Artifact
Evaluated

ANDss

Available

Detecting Ransomware Despite I/O Overhead: g
A Practical Multi-Staged Approach

Reproduced

Christian van Sloun*2< Vincent Woeste*, Konrad Wolsing*7T, Jan Pennekamp®, and Klaus Wehrle*
* Communication and Distributed Systems, RWTH Aachen University * {lastname } @comsys.rwth-aachen.de
T Cyber Analysis & Defense, Fraunhofer FKIE * {firstname.lastname } @fkie.fraunhofer.de

Abstract—Ransomware attacks have become one of the most
widely feared cyber attacks for businesses and home users. Since
attacks are evolving and use advanced phishing campaigns and
zero-day exploits, everyone is at risk, ranging from novice users
to experts. As a result, much research has focused on preventing
and detecting ransomware attacks, with real-time monitoring of
I/O activity being the most prominent approach for detection.
These approaches have in common that they inject code into
the execution of the operating system’s I/O stack, a more and
more optimized system. However, they seemingly do not consider
the impact the integration of such mechanisms would have on
system performance or only consider slow storage mediums,
such as rotational hard disk drives. This paper analyzes the
impact of monitoring different features of relevant I/O operations
for Windows and Linux. We find that even simple features,
such as the entropy of a buffer, can increase execution time
by 350% and reduce SSD performance by up to 75%. To
combat this degradation, we propose adjusting the number of
monitored features based on a process’s behavior in real-time.
To this end, we design and implement a multi-staged IDS that
can adjust overhead by moving a process between stages that
monitor different numbers of features. By moving seemingly
benign processes to stages with fewer features and less overhead
while moving suspicious processes to stages with more features
to confirm the suspicion, the average time a system requires to
perform I/O operations can be reduced drastically. We evaluate
the effectiveness of our design by combining actual I/O behavior
from a public dataset with the measurements we gathered for
each I/0 operation and found that a multi-staged design can
reduce the overhead to I/0O operations by an order of magnitude
while maintaining similar detection accuracy of traditional single-
staged approaches. As a result, real-time behavior monitoring
for ransomware detection becomes feasible despite its inherent
overhead impacts.

I. INTRODUCTION

Ransomware attacks are currently one of the most prevalent
cyber attacks [14], affecting servers, personal computers,
laptops, mobile phones, and Internet of Things (IoT) devices [5]].
Consequently, several techniques [5]], [[13]], [23] have been
proposed to deal with ransomware attacks [5]], classified
into three phases: prevention, detection, and response. In
research, there is a heavy focus on host-based solutions [3],
[8] since ransomware activity primarily occurs on the end
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host, and many strains exhibit limited network activity [23]],
e.g., just brief interactions with a command and control server
to obtain asymmetric encryption keys. Thus, network-based
approaches typically focus on preventing damage in the first
place by blocking this setup communication and preventing
further spreading [23]]. Response strategies, e.g., storage-based
solutions such as protection offered by cloud providers [30]
or the use of additional storage space, transparently back up
files and revert the damage done by ransomware [9], [[13], [39].
However, cloud storage creates network overhead, and space is
often severely limited, with additional storage space requiring
recurring payments, and adding additional local storage may
not be possible, e.g., for IoT devices or laptops.

Another defense tactic and key to this paper is dynamic
system behavioral analysis, which presents a detection approach
to ongoing attacks. Ransomware targets to quickly access and
modify many files because the risk that a user will try to open an
encrypted file, thus uncovering the ransomware, increases with
time and the number of affected files. As a result, ransomware
exhibits peculiar behavior when interacting with the file system,
which prompted many state-of-the-art detection mechanisms
to exploit these patterns for ransomware detection by actively
monitoring I/O activity for traces of malicious behavior [J3],
[71, [13], [24]]. Consequently, these I/O operations must be
intercepted and/or modified on the end host to collect statistical
information, such as the file type accessed.

Important to consider is, that for dynamic behavioral analysis,
the detection mechanism needs to monitor relevant activity at
the kernel level, which cannot be offloaded to the network
as done in many other security areas, e.g., Wazuh [41]], since
the information needs to be collected locally in the kernel
itself. While some features, e.g., the number of files that are
created, are relatively inexpensive and only cause minimal
delays, more complex operations, such as calculating a file’s
entropy [27] or creating backups of a file [13]], incur much
higher delays. Similar to [36], we found that monitoring file I/O
via a Windows File System Filter Driver (minifilter) or eBPF
under Linux on systems equipped with a SATA solid-state drive
(SSD) introduces an overhead of up to 25% (35%) (cf. Sec.[III)
and the peak performance of the SSD can be reduced to = 25%
of its original performance (according to CrystalDiskMark
8.0.5). Consequently, features need to be monitored sparingly
to maintain the usability of modern hardware.

To the best of our knowledge, related work focused more
on detection performance and storage overhead than on



realistic practicality. Ahmed et al. 3] investigated CPU and
memory overhead but did not consider I/O performance. While
Continella e al. [13]] investigated the I/O overhead of ShieldFS
and acknowledged overheads of 25% or more, they considered
it no noticeable impact in real-world scenarios. We attribute
this to the fact that Continella er al.’s setup consisted of
rotational hard disk drives (HDDs), for which the Input/output
operations per second (IOPS) performance typically falls below
100 IOPS. A fixed overhead caused by the detection mechanism
can significantly impact real-world performance, especially
for modern SSDs (1,500,000 I0PS [35])) and I/O-intensive
applications. As a result, we question the typical assumption
by related work, which is whether dynamic behavioral analysis
for ransomware detection is still usable in modern computing
scenarios and how to minimize performance degradation.

To study this question, we develop and evaluate various
strategies for dynamic monitoring under the two most common
Operating Systems (OSs), Linux and Windows, to analyze
the I/O performance impact of real-world monitoring of
features. Specifically, we investigate the impact of features
like the entropy calculation for read/write calls and discuss
its implications for the usability of existing ransomware
detection approaches. Our results show that depending on
the complexity of the monitored information, the execution
time can be increased by up to 350%, which renders naive
dynamic monitoring unfeasible for practical use.

However, we also discovered that basic features can be
monitored with minimal overhead. Leveraging those, we
propose a Multi-Staged Intrusion Detection System (IDS)
(MS-IDS) to dynamically adjust the number of features
monitored for each process to minimize the performance impact
dynamic behavioral monitoring has on benign processes while
maintaining comparable detection performance to traditional
approaches that continuously monitor all features. Our MS-IDS
uses Random Forest Classifiers (RFs) for each stage, which
are optimized for different subsets of features to incur minimal
overhead for each stage’s considered set of features. To evaluate
the effectiveness of the designed MS-IDS, we use a publicly
available dataset [13]. Using an MS-IDS, we decreased the
incurred I/O latency overhead for benign processes from
180.76 + 102.86% to below 18.56 + 54.5%, which allows us
to protect modern systems with negligent impact on practical
ransomware detection.

In this paper, we make the following main contributions:

e We, to the best of our knowledge, provide the first
overview of I/O performance considerations in state-of-
the-art approaches (Sec.[Il).

« We identify performance limitations of behavioral moni-
toring on modern systems that require fast I/O (Sec.[ITI).
Thus, while offering good resilience against ransomware,
security gains of existing state-of-the-art approaches may
be disregarded from an end-user perspective due to their
impact on I/O heavy workloads, especially with consumer
devices featuring SSDs.

e We design and implement an MS-IDS that dynamically
and individually adjusts the number of monitored features

based on the behavior exhibited by each process (Sec.[[V)
and show that such an MS-IDS can reduce I/O overhead
significantly while still achieving its goal of detecting
malicious activity (Sec.[V), demonstrating the feasibility
of real-time behavior monitoring on modern systems.

Our artifacts were evaluated as available, functional, and
reproducible by the artifact evaluation; please refer to Sec.[A]
for further details on obtaining and using the artifacts.

II. BACKGROUND AND RELATED WORK

Cryptographic ransomware is a category of malware that
encrypts files on an infected host while withholding the used
encryption key and promising to provide it against a ransom
payment [13]]. An attacker exploits the fact that the affected
user may not possess data backups, thus risking losing valuable
files or starting laborious recovery measures due to inaccessible
vital files. While static and dynamic analysis is usable, recent
research has primarily focused on dynamic approaches due
to the ability to evade static approaches by creating new
ransomware samples and/or modifying and obfuscating existing
ones [2], [32]. Therefore, dynamic analysis of ransomware has
become widely used, with the analysis of I/O activity being
the most prevalent technique (cf. Tab.[[) due to the inherent
property of ransomware to modify the victim’s file system.

A. I/O-based Ransomware Detection

Ransomware detection techniques that use I/O behavior to
identify malicious interactions with the file system typically
consider the following I/O characteristics [8]], [43]]: 1) Read-
s/Writes of files: As ransomware tries to quickly encrypt a
large number of files relevant to the user, a large number of
read/write operations are performed, 2) entropy: encrypted
data typically has a high entropy as bytes follow a random
distribution as a result of the encryption process, 3) file type
coverage: ransomware typically targets a specific set of file
types (relevant to the victim) and accesses a large number of
these files in a short amount of time, 4) directory listings: to find
the files that are to be encrypted, ransomware needs to traverse
a large number of directories and analyze its contents, 5-7) file
system changes (create/rename/delete): as file size may change
after encryption, e.g., due to adding padding or the addition of
ransomware-specific meta information, encryption often cannot
be performed in place. As a result, additional operations to
create temporary files, delete the original, or rename a new file
to the name of the original occur for each file processed by
the ransomware. Since state-of-the-art approaches report near-
perfect accuracy [43], and ransomware cannot change its need
to access mass storage due to its inherent nature, dynamic
behavior monitoring using file I/0O-based characteristics is
a promising approach to reduce the danger of ransomware.
However, intercepting and recording features for every I/O
operation is computationally expensive and adversely affects
system performance.



TABLE I: State-of-the-art ransomware detection approaches that utilize I/O behavior monitoring. Many do not consider I/O
performance or evaluate it against traditional HDDs. Entropy, accessed file types, and I/O access patterns/frequencies are

common features most detectors use.

1/0 Disk Features
Paper Year | ML-based | Performance T Entr File Directory File 1/O Frequency/
Evaluation ype opy Types  Traversal Similarity 1/O Pattern

Continella et al. [[13] 2016 v v HDD v v v X v
Kharraz et al. [24] 2016 ? X v X X X v
Scaife et al. [37] 2016 X v v v v X v
Kharraz and Kirda [25] 2017 v v ? v v v X v
Palisse et al. [34] 2017 X v HDD v X X X X
Mehnaz et al. [29] 2018 v ? v v X v X
Shaukat and Ribeiro [38] 2018 v X v X v v v
Chew and Kumar [|12] 2019 X X v v X X X
Hirano and Kobayashi [16] 2019 v W) VMssp v X X X X

Lee et al. [27) 2019 v X v X X X X
Ayub et al. [7] 2020 v X v v v X W)
Jethva et al. [23] 2020 v X v X X v X
Ahmed et al. (3| 2021 v X X X X X v
Sanvito et al. [36] 2022 X ~ SSD v v v X v
Ayub et al. 8] 2023 v X X v X X X

v annotates Yes, (v') annotates Yes (but indirectly), x annotates No, ~ annotates partially considered, and ? annotates Uncertain
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Fig. 1: Overview of I/O stacks under Linux/Windows.

B. File I/O in modern OSs

Before looking at related research w.r.t. to the I/O perfor-
mance of security mechanisms, we first provide a brief and
simplified overview of how Windows and Linux handle file I/O.
Both OSs use a set of abstraction layers between the physical
hardware, i.e., the HDD or SSD, and the user-space application
that initiates an I/O operation (cf. Fig.[T).

Windows: On Windows [20], [22], when the application
issues a file operation to the kernel, the I/O Manager receives
that request, looks up the requested file, checks access rights,
and, if the volume is not mounted, suspends the request until
the volume is available. Next, the I/O Manager creates an 1/O
request packet (IRP) and forwards it to the File System Driver.
The driver then determines what operations need to be carried

out, checks if the file is available in the system’s cache, and, if
not, forwards the request to the appropriate device driver for the
target volume. Once the IRP is completed, the request’s result is
returned to the I/O Manager. On Windows, a file operation such
as read/write may require several IRPs to complete the function
in user space, e.g., every read/write requires a handle to open the
file and perform the requested operations before finally closing
the handle. As not all of these operations can be performed
in parallel, several interactions between the I/O Manager and
the device driver of the volume may be required. In addition
to the presented I/O stack, Windows has the concept of File
System Filter Drivers, short minifilters, which can perform
additional operations on IRPs. As a result, once a minifilter
is registered, every IRP needs to be processed by the Filter
Manager, which executes the relevant minifilters for the given
IRP. Since Microsoft has registered several minifilters [17]],
one could hypothesize that such filters may process many IRPs.
Thus, most IRPs are already processed by the Filter Manager,
and minifilters have become the primary method to add I/O
functionality to Windows [8]], [13]], [20]. In addition to the
IRP-based I/O method, there is Fastl/O [19], an optimized I/O
path to access cached files, and Bypassl/O [18]], which allows
even faster storage access, optimized explicitly for NVMEs
and targets applications utilizing DirectStorage. Regardless of
the I/O used, minifilters are generally supported.

Linux: On Linux [42]], when an application invokes an I/O
operation, the Virtual File System (VFS) checks whether the
data is already present in the system cache (read) or if the
cache can buffer the data (write). If the VFS determines that
the hardware needs to be accessed, it initiates the descending
I/O path for the request and hands it to the Block I/O Layer,
which performs I/O scheduling and request merging. As a
result, the I/O path may be temporarily suspended (plugging)
in the request queue until sufficient requests are accumulated
or a timeout occurs. Once the request queue is unplugged,



the requests are dispatched to the relevant device driver and
executed by the storage medium. Once the storage medium
finishes the request, an interrupt handles vital tasks before
deferring the remaining work to a SoftIRQ that the Block I/O
Layer handles. The Block Layer then wakes the user process
that initiated the I/O request, which copies the requested data
from the kernel to the application and finishes the I/O request.

Regardless of whether one uses a minifilter or eBPF, it is
clear that adding code to the execution directly impacts the
time an I/O operation needs to be completed.

C. Performance Overhead of Security Mechanisms

The advance of storage mediums, specifically the transition
to use faster and faster SSDs, has prompted OS developers to
optimize the I/O stack as much as possible [18]], [19], [42].
At the same time, technologies like eBPF, or minifilters, allow
security researchers to easily add additional functionality to
the I/0, which is demonstrated by the fact that minifilters
appear to be the preferred way by developers and researchers
alike 8], [[13], [20], [24], [43]. As a result, adding functionality
via such filters may increase the execution time of I/O paths,
thus significantly impacting system performance. Thus, if IDSs
utilize such functionality, minimizing the overhead added to
the I/O stack is vital to forestall the IDS thwarting the whole
system’s performance.

The vast majority of research on using IDS on end hosts
has focused on the IDS’s detection performance and is mainly
evaluated on prerecorded datasets (cf. Tab.m); thus, real-time
monitoring and feature processing is not a concern for them.
A performance aspect often considered is the requirement
for computational resources in Machine-Learning (ML)-based
IDS since the resource consumption for training/testing is
often a significant concern [31], as deep-learning models
often require a large amount of memory and GPU computing
power [6]. Nevertheless, some research specifically looked at
the performance impact of security mechanisms on end hosts:

An area where computational resources are a more prominent
concern is IDSs, specifically targeted at IoT deployments.
However, as shown by Mudgerikar et al. [33]], who use strace
to monitor system call behavior, it takes two context switches
for each intercepted system call, causing significant overhead
and slowing benign applications down significantly.

Another area that emphasizes the performance impact of
security mechanisms on end hosts is the Anti-Virus software
(AV) sector. Even though AV vendors invest considerable effort
to minimize the performance impact for end users, real-time
monitoring still significantly impacts system performance, with
applications requiring more than 2x the number of CPU ticks
to perform the same tasks due to the monitoring overhead
induced by injected libraries [[10].

Continella et al. [[13]] investigated the overhead of their
ShieldFS filesystem. While their measurements found that their
implementation could cause overheads up to 3.8, the average
perceived overhead on five machines of real users was only
0.26x while not being noticeable. This could be explained by
using rotational hard disk drives in the machines on which the

evaluation was performed. As a result, they did not perform a
root-cause analysis to identify the cause for the overhead, nor
did they see the need for improvements.

Anecdotal evidence by Sanvito er al. [36] indicates that
monitoring may cause significant slowdowns to systems with
modern hardware. They found that enabling eBPF monitoring
of I/O-related calls can cause significant degradation of I/O
performance and even hypothesize that reducing the number
of monitored features in a multi-staged architecture could
solve this problem. However, the authors did not analyze what
features would be considered expensive to monitor, nor did
they implement their system; instead, they only evaluated the
detection performance based on a dataset. Thus, no assertions
w.r.t. to performance improvements can be made. Additionally,
their approach proposed to start monitoring new processes
with minimal features and did not state which features were
explicitly considered. We see several problems with this
approach: 1) their implementation assumes the identification of
“ticks” (similar to [[13]]), where a tick is triggered every time a
process interacts with a predefined number of files. However,
if the number of monitored features is minimized, many calls
will not be captured; thus, the ticks cannot be calculated in
practice; 2) it is unclear what performance improvements could
be gained by dynamically adjusting the number of features
that are monitored; 3) the authors did not consider how the
adjustment of monitored features would be handled in practice,
nor did they investigate the effects between how the number
of monitored features is changed and its implication on the
detection of ransomware and the potential for false positives.

Summarising the above, we conclude that promising state-
of-the-art security mechanisms, while providing excellent
protection against ransomware, often affect heavily optimized
OS mechanisms. At the same time, the effect on a system’s
performance has not seen widespread attention, leading to
several proposed state-of-the-art mechanisms that can only be
considered infeasible to deploy in modern systems, leaving
potential victims without essential protection mechanisms.

For some users, this overhead may be mostly negligible, e.g.,
office workers who mainly handle email and text documents
where I/O activity is low and infrequent. Still, they are also
affected during resource-intensive background tasks such as
system/software updates and restarting of applications or the
OS. Other users are more significantly affected, e.g., users
doing video editing, i.e., copying significant amounts of files
to and from their machines and executing encoding tasks. They
would see significant slowdowns in their workflow due to their
reliance on fast I/O. Similarly affected are gamers, as textures
must be loaded, which mainly depends on I/O speed, or users
with limited RAM who regularly rely on fast swap.

Research does not appear to be actively tackling the
performance issue and analyzing the trade-off between the
security gains and the induced overhead. Thus, an analysis
of the effect of different features, monitored by the kernel, is
required to identify starting points for optimization.
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Fig. 2: Monitoring overhead for different system calls on Windows 11. The plots show the distribution of the 10% trimmed
execution times across 250 x 10,000 individual measurements for each call and monitoring configuration. The horizontal line
denotes the value of the trimmed mean. Monitoring of features quickly becomes computationally expensive, with the calculation

of entropy values impacting execution times the most.

III. INITIAL MEASUREMENTS

Sec.[l] shows that modifications to the highly optimized I/O
stacks of modern OSs, as done by many security mechanisms,
could significantly impact the overall system’s performance
and might significantly hinder deploying real-time monitoring
of system behavior in real-world settings but has not seen
significant attention by researchers in the IDS community. To
identify where I/O is most heavily impacted, we analyzed
the overhead incurred by intercepting the relevant system
calls to monitor file I/O of software (c¢f Fig.[Z). We use an
eBPF extension (Linux) and a minifilter driver (Windows), as
both are highly optimized mechanisms designed to handle this
functionality. We considered multiple levels of monitoring for
each call:

Baseline: The kernel is unmodified, i.e., kernel functions
proceed unaltered to perform the disk I/O. Thus, no
overhead exists.

Monitoring OFF: The driver is added to the kernel, but the
PID is not included in the hash table. Thus, the execution
of the kernel function resumes immediately. This variant
shows the best possible performance for each call if it
should be possible to monitor the call at all, i.e., omitting
the hash-table lookup would result in a call being unable
to be monitored.

Monitored: The PID is included in the hash table, and the call
is reported to the monitoring application. The reported
information includes basic call parameters such as the
calling process’s PID and parameters provided to the
intercepted function.

Monitored+: Includes the basic features of Monitored but
also additional features that require additional calls to the
kernel, e.g., resolving the filename of the accessed file.

Entropy: Identical to Monitored+, but for READ and WRITE,
the entropy of the read/written data is calculated, which
is an essential feature as encrypted files typically have a
higher entropy than regular files.

The measurements of I/O execution time were performed
under Windows 11 (22621.3447) on a machine with an
i7-4770 CPU@3.40GHz, 16GB RAM, and a 500GB SATA

TABLE II: Distribution of I/O operations across ShieldFS.

Call TYPe PIDbenign PIDransomware Overall
READ 49.31% 8.99% 23.65%
WRITE 33.17% 67.42% 54.97%
LISTING 12.37% 18.97% 16.57%
CREATE 2.24% 2.13% 2.17%
DELETE 1.56% 0.01% 0.57%
RENAME 1.35% 2.48% 2.07%
Fcalls 117,785,809 206,314,252 324,100,061

SSD. Similarly, Linux measurements were performed on
an identical machine using Debian 11. We measured each
level for each I/O operation 2,500,000 times. We spread the
measurements over several days and different times to minimize
the influence of background activity, e.g., Windows performing
updates or other OS maintenance tasks. Finally, we discarded
the lower/upper 10% of data points to remove outliers due
to unusually high/low response times by the SSD and get a
clearer picture of real-world performance.

Our measurements (c¢f Fig.[Z) show that processing and
reporting a call introduces a significant overhead to all call types
that increases with the complexity of the gathered information,
while the overhead introduced by installing the kernel extension
but not recording a specific call is negligible. For eBPF, note
that eBPF programs are limited in length/complexity. Thus,
the entropy cannot be computed over the whole buffer, only
the first 4096 B, to adhere to the limitations set by the verifier.
Nevertheless, our analysis under Linux using eBPF shows
similar monitoring overhead with up to 46.1%, which would
increase for more complex operations once verifier limitations
are relaxed further.

Another important factor in monitoring overhead is the
frequency of the calls for which overhead is introduced. For
example, READ operations account for nearly half of all
operations performed by benign processes on the observed
machines in the publicly available ShieldFS dataset [[13] (cf:
Tab.[TI). In contrast, they only account for 9% of calls performed
by the ransomware samples. Comparatively, CREATE operations
constitute 2% of calls overall.



To better assess the real-world impact on SSD performance,
we also tested the effects of monitoring in Entropy mode using
CrystalDiskMark 8.0.5 [|[1], a popular open-source benchmark-
ing tool to measure peak and real-world performance of SSDs.
Regardless of real-world or peak-performance tests, the read-
/write performance dropped from ~=530MB/s to ~130 MB/s.
The performance can be recovered by enabling multiple threads
per I/O queue and writing larger blocks of data (>512 KiB).
As multiple threads generate I/O requests in parallel, even
if each request takes longer to generate, once I/O requests
reach the queue of the File System Driver, the SSD begins to
read/write and does not starve. However, while such settings
can be configured in a synthetic benchmark, they do not reflect
the implementation of real-world applications. Furthermore,
we saw that for smaller block sizes (4 KiB), the number of
threads per queue would need to be increased even more,
potentially exceeding the number of processing cores of a
CPU. We expect even more severe performance degradation
for the latest PCle Gen5 SSDs with data rates above 10 GB/s
and IOPS performance above 1 million.

Overall, we see widespread monitoring causing significant
delays to syscalls, affecting the performance of modern high-
performance storage mediums. At the same time, if fewer
features are monitored (Monitoring OFF or Monitored),
the overhead in execution time of an I/O request could
be drastically reduced. The significant focus on detection
performance by related work and the limitations of existing
measurements regarding I/O performance open a research gap.
Thus, we investigate the effect of the real-time adjustment of
the monitored features for each I/O operation w.r.t. overhead
and ransomware detection, as this could result in drastic
performance improvements, allowing for improved ransomware
detection approaches.

IV. DESIGN

To tackle the issue of the I/O overhead of existing ran-
somware detection approaches caused by monitoring [/O
characteristics at runtime, we design a novel MS-IDS that
dynamically adjusts monitored features for each process to
minimize computational overhead while maintaining high
detection accuracy. It fills the previously outlined research
gap (c¢f Sec.l) and follows the general hypothesis that
attacks with previously unknown malware are rare compared
to the number of benign processes. Thus, while overhead is
acceptable for malicious processes, most processes are benign,
and the influence of every security mechanism on regular
operation should be minimized. However, since no signatures
can be created for unknown attacks [40]], signature-based
detection cannot be applied universally, and anomaly detection
is needed [40]. Therefore, every running process is a potential
candidate for malicious behavior, even though most do not
exhibit any. Thus, they may not require extensive monitoring but
cannot be excluded from monitoring, as vulnerabilities in the
software may compromise the process at runtime. Consequently,
behavior monitoring results in an inevitable overhead to the
runtime of all processes, thus slowing the overall system
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Fig. 3: Design of the MS-IDS. If calls for a given PID are
intercepted, relevant features are extracted and forwarded to
the MS-IDS while the execution of the PID continues.

significantly. Furthermore, there is a conflict between overhead
and the desire to monitor features such as entropy to detect
ransomware, as while it is a vital feature to identify ransomware
(c¢f- Sec.[M), it also creates significant overhead (cf. Sec.[II).

Our MS-IDS minimizes this overhead by dynamically sorting
processes into different levels of suspicion, i.e., stages, where
more suspicious processes are moved into higher stages with
increased monitoring; thus, also increased overhead. In higher
stages, the MS-IDS leverages more features to determine
if the process is malicious or benign software that just
momentarily exhibited abnormal behavior. At the same time,
such a design can only function if these lower stages are
sufficiently distrustful, i.e., move processes to higher stages
even for slight anomalies, as malicious processes may try
to evade the MS-IDS by flying under the radar of a stage’s
detection threshold.

As a threat model, we use the same model as in [25], [29],
and [43]], i.e., we focus on the execution phase of ransomware
and assume a generally trusted operating system with pre-
installed detection tools. An attacker has already gained access
to a system and can access files like any other user-level
program. However, he cannot interfere with the kernel driver
used for monitoring or the classification itself.

In the following, we first provide more detailed insights into
our design (Sec.[IV-A) before discussing (Sec.[[V-C) how the
design is realized, how the classification in each stage works
(Sec.[IV-B), and what design decisions were made based on
our measurements in Sec.[[I

A. Design Overview

At the center of our prototype are two components: an OS-
specific monitoring framework and the detection engine in the
form of an MS-IDS (cf. Fig.[3):

Monitoring in Kernel: The OS-specific kernel extension
monitors a process by intercepting all kernel functions required
to extract the necessary features for the process’s current
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Fig. 4: Stage classification process.

stage, e.g., syscalls or file I/O. Kernel functions currently not
monitored for a process are continued, thus minimizing the
introduced computational overhead. To monitor which calls
need to be intercepted for each process, our MS-IDS uses a

hash table that maps the process’s PID to its current stage.

If a kernel function is monitored, the relevant information is
gathered and sent to the detection engine before the execution is
returned to the regular operation of the function. An important
aspect is deciding which calls are being monitored at which
stage, which we analyze in detail in Sec.[[V-C|
Multi-Staged IDS: The other component of our MS-IDS
is the detection engine, which runs in a separate process
to decouple the processing and classification of gathered

information from the interception of the kernel function.

The advantage of this is two-fold: first, the delay to kernel
functions is minimized. Second, it allows the MS-IDS to scale
by adjusting how often a process is classified and creating
additional instances of the detection engine to handle many
processes. For classification, we decided to use RFs as they are
robust and scalable and provide the feature importance of each
feature [11]], which is essential when deciding which feature
to put into which stage. Furthermore, using RFs has proven
effective in detecting ransomware activity [[13]] based on I/O
characteristics.

B. Classification Procedure

The MS-IDS monitors each process and individually decides
if it should be moved to a higher/lower stage. While a
process resides in a stage, all monitored events are passed
to a process-specific buffer and classified with the stage’s
RF. The detection engine models the process’s behavior by
generating a classification window (w,,) every 20 preprocessed
calls. Each window consists of the behavior across the last
second of the process’s execution for which relevant features
are extracted, and finally, the window is classified. To allow for
sufficient data for classification in a stage, the model requires
m > Mmin classification windows to be present, where M5,
denotes the minimum number of windows and m the currently
available number (cf. Fig.[). As each classified window has a
certain probability of being malicious, c,, denotes the average

probability that the current sequence of m windows is malicious.

If ¢, exceeds one of the stage’s thresholds 7, it is moved to
another stage, i.e., if ¢, > 7y, the process is moved to the
next higher stage, while it is moved to the next lower stage
if ¢y < Tgown- Once a process is in the last stage but still
classified as malicious, an alarm is raised, and appropriate
measures can be taken, e.g., terminating the offending process
to minimize damage to the system. Otherwise, if the stage
changes, the change is communicated to the kernel module

by updating the process’s stage allocation in the hash table.
If a process is supposed to be moved to a lower stage even
though it is already in the lowest stage, the stage resets, i.e.,
classification proceeds as if it has just entered the stage.

One crucial aspect is the classification right after a process
moves to a different stage. If a process moves to a lower
stage, i.e., a stage with fewer monitored features, all relevant
information of the previous second of the process’s execution
is already present. Thus, classification can proceed unaltered.
However, if the process moves to a stage with more features,
all monitored calls of the last second do not contain any
information on previously unmonitored features. Therefore,
we calculate these features only across those calls that include
the new information and classify the process according to the
outlined procedure.

Besides how a process is classified in a stage, another
characteristic of an MS-IDS is how stages are interconnected
and which features should be included in each stage.

C. Realization & Design Decisions

Like previous work [3]], [13[], [24], [26], we consider all
I/O actions that READ, WRITE, CREATE, DELETE, or RENAME
files or list the contents of directories (LISTING) of particular
importance for the detection of ransomware activity. To lay
the necessary foundations to realize the MS-IDS, i.e., decide
which features to monitor in which stage, we utilize the results
of our in-depth analysis of the monitoring overhead that is
caused by intercepting relevant system calls (cf. Sec.|[lII)) and
the feature’s feature importance in a model that contains all
features. A crucial design aspect of an MS-IDS is the design of
each stage, i.e., what is monitored and the transitions between
stages. Overall, the detection performance of the IDS should
remain comparable to that of traditional approaches that monitor
everything simultaneously.

During the realization of our MS-IDS, we investigate three
criteria that influence the overall performance of an MS-IDS:

Classification Performance: One crucial difference of
MS-IDS is that traditional IDSs try to balance precision and
recall while raising as few false positives as possible and
detecting all attacks. An MS-IDS can individually adjust the
balance between precision and recall in each stage, as a false
positive in an early stage does not directly result in an alarm,
which a human operator would need to investigate. Instead, a
process is moved to a stage with increased monitoring, while
the performance of the process is merely penalized due to the
increased monitoring overhead. As a result, a trade-off between
precision in low stages and monitoring overhead is created.
When looking at recall, it must be considered that lower stages
sacrifice features for performance gain. Thus, even though
higher stages could detect ransomware accurately if a lower
stage falsely classifies an attack as benign, the process may
never reach a stage where the malicious behavior is detected,
or the process is only moved at a later point in time, which
may cause more harm to the system.

Stage Overhead and Classification Frequency: Another
aspect that needs to be considered when designing the stages



for an MS-IDS is the overhead introduced by each stage
and how the MS-IDS decides when to classify a process. As
the underlying idea of our approach is to reduce the set of
monitored features, it means that if a call is not monitored for
performance reasons, the MS-IDS cannot know about the file
I/O that was performed. Not only is the information contained in
the ignored call lost, but the fact that the call took place cannot
be used to decide when to query the MS-IDS. Consequently,
a tick-based approach, as presented by Continella ez al. [13]
or Sanvito efr al. [36], cannot be adopted unaltered as our
measurements (cf. Fig.[J) show that even monitoring basic
information, i.e., that a call has happened at all, already causes
significant overhead. Similarly, a purely time-based approach
would introduce overhead as it requires additional processing
during scheduling if monitored per process. Furthermore, such
an approach would not consider the I/O activity of the process,
i.e., it would require classifications for processes that do not
perform any I/O while also waiting for the next “tick” even
when a process fully utilizes the disk.

To decide which features to put into which stage, we trained
an RF using the ShieldFS dataset [13]] as it contains real-
world benign behavior from eleven Windows machines. We
then calculated the feature importance of each feature and
considered, following related work [13]], [24], [43]], which
file I/O operations perform persistent changes to the disk.
For the design of our MS-IDS, these are WRITE, CREATE,
RENAME, DELETE, and OVERWRITE operations. However,
OVERWRITE did not appear to be used by the processes
in the dataset and was also not considered by the original
authors of ShieldFS. Thus, even though conceptually, it is
compatible with our MS-IDS design, we omitted OVERWRITE
in our feature space. Furthermore, we also took the frequency
distribution of the different operations and the implications on
the classification frequency into account. Finally, we settled
on the following configuration of our five-stage model to
distinguish between benign and ransomware processes while
minimizing I/O overhead:

Stage 0: CREATE, RENAME, and WRITE are in Monitored
mode, i.e., the relative numbers of the respective calls are
calculated for each window during preprocessing.

Stage 1: Monitoring WRITE operations is elevated to Mon-
itored+, i.e., the average write size and the number of
written file types are calculated.

Stage 2: Monitoring WRITE operations is further elevated
to Entropy, and DELETE and READ are monitored in
Monitored mode. DELETE and READ are also considered
for the relative numbers of calls, and the average written
entropy is calculated for each window.

Stage 3: Monitoring READ operations is elevated to Moni-
tored+, i.e., the average read size and the number of file
types read is calculated.

Stage 4: Monitoring READ operations is further elevated to
Entropy, and LISTING is monitored in Monitored mode.
LISTING is additionally considered for calculating the
relative number of calls in each window, and the average
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Fig. 5: Different Stage-Design configurations.

read entropy across all calls is calculated.

Detection Latency: A primary concern when designing
an IDS is the latency between the start of an attack and its
detection. For MS-IDS, this concern is exacerbated as it may
require a positive classification by several stages until an alarm
is raised. Therefore, the number of stages, the way the stages
are interconnected, and how quickly a process is allowed to
move to the next stage are fundamental properties that influence
the detection latency.

We propose and evaluate four architectures (cf. Fig.[5)
that interconnect the stages differently. The first is the naive
monitoring approach, “Naive Monitoring (N)”, where new
processes are sorted to the stage with negligible overhead
and moved up if suspected malicious. While this architecture
initially leaves ransomware with the most leeway, it also
imposes minimal overhead on benign processes. It builds upon
the assumption that ransomware will quickly be moved up
and detected by choosing ransomware-relevant features for all
stages. However, it could also allow for more straightforward
evasion, thus false negatives. The second architecture, “Reduced
Detection Delay (RD)”, moves a potentially malicious process
up by two stages while only being moved down a single stage
if a stage classifies them benign to reduce the detection latency.
With this design, processes exhibiting malicious behavior
are moved more quickly to stages that monitor additional
features, thus making more qualified decisions about the
process’s behavior faster. The third architecture, “Increased
Monitoring (IM)”, is one where processes start in a medium
state of observation. While this increases the overhead for
all new processes, the assumption is that benign processes
would quickly move to lower stages. Thus, their overhead
is reduced, while malicious processes are directly analyzed
with more features, thus reducing the risk of false negatives
and decreasing their detection latency. The final architecture,
“Suspicious Monitoring (SM)”, uses the opposite assumption of
the naive approach in that all processes are initially considered
potentially malicious and are directly monitored with all
features, but also maximum overhead. If a process exhibits
benign behavior, it will gradually be moved to lower stages,



TABLE III: Distribution of session (s) and events (e¢) of the
ShieldFS dataset after preprocessing of IRP logs.

#Sb #Srn #eb #e’m
logs,, 258 - 75,145,003 -
citroni - 14 - 1,870,921
crowti - 125 - 61,619,839
cryptodefense - 77 - 49,703,299
cryptowall - 157 - 86,196,590
teslacrypt - 10 - 6,923,603
logs,,, - 383 42,640,806 206,314,252
Overall 258 383 117,785,809 206,314,252

thus lifting overhead penalties. In contrast, malicious processes
can be recognized directly and be terminated to minimize the
potential damage they cause. However, depending on the tuning
of this last stage, there are potentially more false positives, as
the misclassification of a benign process would directly result
in a false alarm.

Ultimately, designing an MS-IDS based on these consider-
ations can drastically alleviate the cause overhead and, thus,
improve system performance without sacrificing detection
accuracy in detecting ransomware attacks.

V. EVALUATION

Using our four architectures, we now study whether our
MS-IDS can significantly reduce monitoring overhead while
maintaining a high detection performance. To answer this
question, we specifically investigate whether it (i) can detect
all attacks, even though malicious processes need to traverse
multiple stages, (ii) how the individual stages perform in their
classification task under limited information, (iii) how long it
takes for ransomware to be detected, and (iv) what overhead
reduction can be achieved using multiple stages. Additionally,
we compare all four architectures using the proposed five
stages and how the results change when the number of stages
is reduced to three. The idea is that with fewer stages, processes
could be moved to the alarm stage faster, thus reducing the
detection delay and, consequently, the damage caused by
ransomware. Specifically, we omit the second and second-
to-last stages for the three-stage variant of the MS-IDS. To
this end, we first provide an overview of our evaluation setup
(Sec.[V-A) before we analyze how well our approach can detect
ransomware from the widely-used dataset ShieldFS (Sec.[V-B]),
and ultimately, the performance gains that can be achieved
by dynamically adapting the number of monitored features

(Sec.[V=C).

A. Evaluation Setup

As the basis of our evaluation, we use the ShieldFS
dataset [13]], as it contains real-world IRP logs collected from 11
volunteer Windows systems and IRP logs of Virtual Machines
(VMs) infected with ransomware samples. We decided against
deploying our MS-IDS on real machines because, depending
on the configuration, there may still be too much overhead
and/or false positives that would cause processes to terminate

unexpectedly. Furthermore, a direct comparison with the
performance measured by Continella et al. [|13]] is not possible
as while the authors did publish the IRP logs they gathered,
machine configurations, code for performance measurements
and ML-models are not contained in the publicly available
data. Thus, we opted to utilize our measurement from Sec.
as it gives us the precise overhead for each I/O operation and
different feature combinations. Using this data, we can use our
Baseline measurements and apply them to the behavior in the
ShieldFS dataset to get a baseline of the system performance
without interference by monitoring methods.

Preprocessing: For our MS-IDS, we were interested in file
interactions commonly associated with ransomware activity:
(i) CREATE, (ii) DELETE, (iii) RENAME, (iv) LISTING, (V) READ,
and (vi) WRITE. However, as multiple IRP calls are required for
several file interactions,e.g., the creation or deletion of files, and
are often only distinguishable by additional parameters in the
IRP request, the data required some preprocessing to identify
file system interactions such as creating, deleting, or renaming
files or listing the content of a directory. In particular, we
discarded calls that open/close file handles but do not perform
actions that are not realized by the OS and do not change the
state of the underlying file system. An example of such an
action is a file marked for deletion several times; the actual
deletion of the file is only realized once the last file handle
is closed. Finally, we labeled the processes of each session
according to the code and ground truth provided by the authors
of [[13]]. The final distribution of events across all sessions and
labels can be found in Tab. After labeling the dataset, we
divide all sessions into individual processes and split them into
train, validation, and test sets (70%/10%/20%). We used the
training data exclusively to train the RFs for each stage and
the test set for the evaluation. For hyperparameter tuning of
the RFs, we used 5-fold cross-validation.

Hyperparameter Tuning: For hyperparameter optimization
of the stages, i.e., the thresholds 7,;,/4own that decide when
a process moves up/down a stage and the minimum number
of events m,,;, that need to be generated before the process
is allowed to move to the next stage, we used the validation
set. We optimized hyperparameters using ray tune [28] and
the Optuna [4] search algorithm. Ray was configured to search
through 300 samples. Optuna was configured to perform a multi-
objective optimization with the f1-score, the resulting overhead
for benign processes, and the detection delay for ransomware
processes as our objectives. Specifically, we considered the
detection performance in the form of its fl-score as our
main criteria while discarding all results that produced false
classifications on the validation set, as a model directly using all
features can achieve similar performance [43]. In the following,
we explain the calculation of the other objectives:



We first divide the set of processes 3 in the validation set

of IRP-logs into two sets:

R = {p|p € P, p is ransomware }
B = {plp e P\ R}.

We then define the delay for a ransomware process as:

a‘=lfcalls;;”‘"m )
b
Alarm

t-o R

where #calls,, is the number of I/O operations the process
performed until an alarm was raised, oo is the standard
deviation of the length of the I/O-logs generated by all
ransomware processes, and t is the acceptable threshold of
calls after which we require the ransomware to be detected.
For our evaluation, we used ¢ = 1%. Thus, if ransomware is
quickly terminated due to an alarm being raised, the value of
delay,, is close to zero. At the same time, the longer it takes
for the ransomware to be detected, a diminishing penalty is
applied, i.e., the metric asymptotically converges to one since
regardless of whether the ransomware was able to encrypt
10GB of data or 20 GB of data, both can be equally bad if
vital files are affected early on.

Finally, we define the overhead a benign process is subjected
to, compared to the overhead that would be added if all features
were monitored for all calls, as:

ZpE’B Y 0co 2scg Healls, , - call_overhead, ,
D peB D0cO #calls?!! - call_overhead; ,

delay, = tanh ( p ER,

overhead =

where S is the set of stages, O is the set of I/O operations,
and t refers to a traditional single-stage IDS, i.e., an IDS
where all features are monitored at once (thus, the overhead is
maximal).

Overhead can be directly used as an Optuna objective. At
the same time, for delay, we consider two variants: first, the
average delay across all ransomware processes, and second,
the maximum delay.

B. Classification Performance

First, we study whether an MS-IDS can compete with
traditional IDSs w.r.t. to its ability to detect ransomware, which
heavily depends on how stages are designed and how they are
interconnected (cf. Sec.[[V-C). To this end, we use the optimal
hyperparameters from our optimization and simulate each of
the 12,847 processes in our test set to be classified by our
MS-IDS, i.e., the recorded IRP calls are passed to the detection
engine for each process. The traditional model operates like

an MS-IDS with only a single stage that contains all features.

1) Detection Performance: When comparing all versions
of our MS-IDS, we can see (cf. Tab. that all models can
detect the 91 ransomware samples in our test set, which is
not unexpected as the ransomware processes in the dataset
created relatively long IRP logs; thus, theoretically, an MS-IDS
has multiple tries to detect the ransomware, i.e., for every
subsequence of calls that would allow the process to reach the
highest stage. However, due to the stage design, we also see
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TABLE IV: Detection performance of the MS-IDS for three and
five stages and the respective architectures. Some architectures
have classified fewer processes due to them not containing the
monitored calls of the initial stage of the architecture.

TN FP FN TP F1

#Stages  Architecture
1 Traditional 12746 10 0 91 095
N 2693 3 0 91 098
3 RD 2694 2 0o 91 099
M 11638 9 0 91 095
SM 12749 7 0 91 096
N 2696 0 0 91 100
5 RD 2694 2 0 91 099
M 11644 3 0 91 098
SM 12745 11 0 91 094

that architectures, where processes start in lower stages, only
classify around 21% of all processes, as the remaining processes
do not perform enough I/O calls that are monitored by that
stage, i.e., they do not perform WRITE, CREATE, or RENAME
operations (cf. Sec.[[IV-C). Thus, while “Naive Monitoring (N)”
and “Reduced Detection Delay (RD)” monitoring appear to
be performing the best from an fl-score perspective, both
ignored a majority of processes completely. While this may
not be problematic for cryptographic ransomware where WRITE
operations are guaranteed, it shows that selecting which features
to include in which stage can heavily impact an MS-IDS and
needs to be carefully considered for other types of malware.

Besides the overall detection performance of our MS-IDS,
we also looked at the individual stages in detail. While every
architecture can achieve perfect recall with all stages combined,
ransomware processes may initially be erroneously moved
to lower stages. Our results show that every architecture is
optimized to have high recall in the stages that processes start
in and the stages that are on a direct path to the alarm being
raised. We also see a stage-by-stage increase in precision for
these stages, showing that they are actively used for filtering
benign processes. For stages that are not on the direct path,
e.g., all stages below the last stage in the case of “Suspicious
Monitoring (SM)”, we see that after being falsely moved down,
some ransomware processes are temporarily bounced between
stages before their behavior exceeds the required threshold of
these stages and the alarm is raised.

Takeaway: All architectures show comparable detection
performance to a single-stage model that uses all features
simultaneously. Furthermore, if processes need to traverse
multiple stages, an MS-IDS can slightly reduce the number of
false positives.

2) Detection Latency: Another key metric for an IDS is its
ability to quickly detect attacks and alert personnel or initiate
preventative measures, e.g., terminating the malicious process
to minimize the harm a malicious program can cause. To study
how quickly our MS-IDS can detect ransomware samples,
we simulate each operation using the respective I/O logs.
Specifically, we look at the number of bytes that ransomware
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Fig. 6: Detection delay (written bytes) for three vs five stages.
For comparison, the original number of bytes written by the
383 ransomware samples was 11.2 + 6.8 GB.

can write before it is detected in Fig.[6l Comparing “Reduced
Detection Delay (RD)” to “Naive Monitoring (N)” we see a
slight decrease in the number of bytes written for the version
with five stages, which is due to the reduction of a minimum of
25 to 15 events, i.e., a minimum of 5 events per stage, that need
to be processed before the ransomware reaches the ALARM
stage. This slight decrease cannot be seen for three stages
because hyperparameter optimization found a minimum of 15
events optimal for the shortest path through all stages for both
architectures. Thus, the three stages’ main advantage compared
to the five is that additional features are added more quickly,
resulting in more ransomware events being generated faster and
fewer write calls and written bytes. For “Increased Monitoring
(IM)” and “Suspicious Monitoring (SM)”, most variants can
decrease the number of written bytes by one order of magnitude
compared to the other two configurations. Specifically, there is
no significant difference between the “Suspicious Monitoring
(SM)” versions (both require a minimum of ten events).
Also, the three-stage version of “Increased Monitoring (IM)”
performs similarly even though LISTING is not monitored for
the first five out of ten required events. Only the five-stage
version has difficulties detecting some ransomware samples
quickly, indicating that those samples were temporarily falsely
classified and bounced between stages (cf. Sec.[V-BI).

All variants of our MS-IDS show that they can quickly
detect ransomware and reduce the average damage done
by the considered samples below 18.33 + 6.4MB (0.17%
from the original 11.2 + 6.8 GB of bytes written by the
ransomware samples contained in the dataset). Furthermore, we
see that “Suspicious Monitoring (SM)” performs on par with
a traditional approach with only one stage (detection delay:
1.9 4+ 2.8 MB). In contrast, the most extended detection delay
introduced using multiple stages only increases the number of
written bytes by a single order of magnitude.

While the detection delay is an inherent characteristic of
our design for an MS-IDS, it could be improved by additional
optimizations. As ransomware, at the beginning of its execution,
typically needs to find the files that are to be encrypted, initial
stages could be tailored to identify this behavior, thus detecting
ransomware more quickly specifically.

Takeaway: Thus, if the performance gained through mul-
tiple stages is significant (c¢f. Sec.[V-C), we argue that the
accompanying detection latency is acceptable.
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3) Detection of Novel Ransomware: Another interesting
aspect is MS-IDS’s performance on novel ransomware samples.
To this end, we evaluated our MS-IDS on recent samples
from [21]], which contains mostly ransomware from 2020 to
2023. Unmodified, i.e., with hyperparameters and RFs trained
on data from 2016, our MS-IDS and also the traditional
single-staged model were able to detect 12 out of 47 novel
samples with 8 samples being detected by both. After manually
adjusting hyperparameters between stages slightly to increase
the detection rate, the MS-IDS was able to detect 18 samples in
total, 10 of which were also detected by the traditional model.

Takeaway: Even though the detection rate (25 % to 37 %)
appears low, it was achieved using supervised ML with models
having only seen ransomware up to 2016. Furthermore, the
MS-IDS performed on par with the single-staged model,
indicating that the low detection rate is not caused by the
multi-staged architecture but by the outdated RFs. Thus, if the
overhead reduction is significant, MS-IDS remains relevant for
modern ransomware.

C. Overhead

To ensure that MS-IDSs can be widely deployed, they do
not only require a high detection performance but must have
minimal impact on the system they are deployed to; otherwise,
users may prioritize system performance over the increased
security an anomaly-based an MS-IDS may provide over low-
overhead signature-based solutions. Therefore, we look at how
calls are distributed across stages to analyze the overhead
(Fig.[7). Ideally, processes are quickly separated to both ends
of our architectures so that most I/O operations of benign
processes are executed while the process is in stages with
low overhead. Of secondary importance is the distribution
of I/O operations performed by malicious processes, as the
overhead to these processes is non-critical but still indicates
where ransomware has spent most of the time before detection.
Additionally, we measure the relative and absolute overhead
induced by monitoring benign processes (Tab.[V). Finally, we
briefly examine the performance impact w.r.t. CPU utilization
and memory consumption.

1) Call Distribution: At first glance, Fig.[7] shows that for
“Naive Monitoring (N)” and “Reduced Detection Delay (RD)”,
over 98.5% of all calls are performed in the lowest stage,
which means that for over 62% of all benign I/O operations,
the minifilter driver directly returns (cf. Tab.[ll). At the same
time, only the minimal possible overhead is applied to the
remaining operations. For “Increased Monitoring (IM)” and
“Suspicious Monitoring (SM)”, a more significant amount of
I/O is spent in higher stages with high monitoring overhead.
The main reason for this is that all processes start in a stage
with high monitoring overhead, and if a process is light on file
I/0, it cannot reach a low stage before it is terminated. As a
result, most short-running processes are penalized with higher
overhead, while longer-running processes reach the low stages
where the overhead is minimized. Consequently, for 5.8% of
all calls by benign processes, all features are monitored if the
processes start in the highest stage.
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Fig. 7: Average number of calls across stages. For all architectures, IRP operations of benign processes are predominantly
processed with minimal overhead (process resides in a low-overhead stage), while ransomware processes are quickly moved to
higher stages where more features are monitored and can be leveraged to confirm the suspicion.

TABLE V: Relative and absolute overhead of different archi- 2) Overhead Measurements: While the call distribution
tectures compared to a traditional IDS. The average overhead ;) ws that the stage design works in principle, i.e., benign
can be reduced by an order of magnitude for all architectures. processes perform most of their file /O in stages with low
overhead, it does not quantify the actual performance gains.

overhead

#Stages  Architecture relative [%] | abs [s] For this, we used the trimmed means of our measurements
1 - 18076% <+ 102.86% | 232.42 from Sec.[[Il] as our baseline to calcglatq the relative and
(no entropy) | 34.85% +  16.83% | 53.79 absolute overhead for each I/O operation in each stage and
N 6.76% £ 14.45% | 1353 calculated the overhead for all benign processes (Tab.[V). From

3 RD 6.64% +  1544% | 13.12 h lts. it b 1 h f th

M 342% +  17.03% | 14.89 t e resu.ts, it becomes clear that even if the processes start
SM 18.16% +  54.38% | 23.55 in the highest stage, our MS-IDS can decrease overhead by
N 580% £ 834% | 1188 an order of magnitude compared to an IDS, which monitors

5 RD 6.03% =+ 10.18% 12.28 hi Similarly. if in 1 hi
™ 766% +  13.62% | 13.62 everything. Similarly, if processes start in lower s.tages, this
SM 18.56% +  54.50% | 24.33 overhead can be reduced by 40%. However, diminishing returns

apply as benign processes are moved quickly to lower stages,
even if initially sorted to the stage with the highest overhead.
At the same time, ransomware processes perform the majority ~ As the entropy calculation of READ and WRITE operations
of file I/O operations in the initial stage of each architecture, the cause the most overhead (cf. Fig.2), we also included the
reason for which is found in our hyperparameter-tuning process. overhead of a traditional approach with only a single stage,
For “Naive Monitoring (N)” and “Reduced Detection Delay but without entropy calculations, i.e., the maximum overhead
(RD)”, while our MS-IDS is optimized to move suspicious is that of Monitored+. Still, multi-staged approaches (with
processes quickly to stages with more features, it is also entropy) can reduce the overhead for benign processes by over
optimized to keep benign processes in a low stage. Furthermore, 50% compared to a single stage without entropy.
LISTING is not included in our set of features for the first stages 3) CPU and Memory Overhead: The impact of our MS-IDS
due to the overhead minimization as its relevant IRP operation on CPU and memory overhead can be divided into the overhead
has multiple uses of which only a subset are relevanﬂ Thus, caused by monitoring and that of the detection engine. The only
our MS-IDS inadvertently ignores the enumeration phase of aspects of MS-IDS that affect memory consumption during
ransomware samples but still reacts quickly once file encryption = monitoring are the hash table managed by the kernel and
commences. For “Increased Monitoring (IM)”, a similar effect the buffering of IRP operations during communication with
is present, but even more increased since if a ransomware the detection engine. Both are negligible as they only consist
sample had been moved down a stage accidentally, it would of a few bytes per process. CPU overhead of monitoring is
need to be moved up by the lower stage and pass through the directly connected to the slowdown of IRP/s, as other calls
original stage again. Therefore, it may be cheaper w.r.t. delay are not modified or intercepted. As such, I/O heavy tasks are
and overhead to keep a process longer in the initial stage than quickly I/O bound, which reduces overall CPU utilization, while
wrongfully moving it. Finally, “Suspicious Monitoring (SM)” processes with minimal I/O are not affected by monitoring.
shows the expected behavior that over 60% of all calls are Another aspect of potential overhead that hinders the
performed in the highest stage. practical deployment of an MS-IDS is the CPU/memory usage
of the detection engine. Memory consumption varies by model
lonly & 10% of the dataset are TRP_MJ_DTRECTORY CONTROL opera- (300 MB to 700 MB in RSS per RF) and whether models are
tions, of which only ~ 40% are relevant for LISTING. kept in memory or loaded on demand. Consequently, CPU
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and memory overhead depend on the classification method;
however, unlike I/O monitoring, it can be offloaded to another
machine. Therefore, the CPU and memory overhead of the
detection engine is not a major concern for real-time monitoring
using our approach.

Takeaway: All variants show that by employing multiple
stages with different monitoring overhead, processes can effec-
tively separated by their behavior and monitored accordingly.
Even if processes start with the highest suspicion/overhead and
must prove their benign nature, the average relative overhead
induced on every I/O operation can be improved by 90% (50%)
compared to no entropy monitoring).

VI. DISCUSSION, LIMITATIONS, AND NEXT STEPS

Our analysis in Sec.[V] shows that the overhead caused by
real-time behavior monitoring of file I/O can be mitigated to
a large degree by dynamically adjusting which features are
monitored on a per-process basis, i.e., prioritizing relevant
features, without compromising the IDS’s ability to detect
ransomware. Instead, only a few false positives are raised, even
if processes start at a high stage where a single misclassification
could result in countermeasures taking effect, e.g., the (in this
case) wrongful termination of the process.

Given these promising results, there are some limitations to
our work, as well as future research directions to pursue:

Impact on Other Platforms: While our analysis measured
the performance impact under Linux, its main focus was
Windows because it is the primary target of most ransomware
attacks [[15]], and public datasets of the I/O behavior of real-
world machines and ransomware were available to us. As a
result, our conclusions might differ in a comparable approach
on Linux or any other OS. Generally, our findings translate
because the general architecture of the I/O system is similar
(cf. Sec.@), and adding functionality, interrupts, and extensions
to the optimized execution is necessary. Likewise, we did not
investigate the effects of dynamic behavior monitoring of file
I/0O on data-center SSDs, RAID configurations, e.g., as used
in network-attached storage systems, or the latest technologies
such as Microsoft DirectStorage. Still, ransomware is an issue
for consumer devices, where the transition to mainly using
SSDs has made I/O performance relevant.

Security of MS-IDSs: The evaluations in Sec. V-B and
Sec. V-C demonstrate that an MS-IDS can significantly reduce
monitoring overhead while maintaining comparable detection
performance to traditional approaches using File I/O for
detection. However, the design of an MS-IDS does affect the
leeway available to an attacker. A straightforward tactic would
be to pause malicious activity and feign benign behavior until
a lower alert stage is reached before resuming ransomware
activity. The damage from each iteration may vary depending
on how many stages a process must traverse before triggering
an alarm. This is particularly effective in white-box scenarios,
where attackers know the MS-IDS’s configuration and can infer
the ransomware process’s stage — a common issue with many
IDSs, including network- and host-based ones. In contrast, such
attacks are less likely to succeed in black-box scenarios without
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prior knowledge of the MS-IDS’s architecture. Here, attackers
must monitor I/O execution times within the ransomware
process to gauge whether they can safely continue their
activities. Since response times are affected by the MS-IDS and
other system activities, it becomes challenging for attackers to
determine the current ransomware stage without knowledge of
the classifiers. However, ML could help infer how suspicious
the ransomware process appears, but these evasion tactics can
also be used against traditional IDSs and are not exclusive to
an MS-IDS.

Another approach an attacker could follow to evade an
MS-IDS would be to divide the malicious activity across
multiple processes so that the individual processes’ behavior
falls below the threshold of the last stage. This division of
work was recently shown to be very effective against file I/O-
based detection mechanisms by a prototype ransomware called
ANIMAGUS [43]]. The authors showed that approaches that
consider individual processes, but even ones that incorporated
system-wide statistics, e.g., ShielfFS [13]], could not detect ANI-
MAGUS successfully. Our MS-IDS does not intend to improve
resilience against such evading tactics but instead addresses
performance limitations that prevent the applicability of real-
time IDSs in practice. We are confident that countermeasures
to novel evasion tactics, such as those done by ANIMAGUS,
can also be applied to our multi-staged design.

Finally, another general evasion strategy that could influence
file I/0O-based detection of ransomware, and, thus our MS-IDS,
is partial encryption [43], i.e., instead of encrypting the whole
file, it is often sufficient to encrypt a significant portion of
each file to prevent the original content from being recovered.
Such a tactic primarily influences the usefulness of entropy
as a feature for detection but is not an inherent problem of
MS-IDSs. Again, this threat is not specific to our work but
rather ransomware detection in general. The same applies to
threats in which the MS-IDS is compromised itself.

Overall, every MS-IDS inherits the vulnerabilities to evasion
of its underlying detection approach and its configuration.

Beyond File I/0: Our analysis solely focused on file I/O,
and even here, we discovered many variants to achieve similar
things within the kernel or parameters that would influence
the design of an MS-IDS. Thus, extending the general idea
of dynamically adjusting the monitored features to other
types of malware would need additional in-depth analysis
in the respective kernel implementation of the considered OS.
As a guide for other researchers and our future work, we
suggest focusing on operations performed with high frequency,
requiring processing resources to handle, and may directly
impact perceived system performance.

VII. CONCLUSION

This paper analyzes the impact of real-time monitoring of I/O
behavior for ransomware detection on modern systems utilizing
high-performance storage media. Due to the computational
overhead that calculating relevant features would impose on
every system call in a highly optimized part of the OS, such
as its I/O stack, such behavior monitoring quickly becomes



infeasible in modern systems that utilize high-performance
storage mediums, such as SSDs. Our analysis of the effect of
monitoring different feature sets on the processing time of I/O
requests uncovered severe degradation of SSD performance
that could render real-time monitoring intolerable for end
users. Thus, we proposed the real-time adjustment of which
features are monitored as a potential solution to this overhead
problem. We implemented an MS-IDS that uses different
feature combinations in each stage to minimize the overhead
to which benign processes are subjected. The MS-IDS rewards
benign processes by lowering the imposed overhead while
penalizing processes that behave anomalously by increasing
the scrutiny of these processes. Using this approach, we reduced
the average overhead inflicted upon IRP calls by an order of
magnitude without affecting the MS-IDS’s ability to detect
ransomware quickly. As a result, real-time behavior monitoring
for ransomware detection becomes feasible despite its inherent
overhead impacts.
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APPENDIX A
ARTIFACT APPENDIX

A. Artifact Description & Requirements

The artifacts published together with this paper support future
research by allowing fellow researchers to use or modify the
MS-IDS and compare results. As such, we want to publish our
code and RF models and help reproduce results by providing
instructions on using these artifacts.

1) How to access: The artifacts are available online and
can be downloaded from Zenodo via https://doi.org/10.5281/
zenodo. 14249681,

2) Hardware dependencies: For 1/0 operation overhead
measurements in Sec. III (C2), a desktop machine with typical
hardware (8 cores, 16 GB RAM) and equipped with a SATA
SSD, is required. The OS (Windows/Linux) must be installed
on bare metal. The evaluation in Sec V. (C3) does not require
special hardware; however, more cores (and more RAM)
may significantly improve processing times when running
preprocessing or training for the full ShieldFS [13]]) dataset.

3) Software dependencies: The programming language
mainly used throughout the artifacts (especially for the evalua-
tion in Sec. V) is Python and requires a Python environment
of version 3.11.7. Required modules (and version) are included
in the requirements.txt, which is part of the artifacts.
On top of that, some way to open and use a Jupyter Notebook
using the same Python version as the kernel is required, e.g.,
using VScode or using the jupyterlab Python package. For I/O
operation overhead measurements, the following requirements
must be met:

Windows: The OS version used was Windows 11 Pro 22H2
(22621.3447). For driver compilation, Visual Studio 2022,
and the WDK for Windows 11, version 10.0.22621.382, is
required. Other versions of Windows that allow for driver
development should work but were not tested.

4) Benchmarks: The artifacts depend on the usage of the
ShieldFS [|13]]) dataset for which access can be requested via
email (http://shieldfs.necst.it).

B. Artifact Installation & Configuration

Python packages can be installed using pip install
-r requirements.txt using the requirements provided
together with these artifacts.

a) Windows Testbed: A bare-metal installation of Win-
dows 11 Pro (22H2) equipped with a SATA SSD is required
to perform measurements on Windows directly. Using a virtual
machine for measurements of delays (c¢f Sec. III) is not
possible as results would be heavily influenced by the hardware
abstraction as I/O operations may be buffered and do not require
a write-through to the underlying physical storage.

Configuring the machine for driver deployment involves the
following steps and takes approximately 3h to 5h:

Disclaimer: Configuring the Windows machine to test
unsigned drivers is non-trivial and should not be attempted on
a machine that is required to function, e.g., a fresh install of
Windows may be the easiest solution to revert these changes.
Access to a Windows 11 VM image of the machine used for
our evaluation can be granted upon request (see README
provided with the artifacts). However, results differ from real-
world measurements due to I/O having to traverse virtualization,
two I/O stacks, i.e., in the guest OS and the host OS, and the
background activity of both OSs.

In the following, we describe the steps needed to install the
driver on a Windows machine:

1) Download the windows_eval folder to the testbed
machine.

2) Install Visual Studio 2022 and the Software Development
Kit (SDK) to compile the driver yourself (configure the
installation to be ready for Desktop C++ development
and select the spectre mitigated version of MSVC v143
- VS 2022 C++ x64/86 libs - the SDK should
automatically be included) - we also provide a precompiled
version in Zenodo, but Windows Version support may be
limited (if the precompiled version is used, skip the next
step).

3) Download and install the Windows Driver Kit (WDK) for
your version of Windows (10.0.22621.382 in our case) -
or see Visual Studio’s package-manager.

4) If Secure Boot is enabled, disable it (required to disable
driver integrity checks or to enable test signing)

5) Disable Driver  Signature = Enforcement using
an elevated command prompt (note that this
disables a security mechanism in Windows):
bededit .exe /set nointegritychecks on
Alternatively, Driver Signature Enforcement can also be
temporarily disabled using Windows Startup Settings:

a) Press and hold the Shift-Key while using the start
menu to reboot the machine/VM

b) In recovery mode, select Troubleshoot

¢) Now select Advanced options

d) Select Start-up Settings, and in Start-up Settings, click
Restart (as prompted) to change a Windows option

e) Disable driver signature enforcement (Option 7)
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This variant must be re-performed after each reboot of
the machine/VM.

Compiling the driver requires the following steps:

1) Import the Driver Project
2) Build the Driver (Visual Studio) and install the driver by
navigating to the . inf file in the driver’s main directory:

a) Right-click the file and choose install.

b) In the window that pops up, browse to the driver’s . sys
file, typically under filter/Debug/x64/, choose
it and click continue.

¢) Now an error will occur because the driver cannot find
the .exe. Correct the path (the . exe is located under
user/Debug/x64) and retry.

After installing the driver, make sure to also install Python 3.11
and the necessary required packages for the overhead evaluation
(included in a separate requirements.txt inside the
windows_eval folder).

C. Major Claims

e (C1): The delay incurred in monitoring I/O activity
depends heavily on the feature set monitored for each
call. This is proven by experiment (E1), whose results are
reported in [Sec. III, Fig. 2].

(C2): An MS-IDS achieves comparable detection accuracy
for detecting ransomware to an approach utilizing all
features at once in the ShieldFS dataset. This is proven
by experiment (E2), whose results are reported in [Sec.
V.B, Table IV].

(C3): Even though a ransomware process may need to
traverse multiple stages of an MS-IDS, ransomware is
detected quickly; thus, the damage is minimized. This is
proven by experiment (E2), whose results are reported in
[Sec. V.B, Fig. 6].

(C4): By employing multiple stages and adapting the
monitoring overhead dynamically, the average relative
overhead that is induced on every I/O operation can be
improved by 90% (or 50% compared to a single-staged
approach that does not use entropy as a feature). This is
proven by experiment (E3), whose results are reported in
[Sec. V.C, Fig. 7, Table V].

D. Evaluation

The following experiments require preprocessing of the
ShieldFS dataset as well as the performance metrics measured
for individual features on actual hardware. Note that preprocess-
ing takes considerable time and resources (/226 h using 90 cores
and ~400 GB RAM) and more than a week for hyperparameter
optimization of the multi-stage architectures. Thus, we include
information on which processes were included in the training,
validation, and test data, the optimal hyperparameters found
through Optuna search, and the RF models as part of the
artifact. Additionally, the performance measurements require a
non-trivial configuration of physical machines (cf. Sec.[A-A);
thus, we included the measured delays in our scripts as they
are needed in the experiments.
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1) Experiment (E1): [Measurements] [~ 1 human-hour + 1-
2 compute-hours]: This experiment uses the prepared Windows
machine to reproduce I/O delays. Can also be executed in a
VM.

[Preparation] Copy the windows_eval folder to the
machine. Install the driver on a Windows 11 x86/amd64
machine. arm is not supported. Reboot the machine using the
Shift key to disable Driver Signature Enforcement (cf. Sec.|A-B)),
and log back in.

[Execution] Start the Python script
(feature_overhead_windows.py) found inside
the windows_eval folder and wait for the experiment to
finish.

[Results] The script prints the measured 10 delays for the
relevant calls and feature combinations. Results may differ
depending on the used hardware, but the general trend of
increased overhead for more monitored features remains. If a
VM is used, results differ as I/O requests must traverse two 10
stacks, virtualization software, and two OSes that may cause
background activity.

2) Experiment (E2): [Detection Performance/Delay] [30
human minutes + 5-7 compute hours]: In this experiment,
every process that is contained in the test data is simulated
using the multi-staged detector.

The RF models for each stage and the processed test
data must be available for this experiment. To simulate the
performance of the MS-IDS on the given data, the Python
script simulate_stage_config.py can be used. The
hyperparameters for each architecture are contained in the file
and will be applied automatically.

[Preparation] Have the processed version of the test data
available (output of preprocess.py), as well as the RF
models and relevant Python modules. You should also make
sure to have at least 5GB available for the script to store
temporary files.

[Execution] Run simulate_stage_config.py while
providing necessary parameters as described in the README.
The script only executes the simulation for a single architecture
that can be supplied as a parameter. Multiple instances of this
script can be run in parallel using multiple terminals to gather
results for all architectures. During execution, a progress bar
informs about the number of IRP calls being processed and the
progress. Once finished, a data frame is created, which stores
the simulation results. Using these data frames, the Jupyter
Notebook (plot_experiments. ipynb) part for (E2) can
be executed.

[Results] If using the provided RFs, the notebook should
report zero false negatives for all configurations, a low number
of false positives, and a high F1 score. Furthermore, the
detection delay plot (Fig. 6) is computed. If new RFs are
being trained, results may vary slightly as no optimization and
or cross-validation is performed.

3) Experiment (E3): [Overhead] [30 human-minutes]: Using
the simulation results from (E2) and the measured overhead
metrics for a SATA SSD on a Windows 11 machine (also
included in the JupyterNotebook for plotting/computing re-



sults - plot_experiments.ipynb), the overhead can be
computed compared to a single-staged model.

[Preparation] Make sure to have the data frames storing the
simulation results available for each architecture.

[Execution] We provide a Jupyter notebook that can
be used to process the results of (E2) or manual
simulate_stage_config.py runs. Just open the Note-
book, select the same Python 3.11.7 version for the kernel, and
adjust the paths in the second code cell if files were placed in
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different directories. The notebook should run and produce the
same tables/figures from Sec V (minus some postprocessing
for formatting and font size scaling).

[Results] The distribution of IRP calls across stages should
look similar/identical to Figure 7, while the generated Table
should contain comparable values to Table V (We found that the
values may differ minimally (+0.1% relative overhead, +0.2's
absolute overhead) when executed on a different machine,
which we attribute to floating point precision).
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