
TinyWifi: Enabling Linux

Platform Support in TinyOS

Bachelor Thesis

Bernhard Kirchen

RWTH Aachen University, Germany

Chair for Communication and Distributed Systems

Advisors:

Muhammad Hamad Alizai M.Sc.
Prof. Dr.-Ing. Klaus Wehrle

Prof. Dr.-Ing. Stefan Kowalewski

Registration date: 2010-05-21
Submission date: 2010-10-08

I hereby affirm that I composed this work independently and used no other than the
specified sources and tools and that I marked all quotes as such.

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Aachen, 20th Sep. 2010

(Bernhard Kirchen)

Abstract

We present TinyWifi, a new platform for TinyOS – the de facto standard operating
system for sensornets. Although TinyOS is originally designed for use in wireless
embedded sensor nodes, TinyWifi allows for compiling TinyOS applications for Linux
driven devices like PCs and handhelds. Our TinyWifi (pseudo-)platform integrates
seamlessly into the existing TinyOS code base and enables TinyOS users to run their
applications directly on Linux without the need to alter the original software.

The primary objective of TinyWifi is to be able to use communication protocols in
IEEE 802.11 wireless mesh networks originally developed for inherently similar sen-
sornets. By featuring direct execution of unaltered TinyOS applications, especially
for the purpose of evaluation, TinyWifi saves any re-implementation effort of the
developer. Particularly, we will use TinyWifi to compare protocols developed for
sensornets with standard protocols used with wireless Linux driven devices.

Kurzfassung

Wir stellen TinyWifi vor, eine neue Platform für TinyOS, dem Standard Betrieb-
ssystem für Sensornetze. Obwohl TinyOS für den Einsatz in eingebetteten Syste-
men entwickelt wurde, erlaubt es TinyWifi, existierende TinyOS Software für Linux
basierte Geräte wie PCs oder Handhelds zu kompilieren. Unsere TinyWifi (Pseudo-
)Plattform passt sich nahtlos in das existierende TinyOS Codegerüst ein und erlaubt
es TinyOS-Benutzern, Programme unmittelbar auf Linux auszuführen, ohne Verän-
derungen an der ursprünglichen Software vornehmen zu müssen.

Der primäre Verwendungszweck von TinyWifi lautet, die Benutzung von Sensornetz-
Kommunikationsprotokollen in drahtlosen vermaschten Netzwerken (wireless mesh
networks) nach IEEE 802.11 Standard zu ermöglichen. Dies ist generell praktikabel,
da sich Sensornetze und Wi-Fi-Netzwerke grundsätzlich ähneln. Der Aufwand zur
Neuimplementierung insbesondere zwecks Evaluierung in Wi-Fi-Netzwerken wird
durch die Möglichkeit, bestehende TinyOS-Anwendungen ohne Veränderungen un-
mittelbar unter Linux auszuführen, eliminiert. Insbesondere werden wir TinyWifi
dazu nutzen, um Protokolle aus dem Bereich der Sensornetze mit in Wi-Fi-Netzen
eingesetzten Standardprotokollen zu vergleichen.

Acknowledgements

Thanks to my primary supervisor Muhammad Hamad Alizai M.Sc., I had the chance
to choose a really interesting thesis to work on with enthusiasm and commitment.
The support he gave me was essential to find the right starting points, conquer all
difficulties and to push through to the completion of this thesis. It is mainly because
of him that I will be part of a reputable conference on sensor networks, which suffuses
me with pride. I appreciate his open-door mentality and general kindness very much
and I am looking forward to work with him beyond this thesis.

It is due to Prof. Dr.-Ing. Klaus Wehrle, our respected professor, that there is such
a great research group at the RWTH University Aachen. Exciting research fields, a
supportive and kind team, open-mindedness and a superb working atmosphere make
the ComSys group stand out. I am thankful he supports this thesis and gave me the
opportunity to write it at ComSys. It is also very much appreciated that he enables
me to stick to the ComSys group as a HiWi to futher promote TinyWifi.

Beyond said people I would like to express my thanks to my second examiner, Prof.
Dr.-Ing. Stefan Kowalewski, respected professor of the embedded systems group at
the RWTH University Aachen, for taking the time to grade my thesis.

Because writing always requires a lot of effort and one likely fails to do it good in
the first place, I am very glad for any feedback I received from friends of mine.

Finally, thank you, dear reader, for being interested and reading my thesis!

Contents

1 Introduction 1

2 Background and Related Work 3

2.1 Wireless Sensor Network Devices . 3

2.1.1 Use Cases . 3

2.1.2 Basic Mote Hardware . 4

2.1.3 Mote Communication . 6

2.2 Sensornets versus Wireless Mesh Networks 7

2.3 The TinyOS Open-Source Operating System 7

2.3.1 Driving Features of TinyOS 8

2.3.2 Components and Interfaces 8

2.3.3 TinyOS Hardware Abstraction Architecture 9

2.4 Network Communication and Timing in Linux 10

2.4.1 Sockets in Linux . 11

2.4.2 Timing for Linux Processes 11

3 Design 13

3.1 Hard and Soft Requirements . 13

3.2 TinyWifi Architecture . 14

3.3 Counters, Alarms and Timers . 16

3.4 Split-Phase Operations . 17

3.5 Radio Communication . 18

3.6 Serial Communication . 19

3.7 Sensors . 20

4 Implementation 21

4.1 Build System . 21

4.2 TinyOS Outputs and Local Messages 22

4.2.1 Virtual LEDs . 23

4.2.2 Error Handling . 23

4.3 Counters, Alarms and Timers . 24

4.4 Split-Phase Operations . 26

4.4.1 Split-Phase Operations Using Threads 26

4.4.2 Impact of Threads on TinyOS Scheduler 27

4.5 Radio Communication . 28

4.5.1 Communication Setup . 29

4.5.2 Receiving Radio Messages . 30

4.5.3 Sending Radio Messages . 30

4.6 Serial Communication . 31

4.7 Sensors . 32

5 Evaluation 33

5.1 Proof of Concept and Portability . 33

5.2 Timing and Sensing . 34

5.3 Serial Communication . 35

5.4 Wireless Communication . 36

5.5 Multihop Communication . 36

6 Conclusion 39

6.1 Future Work . 39

Bibliography 41

List of Figures 43

A TinyWifi Source Code Compact Disc 45

1
Introduction

In this thesis we introduce TinyWifi, a new platform for the popular open-source op-
erating system TinyOS [7], allowing to run TinyOS applications on Linux driven host
devices. TinyOS is designed for use with wireless embedded nodes. A large commu-
nity uses TinyOS to develop and evaluate applications and protocols in sensornets.
It features a component-based architecture to provide a highly flexible framework
while minimizing code size to support severely resource constrained devices. While
providing any important functionality like communication protocols, schedulers and
power management, TinyOS already supports more than a dozen different hardware
platforms and numerous sensor boards [12].

We developed TinyWifi to be a new software based platform, which integrates seam-
lessly into the unmodified TinyOS programming environment. Existing TinyOS code
and functionality is preserved and reused to a reasonable extend. By compiling for
the new TinyWifi platform, developers are enabled to use their software on current
Linux driven devices like PCs, routers, handhelds and mobile phones. TinyWifi code
aims to be portable among different Linux derivatives in order to allow for a wide
range of usable target devices.

While Wi-Fi networks and sensornets distinguish from one another in their appli-
cations and in the kind of participating devices, they share a significant amount of
similarity. Wireless communication within the 2.4 GHz frequency band is used in
both domains. Due to physical influences and radio wave interferences, routing paths
in both kind of networks are highly dynamic and links between nodes are bursty. In
both domains, the logical topology is a mesh network in which each and every node
can only communicate data to nodes in its radio range. Hence most algorithms and
protocols used in the sensornet domain are equally applicable in Wi-Fi networks and
vice versa.

Nevertheless, building and evaluating new software for a second network domain
requires a disproportionate amount of additonal implementation effort. On this ac-
count, evaluation and utilization of state-of-the-art sensornet mechanisms in the akin

2 1. Introduction

Wi-Fi domain is omitted in most cases. However, researchers implicitly expect their
results to be applicable in the other domain as well [3, 8, 13]. That is why the major
concept of TinyWifi is twofold: We want to (1) provide a powerful platform that
allows for compiling TinyOS applications for Linux driven host devices while (2)
eliminating the need to alter or re-implement any of the exisiting TinyOS applica-
tions. This way we extend the applicability of sensornet protocols to the inherently
similar Wi-Fi domain.

Resource rich devices like PCs or routers can handle much more information at a
time than deeply embedded microcontroller powered systems. We exploit the su-
perior processing capabilities of TinyWifi host devices to advance TinyOS software
wherever sensible. Certainly, we designed TinyWifi to be accurate and behave equiv-
alent to other TinyOS platforms at the same time.

The TinyWifi code base extends the TinyOS source files tree to allow for integrating
TinyWifi easily into an existing local working copy of TinyOS. Applications for
Linux are compiled by issuing“make tinywifi”, similar to“make <platform>”with
other platforms. The nesC intermediate compiler produces a C source code file
that is compiled to an executable binary by the locally installed GNU C compiler.
TinyWifi features setting a node ID via an additional command line parameter
when compiling. Cross-compiling TinyWifi binaries for Linux driven devices with a
different architecture than the compiling host computer is basically possible.

In line with the primary purpose of TinyWifi, the most important components are
wireless networking for communication (radio ActiveMessaging) and timing capabil-
ities. Having these two components available, simple but meaningful applications
can be developed. TinyWifi uses Linux sockets and pthreads to communicate data in
the TinyOS split-phase fashion, while all timing capabilities of TinyOS are derived
from a single realtime Linux timer.

Nevertheless, TinyWifi supports all important hardware independent TinyOS func-
tionality as well. Among those are LEDs, serial ActiveMessaging and sensing. We
provide displaying the node’s virtual LEDs via console output. This is important
since the LEDs are the obvious way to indicate any status of the node. Serial Ac-
tiveMessaging is primarily used by a base station application to communicate data
from and to a TinyWifi application. Finally, sensing data provides a way to generate
some information that is communicated among the nodes.

In the remainder of this thesis we will provide important background information
in chapter 2. While chapter 3 describes the design decisions in detail, we discuss
the TinyWifi implementation in chapter 4. Our evaluation results on TinyWifi are
presented in chapter 5 and the thesis is concluded with chapter 6.

2
Background and Related Work

This chapter presents some useful background information on relevant subjects. It
provides knowledge that probably results in a better understanding of the main part
of this thesis. Sensornet devices are presented in section 2.1, including use cases
and hardware design, while basic information on sensornets and Wi-Fi networks is
given in section 2.2. Afterwards we discuss important insights of TinyOS to sup-
port comprehension of TinyWifi design decisions and implementation in section 2.3.
Concluding this chapter is section 2.4, covering two important Linux related topics,
namely sockets and realtime timers.

2.1 Wireless Sensor Network Devices

The most important difference between modern wired computer networks like eth-
ernet or wireless networks like Wi-Fi and a sensornet is the kind of devices that
participate in the network. While computers and modern mobile phones are com-
peratively resource rich devices, the nodes in a sensornet, also called motes, are small
devices and provide very limited resources. That is why motes are special purpose
devices that are developed for use in a specific deployment, whereas computers, mo-
bile phones, and routers are multi-purpose devices, which are capable of handling
several tasks simultaneously.

2.1.1 Use Cases

The primary field of a mote is to observe one or more physical parameters like
temperature, humidity, acceleration, pressure or brightness. In more sophisticated
scenarios, video or audio data can also be gathered to a limited extend. In order
to make use of the raw data a mote collects, it is processed locally on the mote’s

4 2. Background and Related Work

hardware and communicated towards a base station. The data is then further re-
fined by a resource rich computer and interpreted by the users afterwards. Typical
application scenarios for a sensornet include:

• Animal Habitat Observation [18]
Motes can be mounted on animals in order to record data within the natural
environment of the animals. Tracking and sound analysis are popular use
cases for biologists to learn about the subject. With the use of sophisticated
communication protocols,1 data reaches the base station even if the animals of
interest live souterrain or cover a spacious habitat.

• Precision Agriculture [6]
For the purpose of increasing crop yields, motes can be utilized to monitor
growth and health of plants. This enables farmers to react quickly to un-
intended developments, thus preventing financial losses. Additionally, moni-
toring growth and status enables to plan harvests in greater advance and to
increase the range of products.

• Traffic Monitoring and Control [2]
Traffic flow and density monitoring helps preventing traffic congestions and
minimizing traffic light induced delays. Intelligent sensornets can be developed
to autonomously redirect traffic and fine tune traffic lights to make the traffic
flow smoothly.

• Intelligent Buildings [17]
The amount and location of people in a building, outdoor temperature and
humidity, time of the day or properties of certain rooms are parameters for
controlling air flow and temperature, humidity or lights. Sensing and acting
sensornet motes enable a building’s infrastructure to take care of important
parameters without the need of supervising per hand.

• Vulcano Monitoring [19]
Because eruptions of a vulcano are hard to predict, vulcanos are interesting
research objects for geologists. Sensornets are used to monitor seismic activity
without the need to provide additional infrastructure like electricity or wired
network.

2.1.2 Basic Mote Hardware

There is numerous different mote hardware already available, like the Mica2Dot mote
by MEMSIC Inc. shown in figure 2.1a, which is one of the smallest popular motes.
Nevertheless, for some projects new motes are developed. This is primarly due
to very special demands or new integrated hardware being available. Motes vary in
properties like processing power, memory size, I/O capabilities, energy consumption,
radio range or size. Nevertheless, the architecture depicted in figure 2.1b is common
to the great majority of motes.

1Routing protocols for delay tolerant networks (DTNs) allow for routing in networks without
permanent reachability among nodes, most often caused by movement of the nodes.

2.1. Wireless Sensor Network Devices 5

(a) Mica2Dot Mote by MEMSIC [10]

Note that this mote is as small as a Quarter
Dollar coin (25 mm in diameter). It features
128K byte of flash memory, 512K byte external
memory, an integrated radio and weighs 3 g ex-
cluding batteries.

MCU
UART Timers

Digital I/OFlash Memory

External
Memory Radio Sensors

(limited) Energy Source

(b) Mote Architecture

The MCU (microcontroller unit), powered by
an electric energy source, provides integrated
features like timers and UARTs. External
memory, the radio and sensors are additional
integrated hardware connected to the MCU.

Figure 2.1 Sensor Node Hardware

The main component of many embedded system and especially of any mote is the
microcontroller. It is a tiny integrated piece of hardware whose internal architec-
ture resembles the architecture of a computer. However, on the account of size and
energy consumption, particularly the processing power and memory size are not
comparable to any computer in use today. Besides the main memory, the micro-
controller provides non-volatile flash memory that holds space for the software the
mote executes. Although the software is programmed prior to deployment and re-
sides on the mote, sophisticated mechanisms like dynamic operating systems make
reconfiguration possible.

The microcontroller is driven by a system clock an internal or external clock source
provides. In order to derive timing capabilities, the system clock is used to supply
counters of different widths at configurable speeds. Knowing the frequency of a
counter, a fixed amount of increments (counter ticks) represents a fixed amount of
time. Therefore one or more compare values are configured to create a signal “timer
expired”: If the counter value equals the compare value, an interrupt is generated and
the microcontroller executes a special part of the software to service this event. Note
that a microcontroller provides several counters with at least one compare register
each and that counters run independently from the program execution, because extra
hardware implements them.

Sensors are either attached to the mote on a modular basis or they are provided di-
rectly on the mote’s circuitry board. In most cases, sensors are integrated electronic
devices as well. Connected to the microcontroller through a bus, sensors provide
information on relevant properties of the environment. Typically, sensor data is col-
lected with a certain frequency either indicated by a signal from the sensor meaning
data is available (interrupt) or by polling when a preconfigured timer expires.

Although there are ways to produce electrical energy on site, ranging from solar
panels to energy harvesting of movements or the bloodstream, motes are basically

6 2. Background and Related Work

B SF

APP

host computer

APP

client 1

APP

client 3

SF

client 2

IP Based
Network

C

C
C

Serial Forwarder in Sensornets

Client motes C can communicate with one another using the radio (dotted arrows). A base
station mote B serves as gateway between the wireless domain and a host computer, using
a serial connection (dashed arrow). The serial forwarder connects to the appropriate serial
port and provides messages through the unified serial forwarder packet source, which several
applications can connect to at once. Interacting with the mote is possible even remotely, e.g.
via the internet.

Figure 2.2 Functioning of the Serial Forwarder in Sensornets

powered by batteries to make them independent from any infrastructure. Certainly,
this circumstance results in new challenges: Energy becomes a sparse resource as
well and the lifetime of a mote consequently becomes finite.

2.1.3 Mote Communication

The radio is utilized to communicate data wirelessly to another mote in range. Data
that has been successfully preprocessed by the microcontroller is transferred to the
(in most cases separated) radio chip. The program is executed independently from
the radio chip, and the completion of a transfer is eventually signaled by the radio
chip. Because the destination mote is often not in radio range of the sender, a routing
mechanism is used in the sensornet, so messages reach their destination in a hop-
by-hop fashion. Since sending radio messages is one of the most energy consuming
operations, wireless communication is used wisely.

Serial communication is utilized to enable interaction between host computers and
motes. In conjunction with an RS232 serial converter or an USB serial converter, the
UART (Universal Asynchronous Receiver Transmitter) of the microcontroller allows
for a serial connection between mote and host computer. The serial line is used
for programming the mote and exchanging data with the mote. Interaction with
the sensornet becomes possible for a computer when using a base station: Motes
running the BaseStation application convert wirelessly received data, send it to the
host computer via the serial connection and vice versa.

Because a mote is connected with a single host computer at the same time, TinyOS
provides a serial forwarder. It allows for multiple users to interact with a connected
mote simultaneously, as shown in figure 2.2, and is available in three different pro-
gramming languages to provide portability. Once executed and set up with the
appropriate serial port, the data is converted properly and the message payload
from the mote is sent to applications registered with the serial forwarder and vice
versa.

2.2. Sensornets versus Wireless Mesh Networks 7

2.2 Sensornets versus Wireless Mesh Networks

Many motes, like the Telos [16] and Mica Series by MEMSIC [9], use ZigBee com-
pliant radio modules. These modules rely on the IEEE 802.15.4 standardization
for wireless personal area networks (WPAN), whereas ZigBee provides higher level
communication protocols based on the IEEE 802.15.4 specifications. The IEEE stan-
dard is intended to be used by low-speed, low-cost devices comsuming less power,
so IEEE 802.15.4 suits most sensornet applications.

The standard is specified to be used within the 868 MHz frequency band (Europe),
902-928 MHz frequency range (North America) or the very popular 2.4 GHz fre-
quency band (worldwide). The latter is also occupied by the popular standards
of the IEEE 802.11 family, which is the underlying specification for wireless local
area networks (WLAN). Although lower frequencies provide a higher range due to
physical implications, the 2.4 GHz band is also popular for the use with motes, so
WLAN capable devices and sensornets possibly operate in the same frequency band.
Note that the very popular term “Wi-Fi” is a trademark of the Wi-Fi Alliance that
certifies devices using WLAN and IEEE 802.11, but we use Wi-Fi as a synonym for
the IEEE 802.11 standard.

Wireless communication is unreliable, because radio waves (eletromagnetic waves)
are influenced by nearly any obstacle in the propagation direction. Electromagnetic
waves can scatter on objects, are reflected by them and get absorbed by matter.
Especially moving objects and moving radio sources/receivers are problematic, be-
cause movement causes highly dynamic link quality. Weather also has a significant
influence on reachability among nodes and interference among radio waves can ren-
der information opaque. The discussed influences on wireless communication are the
same for sensornets and WLANs, of course. Using the same frequency band empha-
sizes this similarity. Summing up, links between both motes and WLAN devices are
dynamic and bursty, resulting in unreliable routing paths within the network.

Messages travelling through the network are forwarded greedily and each mote acts
as an individual router that has to decide where to forward a message to (if not
destined to the mote itself). Wirelessly networked devices are deployed with over-
lapping radio ranges, so that each device has a link to more than one other device
and varying link qualities. This way communication between motes can still be per-
formed although some motes are temporarily not available or fail. Because the links
between nodes resemble a mesh in a graphic representation of this kind of networks,
they are called meshnet.

2.3 The TinyOS Open-Source Operating System

The open-source TinyOS operating system is a programming environment and code
framework that offers easy to use libraries enabling developers to rapidly implement
and build applications for a variety of motes. It is designed for embedded sensor
nodes, meeting requirements like small binary code size and advanced power man-
agement. Its event-driven execution model features quick responses to events and
simultaneously allows for fine-grained power management.

8 2. Background and Related Work

Software is written in a stylized C language, called nesC [5], which is able to sup-
port the component-based and event-driven nature of TinyOS. A sophisticated
make system is delivered with TinyOS, enabling compiling, building and program-
ming software with a single command: “make telosb install,123” compiles the
software in the current directory for a TelosB mote, patches ID 123 and programs it
to the mote attached to the PC.

2.3.1 Driving Features of TinyOS

TinyOS is an event-driven operating system, meaning that the software solely reacts
to events instead of running forever and processing something meaningful from time
to time. When no event is being processed and no task is scheduled, TinyOS puts the
underlying microcontroller hardware to a specific sleep mode in order to save as much
energy as possible but being able to react to important (external) events. TinyOS
components implement service routines for events like Boot.booted() or Timer.fired()
and might signal another component’s event.

To account for the concurrency multiple processing hardware introduces, operations
on sensors, the radio or integrated functionality like the UART are executed in
a split-phase fashion. Numerous TinyOS library calls (e.g. AMSend.send()) trig-
ger a complex operation but return immediately afert. Instead of polling for the
completion of the task, TinyOS configures the hardware to indicate such an event.
Meanwhile, TinyOS services another request. Upon completion of a task, TinyOS
signals the event to the application (e.g. AMSend.sendDone()).

2.3.2 Components and Interfaces

In TinyOS, components always provide a set of particular commands and react to
predefined events. Interfaces determine which functionality is available in a com-
ponent by describing commands and events components implementing the interface
are required to provide. The basic concept behind TinyOS components is provid-
ing or using at least one interface. In order to make use of functionality provided
by an interface, a developer associates his application to a component implement-
ing the interface of interest. Command and events belonging to a certain interface
are noted using a dot notation: SplitControl.start() is command start() of interface
SplitControl.

For the purpose of minimizing the size of the final binary, functionality is only
compiled in if neccessary. TinyOS applications declare components they require,
whereas all but only functionality neccessary to satisfy the application’s needs is
compiled in automatically. Each component is either a configuration or a module.
While configurations redirect interfaces they provide to other components, modules
actually provide the interface by implementing the commands and events.

Configurations as well as modules consist of two parts: an implementation and a
declaration. The latter defines which interfaces are used and which are provided.
For configurations, the implementation part tells what other components implement

2.3. The TinyOS Open-Source Operating System 9

1 configuration ActiveMessageC {
provides interface AMSend ;

3 provides interface Packet ;
}

5 implementation {
components LinuxActiveMessageC , LinuxPacketC , MessageHelpersC ;

7 AMSend = LinuxActiveMessageC ;
Packet = LinuxPacketC ;

9 LinuxPacketC . Helpers −> MessageHelpersC ;
}

Listing 2.1: The configuration in this example provides interfaces AMSend and
Packet. In line 6, three components are made available for use in the actual
wiring. The nesC compiler is told in line 7 that interface AMSend is provided
by component LinuxActiveMessageC. Interface MessageHelpers is used by compo-
nent LinuxPacketC, and line 9 describes where to find the implementation for this
interface, namely in component MessageHelpersC.

the interfaces provided. Besides wiring interfaces in their own declarations, con-
figurations may wire foreign components as well. See listing 2.1 for a descriptive
example of how components are wired together. Certainly, the implementation part
in modules provides the actual software.

For the purpose of distinguishing components by their name, TinyOS specifies nam-
ing conventions for TinyOS components: Components and interfaces differ in their
last letter of the file name. Interfaces carry a simple name, preferably a verb or
noun, whereas names for components are terminated by a capital letter “C” or “P”.
While component names ending with “C” identify a configuration and thus may be
used to wire an aplication with, components with “P” tag a private module that
implements an interfaces provided by another configuration.

2.3.3 TinyOS Hardware Abstraction Architecture

TinyOS uses a hardware abstraction architecture to support a variety of hardware
platforms for the same application while maximizing code reuseability and perfor-
mance, as described in TEP 2 [11]. Although abstraction typically conflicts with
energy and code efficiency, it is neccessary to hide hardware subtleties and allow
for portability. The TinyOS abstraction architecture, depicted in figure 2.3, consists
of three layers, specifically the HPL (hardware presentation layer), the HAL (hard-
ware adaptation layer) and the HIL (hardware interface layer). Each layer fulfills a
specific purpose, which is explained in the following:

1. Hardware Interface Layer (HIL)
Components belonging to this layer provide hardware independent TinyOS
functions and events, such as timers. Applications use only components be-
longing to the HIL in order to be portable among different mote hardware.
However, no mechanism is installed to check whether applications violate this
rule.

10 2. Background and Related Work

HPL
MicaZ

HPL
TelosB

MicaZ TelosB

HAL
MicaZ

HAL
TelosB

HIL
MicaZ

platform indepen-
dent application

HPL
CC2420

HPL
CC2420

HIL
Common

HIL
Common

HIL
TelosB

(a) Platform Independent Applications

HIL components may have a platform specific
implementation. Nevertheless, they provide
platform independent functionality. Although
very hardware specific, HPL components may
be shared by different platforms if the respec-
tive motes share hardware as well (like the
CC2420 radio chip).

HPL
IRIS

IRIS

HAL
IRIS

platform depen-
dent application

HIL
IRIS

(b) Platform Dependent Applications

When making use of functionality other than
those provided by the HIL, applications become
platform specific and are thus not portable in
general. TinyOS does not employ a mecha-
nism to prevent using non-HIL components, so
hardware specific components may be wired to
the application as well.

Figure 2.3 TinyOS Hardware Abstraction Architecture

2. Hardware Presentation Layer (HPL)
Being the layer closest to the hardware, components in the HPL offer the hard-
ware’s capabilities as functions of reasonable fine-grained functional blocks.
Nevertheless, HPL components are part of platform specific implementations
and not intended to be used by the application.

3. Hardware Adaptation Layer (HAL)
Advancing the HPL, this layer further progresses the hardware functionality
to hardware independency. In contrast to the HPL, the HAL holds states and
functionality that requires multiple hardware operations.

Due to the component-based nature of TinyOS, code reuse is simple when porting
TinyOS to a new hardware platform. However, developing support for a new plat-
form demands a lot of re-implementation in the HAL and especially in the HPL
when using hardware not akin to already supported hardware. In order to develop a
fully functional platform, the developer concentrates on the HIL functionality. Ac-
tiveMessaging (serial and wireless), timing, digital I/O (e.g. to drive LEDs) and
sensor support are the most important parts of the HIL.

2.4 Network Communication and Timing in Linux

The ability to communicate data over a network of connected devices as well as tim-
ing capabilities are important functionalities to drive a TinyOS running node. Both
of the following sections will support the reader in understanding the functioning of
TinyOS on top of the Linux operating system regarding these subjects.

2.4. Network Communication and Timing in Linux 11

2.4.1 Sockets in Linux

To enable inter-machine communication within a network like the internet, a com-
pany’s intranet or private computer networks, the internet protocol (IP) is widely
accepted and in use. Because of several demands, the internet protocol version 4
is slowly replaced by version 6. That is e.g. to satisfy the need for new internet
addresses in order to supply every participating node with an unique identifier (IP
address). Due to the fact that the number of internet ready devices rapidly grows
beyond the amount of addresses provided by the IP version 4 address space, unallo-
cated identifiers are scarce.

Modern operating systems offer a simple way to make use of internet protocol based
communication, although the real user space implementation to actually use IP
based communication might be complex. Using sockets, programs can communicate
data to remote or local applications, while the operating system handles most of
the work. This includes managing protocols running on top and underneath the IP
layer within the internet protocol communication stack. Data is sent to a socket
and delivered eventually to the receiver while incoming data addressed to a specific
socket is transparently made available to the application using it. For network nodes
having more than one network interface installed, data delivered through a socket
is not bound to a particular interface but is sent on those interfaces providing a
connection to the destined host.

There are three basic types of IP sockets in Linux: Transmission Control Proto-
col (TCP) sockets, User Datagram Protocol (UDP) sockets and raw sockets. TCP
and UDP sockets cover the complete internet communication stack (not considering
the application itself) and only deliver the actual payload of a message. Raw sock-
ets however leave most control to the application, especially requiring it to carry
TCP/UDP and IP headers around the message. TCP and UDP separate from each
other by one particular feature: TCP sockets provide connection oriented services
while UDP is not using a connection but only delivering a packet independent of any
other message. Note that sockets not only allow for a convinient way to exchange
data between two applications on different hosts but also on the same host.

Sockets are the endpoints of inter-application communication and are unambiguously
identified by the IP address and the port number. While the IP address identifies
the host computer, the port number is associated with exactly one process at that
particular host computer. In Linux, sockets are special files that are referenced by
an integer number. Numerous system calls allow for allocating a socket, configuring
and using it.

2.4.2 Timing for Linux Processes

The Linux operating system provides three different (interval) timers per process,
only one of which provides realtime timing and is therefore suiteable for TinyWifi.
The itimer is designed as both an interval timer and single shot timer. To provide
both functionality even mixed up together, an itimer is configured with an interval
value and a timer value. The latter is constantly decremented according to the
process’ activity and when it hits zero, a signal is generated.

12 2. Background and Related Work

Linux delivers this expiration signal of the itimer to the process belonging to the
respective itimer and said process is then responsible of servicing the event. If –
in the moment of expiration – the interval value is non-zero, the timer is reset to
that interval value. Linux features both setting up and starting an itimer as well
as reading the remaining value on an itimer, which is important to derive TinyOS
timing capabilities.

To ease handling of itimers, two important programming structs are used, namely
itimerval and timeval. While a timeval struct consists of two integer numbers rep-
resenting seconds and microseconds, an itimerval is made up of two timeval structs
being the timer value and interval value. Summing up, the realtime itimer provides
a sufficient resolution (microseconds) as well as satisfying accuracy on modern Linux
driven systems to source TinyOS timing capabilities.

3
Design

In this particular chapter, the outline of TinyWifi is discussed. Initially, we list our
design goals in section 3.1, before covering the TinyWifi architecture in section 3.2.
Going deeper into the details of TinyWifi, timing capabilities are presented in sec-
tion 3.3 and intricacies of TinyOS’s split-phase operations are explained afterwards
in section 3.4. Subsequently, principles of TinyWifi’s wireless and serial communi-
cation facilities are addressed in section 3.5 and section 3.6, respectively. Finally in
section 3.7, the use of sensor data in TinyWifi is explained.

3.1 Hard and Soft Requirements

The main goal of TinyWifi is enabling execution of applications written for TinyOS
on Linux driven networked devices like PCs, mobile phones or routers. We want
to extend the TinyOS framework to generate executables for the Linux operating
system by compiling for the new TinyWifi platform. This procedure should be equiv-
alent to compiling for any mote platform. By rewriting all important components
to make them usable on Linux, developers should be able to compile applications
issuing a single command “make linux”. In order to achieve this, the make system
already delivered with TinyOS is extended to support this operation. The result is
an executable binary, which, once executed, shows equivalent behavior as the same
TinyOS application running on motes.

Since our long term objective is to evaluate protocols used in the sensornet do-
main in inherently similar Wi-Fi networks, TinyWifi must behave similarly to other
platforms. Certainly, this includes inheriting the component based nature and split-
phase operation feature of TinyOS. On that account, all hardware independent func-
tionality popular motes like the Telos provide, should be available with TinyWifi,
ensuring that TinyOS applications are executable on Linux without modifications.
Nevertheless, at the same time we exploit the availability of resources not offered by

14 3. Design

motes but by resource rich devices like PCs when useful. Especially for the purpose
of buffering incoming and outgoing packets, this approach is sensible.

For the purpose of enabling TinyWifi to become widely accepted eventually, the
following rather indirect features influence the design in general:

1. Preserving Exisiting Structures
The TinyOS source tree will be utilized non-invasively, leaving it compatible
to all current platforms. The TinyWifi specific code integrates seamlessly
into the existing TinyOS source tree. This way, users need only one TinyOS
environment to develop code for both common motes and TinyWifi.

2. Portability Among Different Linux Versions
By using portable C program code, we facilitate TinyWifi to be used with
different versions of Linux without the need to modify components. Since
we use very common Linux system calls and mechanisms only, we envision
TinyWifi to be easily portable to different Linux derivatives for routers and
foreign architectures.

3. Maximize Code Reuse
TinyOS already supplies a lot of code and functionality. We designed TinyWifi
in a way that we can make use of existing code and do not re-implement
functionality which is already available.

4. Robust Software Implementation
TinyWifi code features robustness in unexpected situations by programming
defensively and using error checking whenever sensible. Additionally, expres-
sive error and warning messages help TinyWifi users to quickly identify code
snippets causing unintended behavior.

3.2 TinyWifi Architecture

As depicted in figure 3.1a, Hardware presentation layer (HPL) components interact
directly with the real hardware. Components in the hardware adaptation layer
(HAL) serve as a link between HPL and hardware interface layer (HIL), by simply
wiring components or – more likely – by adding advanced mechanisms to the rather
simple HPL functionality. Certainly, HIL functionality is the same for every mote
platform, so the right choice to make a cut is the HAL, where HIL and HPL are
connected to one another.

On a common mote, hardware features are presented as software functionality by
the TinyOS abstraction architecture. In the case of TinyWifi, this is already done
by Linux. Instead of building on top of the hardware, we use Linux to derive the
TinyOS related functionality and make it available to the application.

Prior to developing, we decided what hardware technology to replace with which
Linux facility. Figure 3.1b illustrates the replacement module for the bottom part
of TinyOS’s hardware abstraction architecture. HPL/HAL elements outlined in
figure 3.1 are the most important ones and we discuss the parallelism between each
corrosponding element in the following:

3.2. TinyWifi Architecture 15

H I L

HAL

HPL

nesC Application

TinyOS

Mote Hardware

Radio Sensing LEDs Timing Serial

Radio
Wrapper

Sensor
Wrapper

Counter
Interrupts

Integrated
UART

I/O
Controller

(a) Layered TinyOS Architecture on Motes

TinyOS features hardware independent (HIL) capa-
bilities to use the hardware, e.g. the radio and sen-
sors, while components within the hardware adap-
tation layer (HAL) provide access to the very ba-
sic implementation of hardware functionality in the
hardware presentation layer (HPL).

Linux Operating System

Socket
API

Dummy
Sensors

Pseudo
Terminal

Itimer
API

Console
Output

(b) Replacement HPL/HAL

Re-implementations of HPL and HAL
components built on top of Linux replace
the respective components for use with
mote hardware. Some HIL components
may be replaced as well but still are fully
compatible to other HIL components.

Figure 3.1 Layered TinyOS and TinyWifi Architecture

• Wireless Communication
Instead of transmitting a data packet to be communicated to a radio chip,
which then takes over control of the packet, we use Linux sockets for com-
munication. These provide easy access to the network but require proper
configuration of the networked node.

• Sensing Physical Parameters
TinyWifi target devices are multi purpose devices and are not specifically de-
signed for measuring data. But most Linux capable devices feature at least
one real hardware sensor, e.g. to measure the processor temperature, which
could be used to generate data.

• Binary Status Indication
Most motes provide LEDs for status indication, driven by digital I/O pins of
the microcontroller. Instead of using real LEDs on Linux driven devices – if at
all available –, we generate messages to standard output to indicate the status
of three virtual LEDs.

• Counters and Timers
Like every digital processing machine, TinyWifi target devices provide counters
and timers just like mote microcontrollers. However, these are occupied by the
operating system, forcing us to use timing capabilities offered by Linux. In the
case of TinyWifi, we make use of the Linux realtime itimer.

• Serial Communication
Motes are connected to a host computer in order to be programmed or to
forward data from the sensornet to a host computer and vice versa (base
station). For TinyOS applications using TinyWifi, we use the Linux built-

16 3. Design

Application

Counter Timer Alarm 1 Alarm 2 Alarm 3

Hardware
Counter 1

Mote Hardware

Hardware
Counter 2

CCR A CCR ACCR B CCR B

(a) Hardware Counters

Multiple counter compare registers (CCR) are
available on a mote, utilized to derive timing
capability. Note that timers rely on an alarm
rather than using the hardware.

Application

Counter Timer Alarm 1 Alarm 2 Alarm 3

Single Linux itimer

VirtualizeLinuxTimer

.

(b) Linux itimer

In order to provide multiple timing sources, the
Linux realtime itimer is first virtualized. Such
timer is also sourcing the counters available in
TinyWifi.

Figure 3.2 Timing Sources for Motes and TinyWifi

in pseudo terminal feature to send and receive data to and from a running
serial forwarder.

3.3 Counters, Alarms and Timers

A mote’s processing facility is the microcontroller featuring counters that increment
or decrement at a certain frequency (clock) in parallel to program execution. Coun-
ters are the essential method to keep track of the real time. Read accessing the
counters is possible for TinyOS applications through respective components, allow-
ing for quick and easy accessible high precision timing (for short time periods).

As shown in figure 3.2a, several compare registers for each counter allow for several
simple timers to be set up. When the counter value matches one of the counter com-
pare values, an event is triggered. TinyOS uses this simple mechanism to schedule
multiple coexisting alarms, which basically are timers with a very low abstraction
level. Besides signaling the expiration event, alarms can be scheduled, stopped and
checked for their status.

In order to provide higher level timers as described in TEP 102 [11], e.g. supporting
intervals, TinyOS provides components using simple alarms to derive the number
of sophisticated timers needed by the application. Unfortunately, in contrast to
a microcontoller offering multiple adjustable timing events, Linux provides only a
single realtime itimer per process. This circumstance forces us to first virtualize the
itimer functionality before being able to provide as many timers as needed by the
software in the upper hardware abstraction layers.

We decided to introduce a new interface LinuxTimer, recreating Linux itimer func-
tionality, which is used by higher level components to fulfill their orderly purpose.
By virtualizing timers of type LinuxTimer, illustrated in figure 3.2b, we provide an
abundant amount of timing sources for all timer related components. Certainly, the
source to virtualize these timers is the itimer provided by Linux.

3.4. Split-Phase Operations 17

TinyOSrequest
accepted

send
packet

send packet

processing packetpaused paused ...

packet sent

task 1 task 1 task 2 task 1:
sendDone

processing packet ... listening listening ...

incoming packet

packet arrived
m

a
in

th
re

a
d

se
n

d
e
r

th
re

a
d

re
ce

iv
e
r

th
re

a
d

task 1:
packet
arrived

Exemplary Split-Phase Operation

Threads executed in parallel to the main TinyOS process allow for mimicking
hardware processing in parallel. When issuing a send command, the sending
thread takes over control of the message. As soon as the request has been accepted,
TinyOS returns control to the application, which continues processing in parallel
to the sending thread. Eventually, the thread signales the completion of sending
the message to TinyOS and the respective application component. Additionally,
by using a receiving thread, the main process is released from polling new incoming
messages as well.

Figure 3.3 Split-Phase Operations when using TinyWifi

Since counters are no more than the representation of the time past since the counter
last reached zero, TinyOS counters are simple to provide on Linux. We check the
current time against the startup time of TinyOS, revealing the value of a respective
hardware counter.

3.4 Split-Phase Operations

In section 2.3.1 we already introduced split-phase operations in TinyOS. To make
said operations possible, multiple processing hardware working in parallel is required.
Because we operate on top of Linux instead of controlling available hardware for
ourselfs, we are unable to provide the exact same kind of split-phase operations.

The processing time for TinyOS on Linux driven nodes is comperatively short, es-
pecially on host computers with rich resources. On that account we could abandon
split-phase operations and use imperative blocking instructions instead.

However, we want to provide split-phase like function calls for two reasons: On
the one hand, we would also break with the requirement to behave as similar to
other mote platforms as possible and on the other hand, the split-phase operations
programming paradigm dictates us to return control to the caller before signaling
an event indicating the completion of the respective operation.

Our primary solution to this problem is utilizing threads to imitate the parallelism
of multiple processing hardware. This is reasonable since program threads are exe-
cuted concurrently due to scheduling of the operating system and can be executed

18 3. Design

S

R1

R2

R3

R4

(a) Intended Message Propagation

A sending node S transmits one message,
which propagates omnidiretional, indicated
by arrows. Nodes Ri in radio range, indi-
cated by the dotted circle, can hear the mes-
sage and process it. Note that the message
might be addressed for only one of the nodes.
Nevertheless, all nodes in radio range are
capable of overhearing the message.

S

R1

R2

R3

F

A3

A2

A1

(b) Flooding in IP Networks

Assuming broadcast messages sent by S are
forwarded by a receiving node F with ra-
dio range indiated by the long dashed circle.
The original message by S reaches nodes
Ai, indicated by dashed arrows. Since nodes
Ai are not in radio range of original sender
S, we need to suppress forwarding broadcast
messages to achieve the sensornet behavior.

Figure 3.4 Message Propagation in Sensornets

on different processors, which provides the concurrency needed to mimic parallel
processing. Instead of setting up a radio chip, we create threads, handling incoming
and outgoing packets. Sending a message using the appropriate interface is dele-
gated to the respective thread while the main TinyOS process continues working.
As illustrated in figure 3.3, threads are well suited to mimic multiple processing
facilities, especially on computers with multiple processors.

3.5 Radio Communication

Exchanging data is the most important task for TinyWifi, since we want to explore
the applicability of sensornet communication protocols in the Wi-Fi domain. Pro-
viding this functionality becomes possible having split-phase operations and timing
available. TinyOS includes ActiveMessageC, which is a HIL component providing
high level usage of the radio. Its purpose covers enabling and disabling the radio
interface, sending and receiving as well as packet manipulation ranging from times-
tamps and acknowledgements to attaching the payload. As any other platform,
TinyWifi provides its own version of said component and wires the functionality it
provides to underlying components.

When the radio is enabled by the application using the appropriate interface Split-
Control, TinyOS is prepared to send and receive packets having created the appro-
priate threads. In order to send and receive data via the networked interface(s), we

3.6. Serial Communication 19

use Linux UDP sockets. Because we want to make the TinyWifi host device behave
similar to an integrated radio on a mote, depicted in figure 3.4a, two important
adjustments have to be done:

1. Broadcasting of UDP Messages
Radio messages in sensornets are received by any mote in radio range of the
sender and are then analysed by TinyOS. Depending on the message being
destined for a particular mote, the message is passed to listening components.
Nevertheless, it is also possible to sniff packets, meaning receiving messages
not addressed for the particular mote.
Usually, UDP packets are used for unicast communication. Messages not ad-
dressed for the receiving node are discarded in the lower levels of the IP stack
by the operating system, hence do not reach the application. By broadcast-
ing the UDP packets containing TinyOS messages, we ensure that packets are
passed through to the application and not discarded on a lower level of the IP
communication stack, since broadcast messages are addressed to all nodes by
definiton. When a message arrives, it is analysed by the receiving thread and
the appropriate event is triggered.

2. Suppress Message Forwarding
Since we use an already fully functional communication protocol to carry mes-
sages, namely IP, we have to take care that TinyOS packets are not forwarded
by receiving nodes. This is important to prevent the network of being flooded,
which would result in every participating node in the network to receive the
message, as illustrated in figure 3.4b.
Instead only those nodes in range of the radio should receive the message.
Although forwarding of packets destined to the broadcast address is decided
by the (individual) routing layer implementation used, we ensure the correct
behavior by setting the time to live (TTL) header value of the packet to zero.

As arranged by TinyOS (TEP 111 [11]), we specify the contents of the standard
TinyWifi message separately for each header, footer and metadata. We have no use
for data in the footer but provide information on the message in the header and use
the matadata field to store timestamps and acknowledgements. The payload region
is filled by the application with content of interest, using our packet manipulation
mechanisms to ensure that the message is not corrupted by the application.

3.6 Serial Communication

In most scenarios, a base station mote is utilized to forward messages from within
the sensornet to resource rich computers for further processing and analysing. A
common TinyOS application named BaseStation is used to forward incoming mes-
sages through the serial port of the mote to another device. The host computer
connected to a base station executes an instance of the serial forwarder, redirecting
incoming mote serial messages to all applications registered with the serial forwarder
using IP based communication.

20 3. Design

In contrast to sensornets, resource rich Linux driven devices can easily connect di-
rectly to the network. Using a Linux capable networked node running BaseStation
and an additional computer attached via a serial connection is inconvenient. In-
stead, we make it possible for one single node to be both base station and serial
forwarder. This is reasonable since Linux capable devices within a meshnet of-
fer sufficient resources to power a serial forwarder besides other applications. To
achieve this feature, presented in detail in TEP 113 [11], we discuss two approaches:

1. Serial Forwarder Packet Source
Serial forwarders can be daisy chained by connecting to one another through
serial forwarder packet sources. By re-implementing the serial communication
stack of TinyOS, we could transform the data and provide it to a serial for-
warder packet source. The serial fowarder will then be connected to the source
provided by the TinyOS process.

2. Software Implemented Serial Port
A serial port the serial forwarder can connect to could be implemented in
software. For that approach to success, the virtial port has to be available as a
Linux device and behave exactly like a serial I/O port. Of course, this device
should be accessible through standard Linux device drivers.

Both approaches require a lot of code and for the virtual serial port, advanced
mechanisms will probably be neccessary. However, Linux provides a feature that
already offers the functionality needed to substantiate the second approach. Linux
pseudo terminals have been part of Linux for a long time and provide two paired
serial pseudo devices (ports). Using simple system calls, data written in one of the
paired devices appears as readable on the other device and vice versa.

When the serial communication stack is enabled by the TinyOS application, the
pseudo terminal is set up and TinyOS hooks itself into one of the paired ports. The
name of the opposite device is disclosed to the user and the serial forwarder can
be connected to that particular port. Note that the Java based serial forwarder is
not capable of using the TinyWifi pseudo terminal serial port, whereas both the C
and C++ implementations can indeed connect to it. We assume that the Java based
serial forwarder cannot handle the pseudo terminal port because of Java limitations.

3.7 Sensors

We developed TinyWifi to enable researchers to evaluate sensornet protocols in the
inherently similar Wi-Fi wireless domain. On that account, support for sensing
data is a secondary issue. Nevertheless, some data should be available to drive
data exchange within the network, since protocol evaluation is not possible without
communication. By providing dummy data sources implementing interfaces used
with real sensors, we allow for creating data to be sent through the network.

Most devices discussed to run TinyWifi utilize sensors, e.g. to monitor processor
temperature. In some cases, these are avilable through Linux. Nevertheless, reading
values from such sensors is highly platform specific and thus using real sensors to
provide data on some device types is a long term aim. Instead, we use a pseudo data
source like a sine generator to acquire data.

4
Implementation

Having discussed the design of TinyWifi, we now present interesting implementation
related details. First, the integration into the TinyOS source tree is presented in
section 4.1. A look at the interaction with standard console output is given in sec-
tion 4.2. In section 4.3, the implementation of TinyOS counters and timers using the
Linux itimer is described. Afterwards, details of our approach to provide split-phase
operations are explained in section 4.4. Subtleties of TinyOS communication capa-
bilities when using TinyWifi are covered in section 4.5 for wireless data exchange and
section 4.6 for serial communication. Section 4.7 concludes this chapter, addressing
the simple dummy sensor data acquisition implementation in TinyWifi.

4.1 Build System

The TinyOS source tree is reasonably well organized. The root directory holds three
important folders: apps, support and tos. While mote applications for using and
testing TinyOS can be found within apps, folder support holds tools like the serial
forwarder and files for use with the popular Linux build tool make to build TinyOS
applications. The last important folder within the TinyOS root directory is tos,
which is – among others – home of TinyOS wide interfaces in subfolder interfaces,
chip specific components in subfolder chips and all platform specific files in subfolder
platforms.

Usually, new platforms are derived from the Null platform, which is a dummy plat-
form implementing the crucial components as stubs to make TinyOS compile ap-
plications for it. Certainly, these applications will not work before implementing
functioning components. We also started with the Null platform and incrementally
added new functionality. The correctness of any component was tested extensively
during the development to ensure the functioning prior to progressing to another
component.

22 4. Implementation

We hooked TinyWifi into the TinyOS build system the same way any other platform
is integrated. For the purpose of preparing a new platform for the already provided
make environment, two files are of major importance: To make TinyOS recognize
the new platform, a target file must be available in folder support/make.2 The file
contains simple commands to declare the platform’s name, adds some compiler flags
and finally includes rules from a platform specific subfolder to build an application
for the target. Also part of the build process is .platform in the platform root di-
rectory3. It defines additonal compiler options and folders included in the compiler’s
search domain for nesC source files. For TinyWifi, some additional compiler options
are neccessary, e.g. option “-lpthread” is given to enable thread support.

The command line to compile an application for TinyWifi is similar to compiling
for other platforms. By issuing “make tinywifi”, the application is compiled and
an executable binary file containing the program is produced. Since other platforms
use “make <platform> install,<nodeid>” to patch the node’s ActiveMessage ad-
dress and transfer the binary to the mote, we also feature that syntax to define a
non-default ActiveMessaging address. The node’s ID given on the command line is
used to declare a global constant via the “-D” option of the compiler. Our TinyWifi
code then uses this global constant’s value as the ActiveMessaging address. Ad-
ditionally we offer compiling and executing with a single command line by typing
“make tinywifi install,<nodeid> run”.

4.2 TinyOS Outputs and Local Messages

For several reasons like debugging, we want to use standard output to the console
to print messages on the screen. In TinyOS, there already is a printf() facility with
limited platform support, redirecting messages to the serial port. On an attached
host computer, the messages can then be read and displayed by a simple viewer
application, also part of the TinyOS environment. Instead of redirecting messages
to the serial line, we want to print messages to standard output of the console
without detours by using the Linux built-in printf() command. We can achieve this
by including the appropriate Linux header file, which provides printf() using standard
output. Nevertheless, additonal changes to the application are required to achieve
the intended behavior.

Applications using the printf() function declare the path of the printf() library in
their Makefile in order to enable printf(). Since we want to integrate TinyWifi
into TinyOS without changes to the original source code, we have to build around
the exisiting printf() library. Indeed, applications using printf() can be compiled for
TinyWifi, but support is limited until TinyOS is enabled to use the Linux printf()
implementation. For this purpose, the path to the TinyOS printf() library must not
be provided in the application’s Makefile.

2Folder and file locations are given relative to the TinyOS source root, if not stated otherwise.
3The term “platform root directory” refers to folder tos/platforms/tinywifi, holding the

platform specific files for TinyWifi.

4.2. TinyOS Outputs and Local Messages 23

LinuxActiveMessageC.nc: In function ’LinuxActiveMessageC$receiverThread’:
2 LinuxActiveMessageC.nc:319: ERROR: setsockopt(...) failed!

LinuxActiveMessageC.nc:319: Linux says it was (errno): Socket operation on non−socket
4 LinuxActiveMessageC.nc:319: gai strerror says it was: Bad value for ai flags

LinuxActiveMessageC.nc:319: program exits with status −4.

Listing 4.1: TinyWifi features information rich and descriptive error and warning
messages. Note that line 4 is special for networking related errors and warnings.

4.2.1 Virtual LEDs

Although Linux offers a much simpler way to provide messages to the user via printf(),
LEDs are substantial for TinyWifi to support applications out of the box, since LEDs
are often used on real motes. Subfolder leds in the platform root directory holds two
files responsible for providing virtual LEDs: Configuration PlatformLedsC provides
three interfaces GeneralIO as Led0 through Led2 and uses interface Init. While
interface Init is passed through to component PlatformC and is used at boot time,
the GeneralIO interfaces are wired to module PlatformLedsP implementing the
LED functionality.

Features of LEDs defined by interface Leds are turning on and off as well as toggeling
single LEDs. Additionally, reading and setting the LED configuration as a bitmask
is possible. As on any other platform, applications wire to the HIL component LedsC
for the purpose of accessing the LEDs. The high level features in interface Leds are
mapped to the low level functions provided with interface GeneralIO.

In PlatformLedsP, we use general helper functions to control the pseudo LED states,
which are stored in a simple global array. This way duplicate code is avoided and
increasing the amount of LEDs becomes simple. Moreover, the output can be con-
figured to be either one message per LED access or one line revealing the LED’s
states, which is updated for every change. By defining LEDS SHUT UP,4 the
output to the console can be completely suppressed.

4.2.2 Error Handling

TinyWifi code is developed to be resilient for the purpose of functioning correctly in
exceptional situations. The most significant part in achieving robustness is thorough
error checking. Linux system calls are checked against success or failure and the
appropriate error or warning message is displayed in the console.

In order to unify error messages and to offer a centrally adaptable and information
rich output, see listing 4.1, TinyWifi provides TinyWifiError.h implementing two
customized error functions. Function tinyWifiNetError() is used to output error mes-
sages when using Linux sockets, providing even more information than tinyWifiEr-
ror(). The latter is a special case of tinyWifiNetError() and thus uses tinyWifiNetEr-
ror() to print its messages, setting an error code of SUCCESS for the network related
error code parameter.

4Constants influencing TinyOS applications compiled for TinyWifi can be found in header file
hardware.h located in the platform root directory.

24 4. Implementation

Counter

LinuxCounterP
(CounterFrom)

Counter<TMilli, uint32_t>

TimeConversionsC

TimeConversions

LinuxTimerC
(TimerFrom)

LinuxTimer

MainC

Init

(a) CounterMilli32C

The component graph illustrates that con-
figuration CounterMilli32C provides in-
terface Counter with precision TMilli (bi-
nary milliseconds) and width of 32 bit.
For the purpose of initializing when boot-
ing, it wires interface Init (provided) of
component LinuxCounterP to MainC. To
fully satisfy LinuxCounterP’s needs, con-
figuration CounterMilli32C also wires
TimeConversionsC and LinuxTimerC.

Timer<TMilli>[uint8_t]

AlarmToTimerC

Timer<TMilli>

LocalTime<TMilli>

CounterMilli32C

Counter<TMilli,uint32_t>

AlarmMilli32C

InitAlarm<TMilli, uint32_t>

TimerMilli LocalTime

Init

CounterToLocalTimeCVirtualizeTimerC

(b) HilTimerMilliC

Provided interface Init is passed through to Alarm-

Milli32C. Standard TinyOS component Counter-

ToLocalTimeC provides interface LocalTime with
precision TMilli and is wired to CounterMilli32C,
from which the local time is derived. Addition-
ally, interface Timer with precision TMilli is pro-
vided multiple times (indicated by array notation)
as TimerMilli. Note that the virtualized timers are
derived from AlarmMilli32C using TinyOS compo-
nent AlarmToTimerC.

Figure 4.1 Example Wirings of Timing Components

The unified error messages include information about where the error occured (file
and function as well as code line), a customized message (string) and the human
readable description of the numerical error code, obtained by Linux calls perror() for
any error and gai strerror() for network related problems.

4.3 Counters, Alarms and Timers

TinyOS offers three different timing facilities: simple counters, single shot alarms
and convenient (interval) timers. On common motes, interface Counter is imple-
mented by directly reading the counter value and generating an event for counter
overflows. Multiple Alarms (highly limited in number) are derived from counters in
conjunction with the compare registers of a counter to generate event fired(), whereas
timers (available in high numbers by virtualization) are derived from alarms. Since
all timing facilities can be used in multiple resolutions and widths (of the respective
value), TinyOS offers components to convert between different types, like Trans-

formCounterC and TransformAlarmC.

In TinyWifi, counters and alarms are implemented as a generic interface each. While
LinuxCounterP provides counters of all widths and precisions, component Lin-

uxAlarmP implements alarms of all flavours. Certainly, said components are pri-
vate and TinyOS applications may use them by wiring to the appropriate wrapper,

4.3. Counters, Alarms and Timers 25

like CounterMilli32C, CounterMilli16C . . . Alarm32khz32C and Alarm32khz16C.
Component Counter<precision><width>C instantiates a new LinuxTimerC and a
new LinuxCounterP with the appropritate precision and width, as illustrated in fig-
ure 4.1a for a tangible example. For each component Alarm<precision><width>C,
another LinuxTimerC is required, as well as a new LinuxAlarmP with the appropri-
ate parameters. Every component providing an alarm or counter is given a name
following the naming conventions in TinyOS to provide compatibility with existing
applications.

Since the itimer functionality is used by several components, we take two steps in
order to supply multiple components with a separate timer:

1. Define New Timer Interface
For the purpose of successfully providing functionality similar to an itimer
to several components, we introduce a TinyOS interface named LinuxTimer,
describing the functionality needed to derive all TinyOS timing capabilities.
Actually, this new interface is fairly similar to the high level interface Timer of
TinyOS. Nevertheless, the data types change from simple integers to structs
of type timeval, and some additonal commands are required, e.g. getStartup-
Time(), which returns the Linux time when the TinyOS application booted
(important for counters).

2. Virtualize Linux Timer
Similar to the original TinyOS component VirtualizeTimerC, we provide 256
instances of interface LinuxTimer by virtualization. The source timer for virtu-
alization is component NativeLinuxTimerC, which implements said interface
using the unique Linux realtime itimer. All other instances of components
using interface LinuxTimer are set to wire themselves to LinuxTimerC, which
allocates a new timer of type LinuxTimer through virtualization component
VirtualizeLinuxTimerC.

Counter values are represented as simple unsigned integers and interpreted as ticks of
the respective clock source. Since Linux uses seconds and microseconds to represent
time, we need to convert from ticks to struct timeval and vice versa in many scenarios
to provide the correct representation of time. We introduce interface TimeConver-

sions, implemented by component TimeConversionsC, which provides conversion
from one representation into another for any precision.

For embedded systems, the ability to wait for a specific amount of time is very
important. Many external controllers are triggered by sophisticated protocols and
require crucial timing. On that account, TinyOS provides interface BusyWait, which
allows for waiting a certain small amount of time with high precision due to the
blocking nature of BusyWait. We use Linux system function usleep(), which blocks
the calling process for an amount of microseconds. The given value for command
BusyWait.wait() is converted to microseconds and results in the argument for usleep().

Additionally, any platform is required to provide its version of component HilTimer-
MilliC, which is used by the frequently used HIL component TimerMilliC. See fig-
ure 4.1b for the wiring graph of component HilTimerMilliC. Interface LocalTime

26 4. Implementation

offers reading the amount of time passed since startup of the mote in a 32 bit integer,
sufficient to represent approximately 8 years of runtime in milliseconds. In contrast
to other platforms, TinyWifi also provides component HilTimer32khzC, which pro-
vides timers with 32 kHz precision as well as the respective interface LocalTime with
32 kHz precision.

4.4 Split-Phase Operations

Despite commands to send out messages, there are more split-phase operations in
TinyOS, e.g. ReadNow.read() in component DemoSensorP, which is our dummy
sensor implementation. Since sensing is a subsidiary feature, we do not use threads
to provide dummy sensor data, saving sophisticated programming code. Instead, a
timer is set up to fire in the near future by command ReadNow.read(). The respective
ReadNow.readDone() event is signaled on timer expiration.

Another method to emulate split-phase operations is utilized in component Sine-

SensorP, being a part of the originial TinyOS source code. A task is posted to the
scheduler and executed eventually, calculating some data and presenting it along
with the ReadNow.readDone() event. For both the timer-based approach and the
task-based approach, control is immediately returned to the calling function and
the respective “done” event is signaled eventually, which conforms to the desired
behavior of split-phase operations.

4.4.1 Split-Phase Operations Using Threads

For the purpose of providing well-engineered split-phase operations on top of Linux,
we utilize program threads. In the current version of TinyWifi, we encounter two
major split-phase operations that are handled by threads: AMSend.send() and Uart-
Stream.send(), which are commands to send data via the radio and via the serial
connection, respectively. Since radio chips as well as the internal UART have to be
set up correctly prior to utilization, interfaces SplitControl and StdControl are
used to enable and disable the radio and UART.

Although very similar in functionality, these interfaces distinguish from one another
in their behavior: While SplitControl controls a hardware component and signals
the respective “done” event in the future, the commands in StdControl are blocking
functions and only return after an attempt to change the hardware state has been ac-
complished. We integrated the task-based approach discussed with SineSensorP to
support split-phase operation behavior with interface SplitControl for component
LinuxActiveMessageC.

In the following, we exemplarily discuss the split-phase operations in LinuxAc-

tiveMessageC. On call of SplitControl.start(), we create thread receiverThread, which
first sets up the outgoing sockets and then creates another new thread, namely
senderThread. Afterwards, the incoming socket is configured properly using Linux
system calls and on success, the task reponsible for signaling SplitControl.startDone()
is posted to the scheduler. At this stage, there are the main TinyOS process, a thread

4.4. Split-Phase Operations 27

handling incoming packets and another thread handling outgoing packets. Since all
concurrent threads alternate in execution, receiving and sending packets as well as
processing the main application is done simultaneously.5

Until reception of a message, receiverThread remains in system call recvfrom(), not
consuming CPU time since recvfrom() is blocking. The message is handled by the
thread in order to displace all processing intense procedures out of the TinyOS
thread. Afterwards, the reception of a message has to be signaled to the application
component using the radio. Calling the appropriate event from within the thread
would result in the thread being blocked until the application is done processing the
event. On that account, we post a special task packetReceivedTask() to the main
process. During further processing of incoming packets, said task is scheduled for
execution and signals the arrival of the packet to the application eventually.

Thread senderThread is responsible for transmitting messages to other nodes in the
network. Like receiverThread, it is kept alive by an infinite loop in which the thread
tests for packets to be sent out. Since infinite polling for events consumes processor
power, we developed the thread to pause after each transmission and wait for another
packet to be transmitted. Again, the completion of sending a message is signaled by
a task, which is enqueued by the thread and executed eventually in the near future.

4.4.2 Impact of Threads on TinyOS Scheduler

Since enqueuing tasks to signal events is used by multiple concurrently executed
threads, we need to make sure that posting a task does not lead to corruption of the
task queue. For that purpose, we use a mutex6 to ensure exlusive use of function
pushTask() in component SchedulerBasicP.

Because TinyOS is a very energy efficient operating system, the scheduler puts the
microcontroller of a mote to sleep when no tasks are being scheduled for execution.
Interface McuSleep defines commands to put the processor to sleep or update the
power state. The particular component implementing this interface allows for set-
ting the correct sleep mode per platform, depending on the sleep modes supported.
Important for continued functioning is reacting to events like timer expiration or
completion of a measurement. Until such an event is triggered, the MCU can power
down in order to save energy.

For TinyWifi, we issue Linux system call pause(), which halts the calling process
until a signal is received. This approach makes TinyOS applications running with
TinyWifi on Linux driven devices behave as expected – until threads are considered:
The main process yielding the processor and waiting for a signal results in not
recognizing posting of a task when done by another thread. This is due to the
thread being able to successfully post the task while the main process including the
scheduler is halted. Hence, the newly posted task is not executed when enqueued
but when the next signal is handled. To prevent this frequently occuring problem,

5Note that real concurrency is only achieved on systems with multiple processors, but scheduling
on a single processor already allows for comparable concurrency.

6Mutexes allow for developing program code sections that can only be executed by one concur-
rent process at a time.

28 4. Implementation

the function posting a task is altered to send a signal to the main process after
enqueuing the task. Certainly, the signal makes TinyOS return from pause() and
enables TinyOS to recognize the newly enqueued task immediately.

4.5 Radio Communication

For the purpose of supporting radio communication, we basically have to provide im-
plementation for component ActiveMessageC, as specified by TEP 116[11]. As with
most other platforms, a seperate version of this component is needed for TinyWifi.
ActiveMessageC provides several interfaces for use with radio messaging, of which
most are passed through to LinuxActiveMessageC:

• Initialization Prior to Enabling
Interface Init is provided to execute code when booting. Component Plat-

formP calls command Init.init(), implemented in LinuxActiveMessageC, which
sets up mutexes for the use with threads.

• Controlling the Radio
As discussed in section 4.4.1, interface SplitControl is used to control the
radio state, i.e. to enable or disable it. We use this interface to set up the
message handling threads (enabling radio) or to destroy them (disabling ra-
dio). Since the threads are part of the core messaging functionality, module
LinuxActiveMessageC provides said interface.

• Sending Messages
The main command for sending messages is included in interface AMSend, which
also features accessing the actual payload and the maximum payload length of a
message. Event AMSend.sendDone() indicates the completion of a previous call
to AMSend.send() in a split-phase fashion. Certainly, LinuxActiveMessageC
is the right module to implement interface AMSend.

• Receiving Messages
Using ActiveMessageC allows for two ways of receiving messages: It is possible
for an application to (1) sniff all overheard packets or (2) receive only messages
addressed to the node, which is the usual behavior. An application wires itself
to either ActiveMessageC.Snoop or ActiveMessageC.Receive, respectively.
ActiveMessageC provides both interfaces through LinuxActiveMessageC.

• Packet Manipulation
To allow for portability and protecting the internal message structures around
the payload, TinyOS requires applications to manipulate packets using prede-
fined interfaces like AMPacket. Properties like source address, source group,
and message type can be accessed via AMPacket, although this is also done
by the ActiveMessaging communication stack automatically. Module Linux-

Packet provides both interfaces Packet and AMPacket.

• Packet Acknowledgements
It is possible to request an acknowledgement when sending packets, by using

4.5. Radio Communication 29

interface PacketAcknowledgements. It allows for setting and resetting the re-
quest flag as well as checking whether the message was acknowledged by the
recipient. We implemented some of this functionality in LinuxPacketAcksC,
whereas LinuxActiveMessageC is responsible for recognizing and sending the
actual acknowledgements. TinyOS specifies that the sendDone() event for out-
going messages requiring acknowledgement is only signaled when the status of
the particular message is fixed. This rule implies that it has to be possible to
check sent messages for their acknowledgement status in the sendDone() event
handler. For that reason, a timout timer is started when sending messages
with the acknowledgement flag set. On timeout expiration, the message is
consequently considered not acknowledged.

4.5.1 Communication Setup

Prior to using the radio messaging facility, threads, sockets, buffers, and variables
have to be set up correctly. In SplitControl.start(), appropriate action is triggered
depending on the current status. If the messaging facility is actually not ready for
sending, we create thread receiverThread. As required by a split-phase operation,
the function call returns immediately after thread creation. The actual setup is done
in parallel by said thread.

Two outgoing sockets are inquired by receiverThread : One of these is prepared for
senderThread, the other will be used by receiverThread to send acknowledgements.
After issuing socket() twice to get two new socket file descriptors, the sockets are
configured to broadcast messages, i.e. to use both the internet protocol and MAC
broadcast address. Additionally, the time-to-live header field is manipulated to be
TINYWIFI TTL (value 0 by default) for any outgoing message by setting the
appropriate socket property. In the next step, senderThread is created, which is
now enabled to start sending packets.

A third socket file descriptor is created in a similar way as the outgoing sockets. The
receiving thread calls bind() in order to gain exclusive access on the specific communi-
cation end point. Prior to entering the infinite loop and starting to receive messages,
we catch the internet protocol addresses of the host machine and save them into a
local data structure to sort out looped back packets later. Finally, startDoneTask() is
posted to the scheduler, eventually signaling the SplitControl.startDone() event while
receiverThread enters an infinite loop and waits for incoming packets.

Since we do not want the sending thread to poll for new outgoing packets, we utilize
pause(), but also need a signal to wake it up from pause(). Invocation of a signal han-
dler is neccessary, as pause() will not return on reception of unhandled signals. On
that account, senderThread registers signal handler sendPacket() first. Afterwards,
senderThread enters an infinite loop and halts until the wake up signal is received.

Certainly, disabling the ActiveMessage communication stack is also possible. Func-
tion SplitControl.stop() is intended to cancel all ongoing operations and free resources.
In TinyWifi, we set a cancellation point for each thread, close the sockets and free
some memory. Again, a task is posted to complete the second phase of the split-phase
operation, namely signaling SplitControl.stopDone() to the application.

30 4. Implementation

4.5.2 Receiving Radio Messages

Returning from the blocking Linux system call recvfrom() to receive data out of
the datagram socket, receiverThread first tests if the radio interface has been shut
down via SplitControl.stop() in the meanwhile. Issuing pthread testcancel() results
in termination of the thread if a cancellation point was set by SplitControl.stop()
beforehand. Otherwise, the current message is examined and handled properly.

Since broadcast messages are also sent back to the local host, we have to look for
looped back packets. By comparing the sender’s address of each UDP message with
the list of local internet protocol addresses, we can determine whether the packet is
of interest.

The possibility to request and send acknowledgements asks for several extra steps:
For incoming acknowledgements, we flag the acknowledged local message, cancel the
acknowledgment timeout timer, post sendDoneTask(), and wait for the next incoming
data. If any incoming TinyOS message demands for an acknowledgement, a simple
acknowledgment packet with empty payload is built and sent to the originator by
receiverThread immediately.

On motes, the radio can handle only one message at a time. When data arrives,
it is collected by the respective event program code of the application. If a sec-
ond message arrives prior to fetching the data, one of the messages is lost. Since
TinyOS applications compiled for the new TinyWifi platform are executed on re-
source rich Linux driven host devices, we provide a ring buffer for incoming messages.
Its size (number of messages) can be influenced by adjusting the constant TINI-
WIFI RECVBUF in header file platform_message.h, which also holds TINY-
WIFI TTL and message struct definitions along with related parameters.

The timestamps for incoming packets represent the time of arrival, so timestamps
are set for non-looped messages at this stage. Afterwards, the message is stored
in the receive buffer. For the purpose of protecting the ring buffer against corrup-
tion, we use a blocking mutex to grant exclusive access to it. The mutex affects
packetReceivedTask() and receiverThread. Finally, right before receiverThread loops
and listens for another message, packetReceivedTask() is posted, eventually signaling
reception of the message to the appropriate application components.

4.5.3 Sending Radio Messages

If the radio facility has not been setup correctly, a call to AMsend.send() returns the
appropriate error code. Otherwise, the current message is prepared to be sent over
the radio. An exeption has to be made if senderThread is still busy sending another
message, which is properly handled by returning error code EBUSY if the mutex
fails to lock due to the sending thread being busy.

Because AMSend.send() is a split-phase operation, most processing should take
place from within senderThread. Hence we only fill the send buffer and trigger
senderThread by sending the preconfigured signal, which will cause the thread to re-
turn from pause(). Control is quickly restored to the caller and all processing intense
operations are done by the separate sending thread.

4.6. Serial Communication 31

The message is prepared to be sent via the socket in senderThread. Operations in-
clude resetting the acknowledgement flag, setting the source and destination address,
as well as setting other important header fields using the Packet and AMPacket in-
terfaces. The timestamps are set directly after the message has been sent to achieve
accuracy. A notice is put out to the console if the Linux command sendto() failed for
some reason. The error code passed to AMSend.sendDone() later is adjusted properly
after completion of the operation.

Subsequently, either sendDoneTask() is posted or the acknowledgement timeout timer
is started. In the latter case, AMSend.sendDone() is either posted on expiration of the
timer or on reception of the appropriate acknowledgement message. For evaluation
and performance purposes, the acknowledgement timeout can be easily adjusted in
header file platform_message.h with constant TINIWIFI ACK TIMEOUT.

4.6 Serial Communication

Component PlatformSerialC in the platform root directory suffices in order to
implement the serial messaging facility. That is because we can cut very low in the
hardware abstraction architecture, due to the fact that the serial communication is
byte oriented, hence there is few difference in using an UART on a microcontoller
and writing/reading to/from a Linux file descriptor. The sophisticated techniques
used to provide serial messaging are very similar to those in LinuxActiveMessageC,
since both feature split-phase sending and receiving data operations.

Interfaces provided by PlatformSerialC are less in number than in component Lin-
uxActiveMessageC: Interface StdControl, which is the non-split-phase alternative
of SplitControl, is used to enable and disable the serial communication facility.
Mutexes are also required and therefor initialized by command init() of interface
Init. The actual serial messaging functionality is defined by interfaces UartStream
and UartByte.

In contrast to LinuxActiveMessageC, the setup is done completely in StdCon-
trol.start(), since this function is blocking and reports the success or failure of start-
ing the communication stack on return. Neccessary operations include opening the
pseudo terminal, saving the file descriptors of both serial ports provided by openpty(),
granting access to them and creating one sending and one receiving thread. Finally,
the device name of the software serial port and its speed are printed out on the
console to ease indentification of said port. The respective stop command closes all
file descriptors and cancels both senderThread and receiverThread.

Thread receiverThread reads data available byte-by-byte and processes them indi-
vidually. If the interrupt for incoming bytes is enabled, each byte is signaled to
UartStream.receivedByte() by a separate task. A ring buffer is used to deposit in-
coming bytes and to make them available to the signaling task. Additionally, the
current byte is written to another receive buffer provided by the application, if appli-
cable. Function UartStream.receive() provides this buffer and configures an amount
of bytes to be received (counter). For each byte written to the buffer, receiverThread
decrements the counter. When the buffer is finally full, receiveDoneTask() is posted,
signaling UartStream.receiveDone() in the near future.

32 4. Implementation

Command receive() of interface UartByte requires special treatment. It features
a blocking read of a single byte from the serial input with a timeout of several
characters. Either one byte is available and its value is given to the caller or the
failure of the command is indicated on timeout expiration. In order to provide this
functionality along with the receiving thread, we decided for another use of pause().
Function UartByte.receive() registers a signal handler, sets the timeout timer and
then calls pause(). On reception of a byte, receiverThread makes the newly received
byte accessible and wakes up UartByte.receive(), which then delivers the single byte
with status SUCCESS. Otherwise, the timeout timer expires, the event handler flags
the operation as failed, and wakes up UartByte.receive() returning status FAIL to the
caller.

4.7 Sensors

We provide component DemoSensorC, implementing both interfaces Read and Read-

Now through DemoSensorP. Since sensors are always queried via said interfaces, exist-
ing applications using sensors can be compiled for TinyWifi requiring only marginal
modifications: By re-wiring to DemoSensorC, all applications’ needs for sensors can
be satisfied when using TinyWifi. In contrast to Read, interface ReadNow uses com-
mands and events preceded with keyword async, which tags functions save to execute
within interrupt handlers.

We provide different data sources for the two interfaces. For Read, we use TinyOS
component SineSensorC as the sensor source. Since SineSensorC already features
the split-phase operation Read.read(), we simply exploit SineSensorC to provide the
Read interface. Applications using interface ReadNow in TinyWifi’s DemoSensorC will
sense a triangular signal, derived from the linearly rising local time. To substantiate
the split-phase operation ReadNow.read(), we use another timer that fires in the near
future. On expiration of that particular timer, ReadNow.readDone() is signaled along
with the pseudo-sensor value.

5
Evaluation

For the purpose of evaluating the functionality of our solution, we extensively tested
the features of TinyWifi. First, in section 5.1, we discuss that building TinyOS
applications for Linux is possible when using TinyWifi. Subsequently, we present
different test applications examining the timing functionality in section 5.2, before we
have a look on the serial communication in section 5.3. Finally, we briefly discuss the
wireless communication functionality for both simple neighborhood communication
and multihop communication in section 5.4 and section 5.5, respectively.

We primarily tested TinyWifi on our development notebook, which is a 2.0 GHz dual
core machine with 3 GByte memory running Ubuntu 10.04. Test applications by
TinyOS as well as newly developed simple and advanced tests were used to examine
the functioning our implementation. If not stated otherwise, we used a virtual
machine, also running Ubuntu 10.04, to provide another node for communication
when neccessary.

5.1 Proof of Concept and Portability

Before testing our TinyWifi platform in detail, we try to build simple TinyOS ap-
plications with TinyWifi to run on Linux and see if the result is useful.

Besides the Null platform, there is also a Null application, which uses interface Boot

and implements event Boot.booted(). Since the only event it implements is designed
to do nothing, its only purpose is to show if compiling for our new platform works.
In the case of TinyWifi, the result of entering command “make linux” is a C source
file build/linux/app.c, generated by the nesC compiler and a binary executable,
subsequently produced by the locally installed gcc using the build/linux/app.c

source file.

Compiling the Null application – besides many other applications – is successful.
The make process generates an executable build/tinywifi/main.exe out of the

34 5. Evaluation

build/linux/app.c source file derived by the nesC compiler. The executable binary
can be directly executed on Linux driven devices.

A similarly simple application is the TinyOS PowerUp application, which enables
the first LED after booting. On execution of PowerUp after successful compiling, we
indeed notice that the LED status line appears and LED0 is turned on as expected.
It shows that or solution to provide LED support works. Applications Blink and
Oscilloscope, which also use LEDs, emphasize the correctness.

While our primary Linux derivative on which we developed and tested TinyWifi is
Ubuntu 10.04, we also successfully repeated the build process on Fedora Core 13 and
openSuse 11.3, representing the three major branches Debian, Slackware Linux and
RedHat, respectively. Being able to run applications on different Linux versions, we
show that our TinyWifi code is portable to a variety of Linux derivatives. In any
case, we found at least application Blink and Oscilloscope working correctly.

5.2 Timing and Sensing

In order to test the timing functionalities developed for TinyWifi, we wrote several
applications by ourselfs to check for the correct behavior of alarms, counters and
timers:

• LinuxTimerTest and VirtualizeLinuxTimerTest
In order to evaluate the functioning of the LinuxTimer interface implemen-
tation using the Linux itimer, namely in component NativeLinuxTimerC, we
developed application LinuxTimerTest. Upon completion of the boot proce-
dure, we check whether the startup time is set correctly. We configure the
timer to fire once in 1 s relative to 250 ms in the past, which is by design pos-
sible and tested successfully at this stage. On timer expiration, getLeftover()
and stop() are evaluated for correct functioning, prior to setting up the timer
as an interval timer. We await timer expiration 5 times and check whether the
result is accurate. Additionally, VirtualizeLinuxTimerTest allows for testing the
correctness and accuracy of multiple LinuxTimer instances provided by our
virtualization facility. We find the results to be fully satisfiying in regard to
accuracy and funtionality.

• LinuxAlarmTest
TinyWifi alarms already rely on the working underlying Linux itimer virtual-
ization. In this test case, we use 4 alarms of different widths and precisions.
The alarms are each set up to fire at different times in the future. The pri-
mary objective of this test is to evaluae the accuracy of alarms. Additionally,
we test command isRunning() and stop() on one of the alarms, which is rep-
resentative for all other, since they rely on the same generic implementation
(LinuxAlarmP). Again, the result is fully satisfying regarding accuracy and
funtionality. Note that this test also shows that the LinuxTimer interface
virtualization works as expected.

5.3. Serial Communication 35

• LinuxCounterTest
This particular test application is designed to print the difference between the
expected counter values and the counter values retrieved through the respective
interface. We use all 4 available counter flavours and continuously compare
the expected and retrieved values with each other. We observe the overflow
signaling for correctness as well. During development, this test revealed a lot of
errors in the first implementation of counters but now shows that the counters
are usable as expected and provide high accuracy.

• BlinkAdvanced
This application uses all flavors of interface BusyWait and calls wait() on all
of them with different values. Prior to calling BusyWait.wait(), we save the
current uptime and check the uptime after the return of BusyWait.wait() for
plausibility. Subsequently, we check the high level timing capability of TinyOS
by allocating two timers of precision TMilli and one of precision T32kHz.
On each timer expiration, the uptime in the respective precision is printed
out. The tests show the correct functioning of interface BusyWait and prove
that multiple high level timers can be used at the same time, while providing
satisfying accuracy.

TinyOS offers a simple test application Sense, which reads the DemoSensorC sensor
module and displays the bottom three bits of the reading with help of the node’s
LEDs. By compiling and running Sense, we show that our dummy sensor imple-
mentation as well as the LED output work properly. Note that application Multiho-
pOscilloscope, presented in section 5.5, that the data from the sensor is reasonable.

5.3 Serial Communication

While evaluating the serial communication stack implementation of TinyWifi, we
encountered difficulties. Executing the same binary on different machines resulted
in different bahavior: In contrast to the development system, the serial line worked
only infrequently on the testbed nodes (outgoing direction). We were unable to
identify the cause of this behavior in the first place, but due to the indeterministic
occurence of this failure, we suspected a timing and concurrency issue.

Indeed, we had to ensure that the sending thread is instantly ready to transmit
data when signaling StdControl.start(). Additionally, we had to move the processing
of the outgoing data from the thread function to the signal handler that was first
intended to only wake up the thread function from pause().

TinyOS provides a test application for the serial port named TestSerial. It consists
of a TinyOS application and a Java based host counterpart, which both send incre-
menting counter values to each other. The host application prints the counter value
on the screen, while the node displays the three least significant bits on its LEDs.
This test application works exactly as expected. Additionally, in use by the TinyOS
BaseStation application and MultihopOscilloscope, the virtual serial connection is also
found to work correctly in either direction.

36 5. Evaluation

SF

host computer

gateway
computer

wired
router

IP Based
Network

r

n
kHost APP

Shell

Firewall

7ssh port
forwarding

ssh tunnel

Testbed Evaluation Setup

We use a secure tunnel to gain access to the gateway computer and setup a port forwarding
bypassing the firewall to node number 7, the selected root node. Despite the actual application,
node 7 also runs a serial forwarder. The data from the serial forwarder is tunneled back to
the host computer’s evaluation application. We control the testbed nodes (k, n, r, etc.) by
using ssh on the gateway computer to execute commands remotely. Although the testbed nodes
are additionally connected with each other by Ethernet, the test application uses the wireless
interface by setting the appropriate broadcast address.

Figure 5.1 Evaluation in the UMIC Meshnet Testbed

5.4 Wireless Communication

Although we use mechanisms for enabling and disabling the wireless communication
stack that are very similar to the methods used with the serial communication, we
did not encounter similar concurrency problems. Nevertheless, the implementation
was revised several times during the development, thanks to early evaluation: We
learned, that we have to filter out looped back packets that arrive through the
standard Linux loop back interface. The coordination of the threads providing split-
phase operations revealed itself to be sophisticated and it was during the early
evaluation, that we found out having to wake up the main thread on posting tasks,
as discussed in section 4.4.2 earlier.

The evaluation of wireless communication reveals the correct functioning by starting
applications using the wireless communication stack, like Oscilloscope or RadioSense-
ToLeds, which can successfully communicate data in the intended manner.

For the advanced mechanisms of the wireless communication facility, we created test
applications. Running these newly developed test applications, we can show that
acknowledgements are treated correctly. Beyond that, the timestamps of packets
are accurate and set like specified by the appropriate interface. The reception of a
packet and the completion of sending a packet is signalled promptly.

5.5 Multihop Communication

In order to show that TinyWifi can fulfill its primary purpose, we configured 16
nodes in the UMIC wireless mesh network testbed to run MultihopOscilloscope, which
uses an actual sensornet routing protocol to collect data, namely the collection tree
protocol (CTP).

5.5. Multihop Communication 37

MultihopOscilloscope Visualization

The screenshot of the MultihopOscilloscope Java based host application shows the data from
the dummy sensors of 16 different nodes in the UMIC wireless mesh network testbed. Only
few nodes are in radio range of the collecting node (logical address 0), which indicates that the
collection tree protocol (CTP) of TinyOS works properly with TinyWifi on Linux driven wireless
networked nodes.
Due to packet losses, curves can be discontinuous. The nodes are synchronized properly, so
that the curves do not overlap. We slightly changed the implementation of the Java based host
application: We (1) altered the background color of the plot area to be white and (2) set the
stroke width to a higher value. With these modifications, the readability of the output is increased
tremendously, especially for the printed version.

Figure 5.2 TinyOS’s MultihopOscilloscope Host Application Output

The collection tree protocol is part of TinyOS and provides a best-effort anycast
connectionless communication service. It features forwarding messages to preselected
root node(s). CTP uses trees to determine the next hop forwarding a message
greedily towards the root node(s). The protocol is explained in much more detail by
TEP 123 [11].

We configured node 7 (physical numbering) to run the MultihopOscilloscope with
wireless address 0 (logical numbering). This makes node 7 the root node collecting
all the data and forwarding it over the virtual serial line.

On the very same node, we ran a serial forwarder that connects to the virtual
serial port of the root node and advertises the messages to a specific TCP port.
We established an IP tunnel for that specific port from our host computer to node
number 7 over ssh in order to receive the data from the serial forwarder. We can then
visualize the data that arrived at the CTP root node. The setup used is illustrated
in figure 5.1 and also shows the configuration we will use when evaluating other
sensornet protocols in the UMIC meshnet testbed.

We successfully received data from the sine sensor of all 16 of the configured nodes,
as shown in figure 5.2. Hence, we finally reliably showed that we can use TinyWifi
to evaluate sensornet protocols designed for use with TinyOS in meshnets.

38 5. Evaluation

6
Conclusion

In this thesis we presented TinyWifi, a new TinyOS platform enabling convenient and
robust platform support for Linux driven host devices. Due to the inherent similarity
of sensornets and meshnets, communication protocols for TinyOS can now easily be
evaluated in Wi-Fi networks using TinyWifi. Because TinyWifi integrates smoothly
into the current TinyOS source and supports all important hardware independent
functionality, existing TinyOS applications can be compiled for Linux driven devices
without modifications. This approach saves a lot of re-implementation and allows
researchers to evaluate their sensornet protocols in the Wi-Fi domain, instead of just
(implicitly) claiming the applicability.

During the development of TinyWifi, we faced architecture and design related prob-
lems of TinyOS, like split-phase operations, that demanded sophisticated solutions
in order to provide similar paradigms on top of Linux. We found a way to derive pow-
erful timing functionalities from only a single Linux realtime timer and constructed
a fully functional radio messaging facility working equally well in comparison with
motes. We also found a good way to provide a serial port running the TinyOS
application by using Linux pseudo terminals.

Finally, we showed that TinyWifi is functioning as expected in a variety of different
situations. We found that our approach is suitable to evaluate sensornet protocols
in meshnets with less time effort.

6.1 Future Work

Although TinyWifi already supports a range of different applications and is func-
tioning correctly, some tasks are left to be dealt with in the future to further refine
TinyWifi code and finally use it for research.

40 6. Conclusion

Linux Raw Sockets

Currently, we use UDP/IP packets to transmit TinyOS messages to other nodes. At
the same time, we prune the main purpose of the internet protocol layer, namely
routing, by setting the “time to live” header field to a value forcing the receiving
node to not route the packet to foreign nodes.

Nevertheless, this approach works well and saves a lot of sophisticated code. Addi-
tionally, this method could be implemented and tested rather quickly, as required for
this thesis. But by sending messages through the internet protocol communication
stack of Linux without using its features, we cause latency as well as processing and
data overhead. Although this overhead is comparably negligible on resource rich
Linux driven devices, we want to use Linux raw sockets to get even closer to the
behavior of motes and cut back the overhead. Additionally, we do not rely on a
properly configured routing table, since data using raw sockets is sent out on the
interface regardless of the nerwork configuration. The effort to replace the socket
type so is expected to be limited to a single component and requires testing the
messaging interface again.

Wireless Extensions

In some sensornet applications (e.g. link estimators), additional parameters like
the received signal strength indicator (RSSI) are of interest. Currently, we do not
provide support for such information, since obtaining them is hardware specific and
limits portability. Nevertheless, we will implement such functionality for use in our
meshnet testbed and get even closer to the subtle features of motes.

Sencosrnet Protocol Evaluation

This thesis aimed at providing the basic infrastructure to allow for using existing
TinyOS applications on Linux driven devices without the need to make great changes
or even re-implement them each individually. The next step after progressing to raw
sockets and using wireless extensions is starting to evaluate sensornet protocols in
the Wi-Fi domain.

In the near future, we intend to compare sensornet protocols to existing protocols
currently used with Wi-Fi networks in a scientific way and to present our findings
to the research community.

Contribute TinyWifi to TinyOS Repository

TinyWifi is primarily targeted to extend applicability of state-of-the-art sensornet
communication protocols to Wi-Fi networks. Hence, the TinyWifi platform support
should be available to researchers for allowing evaluation of sensornet protocols in
meshnets in the future. TinyWifi integrates seamlessly into the existing TinyOS
source code, allowing to compile applications for motes as usual while having Linux
platform support at the same time.

On that account, we intend to contribute TinyWifi to the official TinyOS repository
as soon as TinyWifi proved itself to be reliable in use for our own evaluations.

Bibliography

[1] Alizai, M. H., Landsiedel, O., Bitsch Link, J. A., Goetz, S., and
Wehrle, K. Bursty Traffic over Bursty Links. In SenSys’09 (November 2009).

[2] Chen, L., Chen, Z., and Tu, S. A Realtime Dynamic Traffic Control
System Based on Wireless Sensor Network. In ICPPW’05: Proceedings of the
2005 International Conference on Parallel Processing Workshops (Washington,
DC, USA, 2005), IEEE Computer Society, pp. 258–264.

[3] Fonseca, R., Gnawali, O., Jamieson, K., and Levis, P. Four-Bit Wire-
less Link Estimation. In HotNets (November 2007).

[4] Fonseca, R., Ratnasamy, S., Zhao, J., Ee, C. T., Culler, D.,
Shenker, S., and Stoica, I. Beacon Vector Routing: Scalable Point-to-
Point Routing in Wireless Sensornets. In NSDI (April 2005).

[5] Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., and
Culler, D. The nesC language: A holistic approach to networked embedded
systems. In ACM SIGPLAN PLDI (June 2003).

[6] Langendoen, K., Baggio, A., and Visser, O. Murphy Loves Potatoes:
Experiences from a Pilot Sensor Network Deployment in Precision Agriculture.
In Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th
International (April 2006), p. 8 pp.

[7] Levis, P., Madden, S., Gay, D., Polastre, J., Szewczyk, R., Woo,
A., Brewer, E., and Culler, D. The emergence of networking abstractions
and techniques in TinyOS. In NSDI’04: Proceedings of the 1st conference on
Symposium on Networked Systems Design and Implementation (March 2004).

[8] Mao, Y., Wang, F., Qiu, L., Lam, S. S., and Smith, J. M. S4: Small
State and Small Stretch Routing Protocol for Large Wireless Sensor Networks.
In NSDI (April 2007).

[9] MEMSIC Inc. Mica2, Mica2Dot, MicaZ, Telos, IRIS, Imote2 and Cricket
Mote Datasheets available online in pdf format. http://www.memsic.com/

products/wireless-sensor-networks/wireless-modules.html.

[10] MEMSIC Inc. Mica2Dot Datasheet, Document Part Number: 6020-0043-
06 Rev A. http://www.memsic.com/products/wireless-sensor-networks/
wireless-modules.html.

http://www.memsic.com/products/wireless-sensor-networks/wireless-modules.html
http://www.memsic.com/products/wireless-sensor-networks/wireless-modules.html
http://www.memsic.com/products/wireless-sensor-networks/wireless-modules.html
http://www.memsic.com/products/wireless-sensor-networks/wireless-modules.html

42 Bibliography

[11] TinyOS Online Documentation. TinyOS Extension Proposals (TEPs).
http://www.tinyos.net/tinyos-2.x/doc/.

[12] TinyOS Online Homepage. Mission Statement. http://www.tinyos.net/
special/mission.

[13] Newsome, J., and Song, D. GEM: Graph EMbedding for routing and data-
centric storage in sensor networks without geographic information. In SenSys’03
(November 2003).

[14] Perkins, C. E., Royer, E. M., and Das, S. R. Ad hoc On-Demand Dis-
tance Vector (AODV) Routing. In 2nd IEEE Workshop on Mobile Computing
Systems and Applications (February 1999).

[15] Polastre, J., Hill, J., and Culler, D. Versatile low power media access
for wireless sensor networks. In SenSys’04 (November 2004).

[16] Polastre, J., Szewczyk, R., and Culler, D. Telos: Enabling Ultra-Low
Power Wireless Research. In IPSN (April 2005).

[17] Singhvi, V., Krause, A., Guestrin, C., Garrett, Jr., J. H., and
Matthews, H. S. Intelligent light control using sensor networks. In SenSys
’05: Proceedings of the 3rd international conference on Embedded networked
sensor systems (New York, NY, USA, 2005), ACM, pp. 218–229.

[18] Szewczyk, R., Polastre, J., Mainwaring, A. M., and Culler, D. E.
Lessons from a Sensor Network Expedition. In EWSN (2004), pp. 307–322.

[19] Werner-Allen, G., Lorincz, K., Welsh, M., Marcillo, O., Johnson,
J., Ruiz, M., and Lees, J. Deploying a Wireless Sensor Network on an Active
Volcano. IEEE Internet Computing 10 (2006), 18–25.

http://www.tinyos.net/tinyos-2.x/doc/
http://www.tinyos.net/special/mission
http://www.tinyos.net/special/mission

List of Figures

2.1 Sensor Node Hardware . 5

2.2 Functioning of the Serial Forwarder in Sensornets 6

2.3 TinyOS Hardware Abstraction Architecture 10

3.1 Layered TinyOS and TinyWifi Architecture 15

3.2 Timing Sources for Motes and TinyWifi 16

3.3 Split-Phase Operations when using TinyWifi 17

3.4 Message Propagation in Sensornets 18

4.1 Example Wirings of Timing Components 24

5.1 Evaluation in the UMIC Meshnet Testbed 36

5.2 TinyOS’s MultihopOscilloscope Host Application Output 37

44 List of Figures

A
TinyWifi Source Code Compact Disc

Author:
Bernhard Kirchen

Advisors:
Hamad Alizai M.Sc.
Prof. Klaus Wehrle

TinyWifi
Linux Platform Support

for TinyOS

October 2010

	Contents
	1 Introduction
	2 Background and Related Work
	2.1 Wireless Sensor Network Devices
	2.1.1 Use Cases
	2.1.2 Basic Mote Hardware
	2.1.3 Mote Communication

	2.2 Sensornets versus Wireless Mesh Networks
	2.3 The TinyOS Open-Source Operating System
	2.3.1 Driving Features of TinyOS
	2.3.2 Components and Interfaces
	2.3.3 TinyOS Hardware Abstraction Architecture

	2.4 Network Communication and Timing in Linux
	2.4.1 Sockets in Linux
	2.4.2 Timing for Linux Processes

	3 Design
	3.1 Hard and Soft Requirements
	3.2 TinyWifi Architecture
	3.3 Counters, Alarms and Timers
	3.4 Split-Phase Operations
	3.5 Radio Communication
	3.6 Serial Communication
	3.7 Sensors

	4 Implementation
	4.1 Build System
	4.2 TinyOS Outputs and Local Messages
	4.2.1 Virtual LEDs
	4.2.2 Error Handling

	4.3 Counters, Alarms and Timers
	4.4 Split-Phase Operations
	4.4.1 Split-Phase Operations Using Threads
	4.4.2 Impact of Threads on TinyOS Scheduler

	4.5 Radio Communication
	4.5.1 Communication Setup
	4.5.2 Receiving Radio Messages
	4.5.3 Sending Radio Messages

	4.6 Serial Communication
	4.7 Sensors

	5 Evaluation
	5.1 Proof of Concept and Portability
	5.2 Timing and Sensing
	5.3 Serial Communication
	5.4 Wireless Communication
	5.5 Multihop Communication

	6 Conclusion
	6.1 Future Work

	Bibliography
	List of Figures
	A TinyWifi Source Code Compact Disc

