpoints are not identified by pairs of IP
addresses and port numbers. Thus, the proxy associates i3
endpoints with unused virtual IP addresses (e.g., from a pri-
vate address range such as 10.0.0.0/8). All traffic from an
i3 endpoint is modified to appear to originate from a host
with the associated virtual IP address. Conversely, packets
with virtual destination IP addresses are encapsulated and
tunneled to the associated i3 endpoint.

Virtual IP addresses are provided to applications by in-
tercepting name resolution attempts such as DNS queries.
These legacy mechanisms can thus be augmented with other
schemes for name resolution and service discovery. They
can range from hashing the DNS name locally into an i3
endpoint identifier to, e.g., complex QoS-aware negotiation
protocols for locating services and composing communica-
tion paths.

3.1.3 Protocol Transformation
Our end-system architecture is structured such that pro-

tocol transformations can be stacked on each other. Af-
ter a packet is intercepted by the packet filter, it is fed to
the transformation stack. The transformation modules in-
teract through a generic interface for passing the modified
packet on to the next module. Eventually, packets are either
dropped or injected back into the regular network stack of
the host operating system. This lends itself to the fact that
different transformations apply to different protocol layers,
as shown in Table 1. Service-composition and multimedia
frameworks and protocols would typically be implemented
at the application and transport layers.

As illustrated in Figure 3, protocol transformations can
also be applied selectively. For example in scenario B, the
internal company file server can be accessed directly over
the wireless LAN. The video conferencing traffic going to the
Internet is handled by the VPN module for connectivity, au-
thentication, and encryption. The conferencing application
in turn can be enhanced with higher-level transformations,
e.g., QoS management or multicast and mobility support.
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Figure 3: Stack of transformation/adaption modules
with their application-specific filters.

3.1.4 Adaptability
Based on external events or user intervention, modules

for protocol transformation can be inserted to and removed
from the transformation stack at run time. In concert with
automatic configuration of network devices, a host becomes
significantly more adaptable to a changing network environ-
ment. This applies equally to host mobility, such as ver-
tical switch-overs (e.g., WLAN to GPRS), infrastructural
requirements (e.g., VPNs, pay-per-use access), and fluctu-
ations in link quality. Thus, the need for administrative
action from the user in mobile environments can be reduced
or eliminated.

Since automatic adaptation can exhibit side-effects un-
wanted by the user, we introduce a policy-based approach.
A policy, as defined by the user, controls and restrict the ac-
tions the proxy may take. As outlined in scenario C in the
cafe, the system may have a choice between an expensive but
high-bandwidth Wi-Fi connection and the cheaper GPRS
link with lower throughput. In such a situation, the proxy
itself can detect a bandwidth-intensive application such as
the download and thus provide the user with the faster con-
nection. However, if the download is not of importance to
the user, he can activate a low-cost policy forcing the proxy
to choose the less expensive connection.

3.2 Network Architecture
The network-related part of our architecture utilizes the

overlay routing services of the Internet Indirection Infras-
tructural i3 [12]. Its core idea is to communicate across one
or more points of indirection which stands in contrast to
end-to-end communication. This scheme decouples the act
of sending from the act of receiving and can thus provide ad-
ditional features like multicast, anycast, mobility support, or
service composition.

Every point of indirection is identified by a unique ID in
the form of a large integer or fixed-length bit string, respec-
tively. Data packets carry an ID instead of a real IP address
as the destination address. Thus with i3, data is addressed
to an abstract notion of a service instead of a particular end
host. In order to receive data via i3, hosts register so-called
triggers with the i3 system. A trigger is an association of
a destination ID with an IP address/port pair or another
ID. i3 forwards all packets going to an ID to the trigger
addresses registered with this ID. In a simple example, a re-
ceiver inserts a trigger associating an ID with the IP address

and a port it listens. Accordingly, i3 delivers all data sent
to the ID to the receiver.

Mobility support in i3 is based on the addressing scheme
of using IDs instead of IP addresses. When a mobile host
moves between networks and receives different IP addresses,
it updates its i3 triggers accordingly. Consequently, the host
remains accessible at the i3 level. i3 allows receivers to in-
sert more than one trigger per ID, so the ID itself remains
unique but is associated with multiple forwarding addresses.
The packets which are sent to such an ID are forwarded
to every associated trigger address, which effectively imple-
ments multicast communication. For service composition,
i3 generalizes the concept of IDs to ID stacks. A packet
with a destination ID stack must traverse all the triggers
referenced in the stack, which can be regarded as source
routing. Similarly, forwarding entries in triggers can also be
ID stacks so a forwarded packet must go through all the IDs
in the stack. Thus, both senders and receivers can control
the route the packet takes including services and transfor-
mations the packet needs to traverse.

NAT gateways and firewalls do not limit the reachability
of i3 clients, as long as outbound connections are permit-
ted. In scenario C, IP connections from the Internet to the
hand-held device can be blocked by the Wi-Fi firewall and
NAT configuration. However, the device can still establish
a connection to the Internet-based i3 service and the de-
vice’s triggers are associated with this connection instead of
its (unreachable private) IP address. Thus, i3 packets can
reach the device despite NAT and a firewall.

In the proxy, i3 is implemented as a transformation mod-
ule and is thus an optional component. However, its flexibil-
ity and functionality at the routing layer makes it an ideal
addition to our architecture. Furthermore, higher-level pro-
tocols can exploit its features and its generic support for
service composition.

4. DISCUSSION
This section analyzes the challenges of using our proxy

architecture in a multimedia context.

4.1 Inferring Application Requirements
QoS and service-composition frameworks often rely on ap-

plications to explicitly indicate their requirements and capa-
bilities. In many cases, feedback cycles between layers allow
to determine the best compromise between user demands
and application and network properties. For example, the
video conferencing application can request a maximum ac-
ceptable latency and a minimum video frame rate from the
service layer. This layer may then choose an appropriate
encoding and decide whether additional services, e.g., sub-
titles for a video can meet these requirements.

By design, our proxy focuses on legacy applications and
avoids direct interaction with applications. Thus, the appli-
cation layer does not explicitly provide service specifications
or requirements. Instead, this information must be inferred
by the proxy itself. In many cases, it is sufficient to derive
this data implicitly from application and system behavior.
For example, the necessity to transcode between media for-
mats can be deduced from the service being requested (a
specific video), the requested format (e.g., AVI), and the
actual format of the service (e.g., MPEG). The need for ser-
vice composition can also arise from a changing operating
environment. For example, the transition from a company
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network to a public network, as in scenario C, may trigger
the activation of an encryption service.

The user’s requirements for individual services can also
be indicated explicitly to the proxy. First, the proxy may
provide configuration dialogs for specific services or service
classes. For example, the proxy may export a setting which
controls whether text sub-titles for video streams are dis-
played or not, even if the legacy video player application is
unaware of such a choice. While such external configuration
may hamper usability to a certain degree, it may be accept-
able for evaluation purposes or where there is no alternative
to using a certain legacy application. Second, legacy name
resolution can be exploited for service specification. Instead
of passing regular URLs to legacy applications, URLs for-
matted to contain service composition paths and require-
ments can be used. While the application remains agnostic
to this format, a service composition framework in the proxy
can utilize the encoded information. However, such a possi-
bly complex URL format is cumbersome to handle.

Multimedia applications depend on several properties of
the whole system, such as available resources and network
link characteristics. The proxy can centrally aggregate such
properties and supply them to protocols implemented within
the proxy. Where resource contention is an issue, resource
allocation schemes can also be implemented centrally.

Quality-of-Service constraints can be inferred to a cer-
tain extent through observation of system behavior. Based
on these observations, QoS parameters can be adjusted to
provide higher quality to the user or to better utilize avail-
able resources. For example, the transition from the wired
company network to the wireless LAN could result in low
CPU utilization and high network utilization. This infor-
mation indicates that the streaming video attempts to con-
sume more network bandwidth than available. Switching to
a computationally more complex compression scheme can
result in a higher effective frame rate, i.e., better quality
provided to the user.

4.2 Flow Identification
Since individual applications and their network connec-

tions have different requirements, the proxy must be able
to differentiate between them. For example, the company
wireless LAN may allow unrestricted access to internal ser-
vices while the Internet is only accessible after authenti-
cating with a VPN. The proxy can support such an en-
vironment with selective protocol transformation by run-
ning only remote traffic through the VPN. Similarly, the
user may place different demands on different multimedia
streams based on customized policies (e.g., giving the video
conference application a higher priority than another back-
ground video stream). Consequently, the proxy must iden-
tify these streams and handle them individually in order to
meet user demands.

The more accurate flow identification needs to be, the
more knowledge about protocols and analysis of traffic is
necessary. In simple cases, such as the VPN example, traffic
flows can be distinguished based on transport-level informa-
tion, i.e., IP address and ports. Closer analysis is required
for multi-flow protocols like SCTP. It is to be noted that
such a detailed packet inspection need not be implemented
in the proxy in general but only in the respective transfor-
mation modules.

4.3 Performance
The structure of our proxy imposes a processing overhead

for network traffic on end hosts. This overhead is due to
intercepting, parsing, and processing packets in the proxy.
At the current stage of implementation, no experimental
results are available for a performance evaluation. Thus, a
quantitative analysis follows.

Each intercepted packet is transferred from the operating
system’s network stack to the proxy for further processing.
The proxy analyzes the packet to determine whether it is
to be forwarded unmodified or passed to the transformation
stack. Eventually, the proxy injects the packet back into the
regular network stack. Thus, packet interception causes two
context switches and two additional copies of each packet.
Since data rates are low for mobile devices with wireless
links, this overhead is assumed to be negligible.

Analyzing packets and forwarding them between transfor-
mation modules can be assumed to cause only a very mod-
est performance impact. These operations are comparable
in cost to those performed in the operating system’s net-
work stack. The encapsulation of a packet increases its size
on the wire. For large packets, this can lead to additional
packet fragmentation. Packet processing in transformation
modules is potentially expensive but may not be regarded
as overhead introduced by the proxy architecture itself.

5. RELATED WORK
Implementing and evaluating network protocols at user

level has been an issue in operating system and network
research for a long time [15, 8, 11, 9]. Where these solutions
strive to replace kernel-level protocol stacks, they trade API
compatibility for performance or security. In contrast, the
support for legacy applications is a primary concern of our
approach.

Other than evaluation approaches like Alpine [1], our end-
system architecture does not attempt to replicate real exe-
cution environments for protocol implementations. Thus,
it can be used on several platforms and remains more light-
weight. Application-transparent architectures like CANS [3]
or Conductor [18] share goals with our approach in hiding
the mobility artifacts and supporting legacy applications.
However, they are tied to their network architectures and
intercept network traffic at the interface between application
and operating system. While this results in fewer context
switches and better performance, these solutions are heavily
system dependent and require significantly more engineering
effort.

Commercial applications like the ipUnplugged Roaming
Client [5] achieve seamless connectivity with similar tech-
niques for packet interception and redirection as ours. How-
ever, they solely focus on VPN and IPsec solutions and can-
not serve as a generic research platform.

Delay-tolerant networking (DTN) [2] addresses the effects
of mobility stemming from network fragmentation or discon-
nected operation. We assume our application scenarios to
be typically faced with widely varying degrees of link qual-
ities and properties rather than with longer periods of no
connectivity. Thus, we view the work on DTN as being or-
thogonal to ours which could be very well integrated with
the proxy.

Our architecture borrows substantially from the i3 proxy
[7], including IP address virtualization [14] and DNS rewrit-
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ing [17]. While the i3 proxy aims at redirecting legacy traffic
via i3, our solution provides a framework for arbitrary net-
work modifications, essentially a user-level network stack.

6. SUMMARY
While multimedia services and the composition of such

services have been a long standing research topic, it remains
difficult to evaluate and deploy new protocols, frameworks,
and middleware systems in this area. We propose a research
platform with an end-host-based architecture for network
virtualization. It allows network traffic to be transformed
at the user level while maintaining transparency towards
legacy applications. This system significantly simplifies pro-
tocol deployment and evaluation, the adaptation to chang-
ing network environments, and extensions to legacy services.
In mobile settings, it can hide mobility artifacts from users
as well as legacy applications and support QoS and service
composition.
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