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Abstract—Advances in single-cell RNA sequencing (scRNA-
seq) have dramatically enhanced our understanding of cellular
functions and disease mechanisms. Despite its potential, scRNA-
seq faces significant challenges related to data privacy, cost, and
Intellectual Property (IP) protection, which hinder the sharing
and collaborative use of these sensitive datasets. In this paper,
we introduce a novel method, scE(match), a privacy-preserving
tool that facilitates the matching of single-cell clusters between
different datasets by relying on scmap as an established projection
tool, but without compromising data privacy or IP. scE(match)
utilizes homomorphic encryption to ensure that data and unique
cell clusters remain confidential while enabling the identification of
overlapping cell types for further collaboration and downstream
analysis. Our evaluation shows that scE(match) performantly
matches cell types across datasets with high precision, addressing
both practical and ethical concerns in sharing scRNA-seq data.
This approach not only supports secure data collaboration but
also fosters advances in biomedical research by reliably protecting
sensitive information and IP rights.

Index Terms—confidentiality; scmap; privacy-preserving com-
putations; offloading; healthcare

I. INTRODUCTION

Single-cell transcriptomic data provides a high-dimensional
view into gene-expression patterns at single-cell resolution from
human tissue and model systems [1]-[3]. Recent advances in
this area [4], most notably, fast and scalable single-cell RNA
sequencing (scRNA-seq) technology, contribute to a better
understanding of the human body and its disease mechanisms.
Such high-dimensional and large-scale data availability has also
revolutionized computational biology [5], where novel tools
are being developed for data management, processing, and
downstream analyses. Here, unsupervised clustering cells with
a similar expression fingerprint enables the identification of cell
clusters with specific cell molecular functions and properties.
These cell types can be further classified into phenotypically
different cell states, which can be linked to diseases such as
COVID [6], cancer [7], myocardial infarction [8], heart [1] or
chronic kidney disease [2], [3], [9].

As scRNA-seq data contains patient-specific gene-expression
information, it is sensitive data; in fact, sScRNA-seq data can
be subject to similar threats as classic genetic data [10] with
data volumes being orders of magnitude larger due to cell-
level resolution. At the same time, scRNA-seq technology
is still expensive to operate [11], with individual experiments
requiring consumables worth tens of thousands of Euros besides

expensive sequencing equipment. Researchers thus seek to
share and reuse datasets as much as possible [12]; however, the
above data privacy concerns significantly limit the willingness
and opportunities for sharing data.

Data privacy is not the only concern when sharing or
collaborating on scRNA-seq data. Specialized labs invest
significant resources into collecting and analyzing scRNA-seq
data [11], and the proper attribution of findings from analyzing
such data represent thus is crucial to ensure sustainable
funding for future experiments. The Intellectual Property (IP)
of collaborating laboratories thus must be preserved, including
newly identified cell functions that have not yet been published.
However, reducing redundancies, consolidating expertise for
early comparison of results, and bootstrapping collaboration
are necessities to minimize costly parallel research efforts.
Besides, such a comparison would also help to agree on
common cell type and cell state annotation schemes early on,
thereby increasing the findability and accessibility of results
(cf. FAIR principles [13]). Possibly due to the IP concerns,
such collaboration is a rare current practice. Hence, knowledge
gained from the data complements the sensitive features, and
both require effective data protection.

One common problem in scRNA-seq data analysis that
allows for alleviating this situation is the projection of query
datasets into other reference datasets [14], for instance, to
validate that larger reference datasets exhibit similar cell char-
acteristics (identified by clustering). Unfortunately, currently
established tools [15]-[18] all require direct access to both
datasets, rendering them unsuitable for inter-organizational
collaboration. In this work, we mitigate this problem by
building upon an established, well-known projection tool called
scmap [15] and propose a privacy-preserving adaptation of it.
Specifically, we introduce scE(match), which securely matches
clustered cells under homomorphic encryption. Compared to
the query to reference dataset mapping by scmap, scE(match)
matches datasets of two entities in either direction, thereby iden-
tifying correspondences across remote datasets. These corre-
spondences enable researchers to identify common discoveries,
e.g., to initiate further collaboration, data standardization, and
find orthogonal evidence for their discoveries in independent
datasets. At the same time, scE(match) does neither reveal
the dataset nor identified cell clusters exclusive to a single
organization.
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Fig. 1: Overview of a typical processing pipeline for sScRNA-
seq data.

Contributions. Our primary contributions are as follows.

o Based on state of the art, scmap [15], we develop
scE(match)—our privacy-preserving adaptation—for match-
ing single-cell clusters between two parties to identify
overlapping cell types while meeting the confidentiality and
intellectual property requirements of data subjects and labs.

o Our performance evaluation of scE(match) demonstrates its
feasibility in large real-world research settings, promising
immediate benefits for data subjects and labs alike.

« Based on two state-of-the-art single-cell datasets, we show
that scE(match)’s calculated matchings are of practical rele-
vance and are indeed suitable to initiate further collaboration.

« We open source our implementation at https://github.com/
COMSYS/scEmatch to foster further research and devel-
opment in the field of privacy-preserving single-cell data
analysis.

Organization. The remainder of this paper is structured as
follows. Section II provides the necessary background on single-
cell data and introduces the current state of the art in single-cell
data analysis besides current privacy-related challenges in this
area. Section III then details the research gap and outlines
the problem statement. Section IV introduces the necessary
building blocks for our privacy-preserving cluster-matching
approach. Section V details the design of scE(match), our
privacy-preserving adaptation of scmap. Section VI evaluates
the performance and precision of scE(match) using real-world
single-cell data. Section VII discusses the security implications
of our approach. Finally, Section VIII concludes the paper and
outlines future work.

II. BACKGROUND AND RELATED WORK

This section outlines essential background knowledge on
single-cell data, reviews the current state of the art in single-cell
data analysis, and discusses privacy challenges in this field.

A. Single-Cell Data and Cluster Matchings

Significant advances in high-throughput sequencing tech-
nologies in the past decade have enabled the mass collection of
single-cell data, i.e., biological information such as RNA, DNA,
protein, or chromatin data at the single-cell level [19] Single-
cell data thus is in the process of revolutionizing the field
of biology and medicine [20] and has already led to a better
understanding of biological mechanisms at cell-level [1]-[3].
Fig. 1 visualizes a typical analysis pipeline. Depending on the
tissue type, data is collected from living or deceased individuals

who donate tissues for research. For instance, blood samples
are taken from living donors, whereas heart tissues are typically
only available post-mortem, resulting in limited availability.
Single-cell data analysis then builds upon a complex and
computationally demanding pipeline, including quality control,
normalization, imputation, data integration, and dimensionality
reduction as preprocessing steps, followed by downstream
analysis tasks for the discovery of biological insights [20], [21].
These insights comprise identifying cell types or functions, cell-
to-cell communication, disease trajectories, and beyond [20].
Here, Molho et al. [20]provide an extensive overview of the
computational and data-scientific aspects of single-cell data
analysis, and we refer to their work for further details [20]. In
this work, we focus on single-cell RNA sequencing (scRNA-
seq) data, which is among the most common single-cell data
types [20].

scRNA-seq data is typically represented as a sparse
cell xgene matrix (cf. Fig. 1), with rows corresponding to
cells and columns to genes. The challenge then is to separate
meaningful differences in gene expression between cells from
technically induced noise [22], batch effects, and other arti-
facts, such that downstream analysis like cell-type annotation
and clustering can focus on biologically meaningful gene
expressions only. Due to the high dimensionality of this
data (thousands of genes per cell and thousands of cells per
donor), such insights are typically visualized in a reduced
two-dimensional space such as UMAP embeddings [21].

To compare identified functional clusters between different
datasets, each prone to batch effects and further measurement
artifacts, data integration is a crucial task in single-cell analysis.
Here, one can project the clusters of one dataset into the space
of the other dataset, e.g., using scmap [15], FR-Match [16], or
other data integration methods like Harmony [17] or Seurat [23].
All these methods, however, require direct access to both
datasets [24].

B. Related Work

In the following, we introduce relevant works for integrat-
ing single-cell data besides privacy challenges and privacy-
preserving processing options centering around single-cell data.

Single-Cell Data Integration Tools. Several tools exist for
integrating single-cell datasets from heterogeneous sources that
employ different approaches to integrate cells, clusters, or whole
datasets [15]-[18], [24]-[26]. scmap [15] relies on a nearest
neighbor search for either cells or cluster centroids and employs
cosine similarity, Pearson correlation, and Spearman correlation
to assess similarity. FR-Match [16], in contrast, employs
supervised feature selection to detect marker genes for specific
cell types and performs graph-based matching to integrate
datasets. Then again, Harmony [17] iteratively computes
shared linear embeddings while optimizing for clusters of
cells from different sources. These linear projection methods
are complemented by deep-learning approaches like scVI [25],
scANVI [24], scGen [26], and recently, scGPT [18], which
employ deep neural networks to integrate datasets, among
other tasks. When using integrated datasets for downstream


https://github.com/COMSYS/scEmatch
https://github.com/COMSYS/scEmatch

analysis, Harmony performs well for simpler datasets, while
deep learning approaches are more suitable for more complex
tasks [18]. Nonetheless, computationally-cheaper tools like
scmap still perform well for comparing clustered datasets [16].

Issues in Privacy-Preserving Processing Single-Cell Data.
While the steady increase in the availability of single-cell data
has led to a surge in research, privacy issues centering around
single-cell data have been mainly ignored. The contained ge-
netic fingerprint contained in these samples is highly sensitive,
encompassing information on ancestry and ethnicity [27], [28],
enabling the deanonymization of individuals in large association
studies [10], or from public databases [29]. To the best of our
knowledge, none of the existing privacy issues have been
addressed explicitly in the context of single-cell data; however,
as scRNA-seq data contains the same genetic information at
a much higher volume, we suppose that one has to expect
similar privacy issues here. In this vein, multiple works have
been proposed to address privacy concerns in single-cell data
analysis, including scFed [30], scPrivacy [31], and PPML-
Omics [32]. These works employ federated learning principles
for clustering scRNA-seq data but lack comparison functionality.
Others have employed homomorphic encryption for genomic
disease testing [33] or principles from multiparty computation
for genome-wide association studies [34].

Privacy-Preserving Data Science. Beyond single-cell anal-
ysis, privacy-preserving clustering algorithms have been pro-
posed for other applications in various domains, e.g., k-means
based on two-party computation with oblivious transfer [35],
multi-party dbSCAN [36], or differentially-private clustering
via hierarchically separated trees [37]. These works show the
general suitability of these building blocks for clustering tasks,
albeit with significant performance penalties [35]. However, to
the best of our knowledge and despite the urge for such a tool,
no privacy-preserving clustering comparison tool has yet been
proposed for single-cell data analysis.

III. PROBLEM STATEMENT

Consider two research labs, independently collecting scRNA-
seq data from different donors, and each identifying cell
clusters that are of interest to them, as shown in Fig. 2.
Both labs, to which we refer as Clients A and B, are
interested in comparing their findings to identify overlapping
cell types, which could indicate common cell functions or
disease mechanisms. However, both labs are also interested in
keeping their datasets and discoveries confidential to maintain
their individual advances. Besides, the GDPR-related privacy
requirements of donors often obligate labs not to share this
sensitive genetic information at all [38]. As such, clients are
reluctant or incapable of sharing their datasets directly with
each other, as this would reveal their data and identified cell
clusters to the other party, besides violating the data privacy
of donors. In the following, we formalize our threat model
addressing this situation and discuss that related work fails to
address this issue before deriving design goals that our solution
to this problem, scE(match), must meet.
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Fig. 2: Two clients A and B independently collect and analyze
scRNA-seq data from different donors, identifying clusters of
cell types they aim to compare against each other to discover
common cell types for bootstrapping further collaboration while
keeping their sensitive data and identified clusters confidential.
For visualization, cell types are embedded in a two-dimensional
UMAP space, however, the actual matching is performed on
the high-dimensional gene expression space.

Threat Model. As genetic data is genetically linkable to
individuals [10] while containing sensitive information like
disease markers [27], the patient-level data must be kept
confidential, i.e., remain inaccessible to third parties. Due to
the data providers’ regulatory compliance, it is also in their
interest that third parties may not infer any privacy-relevant
information from the data they process. Thus, we consider
everyone but the initial data-collecting entity (i.e., the client)
as a third party, including the other client holding the data one
aims to compare against and any computational infrastructure
not under the control of the data-collecting entity. These third
parties can inspect any received data and metadata and might
have background knowledge about the data to learn as much as
possible from processed data. At the same time, they will not
modify any data or interfere with the computations as remote
clients are also interested in results and thus provide meaningful
input data. Besides, we suppose that infrastructure operators
have no incentive to violate data integrity: They are interested
in maintaining their reputation and providing accurate results
if they receive monetary compensation for calculation. We thus
assume all entities to be honest-but-curious [39].

Research Gap. Single-cell mapping and integration tools
like scmap [15] or Harmony [17] have shown that comparing
scRNA-seq data is feasible and beneficial for research. However,
these tools are currently unsuitable for inter-organizational
collaboration, as they require direct access to both datasets,
which does not meet the above-outlined confidentiality require-
ments and intellectual property concerns of the data providers.
Thus, the research question of how to facilitate such collabo-
ration while preserving the privacy of data providers remains
unresolved. Among the existing mapping tools, scmap [15]



and Harmony [17] rely on computationally simpler methods
compared to deep learning approaches like scVI [25], which
makes them better-suited for adaptation to confidentiality-
preserving computing methods, such as those methods used
previously for privacy-preserving clustering in other application
domains (cf. Section II-B).

Design Goals. Based on the outlined research gap and threat
model, we derive the following design goals for scE(match):

G1 Data Privacy: Ensure that sensitive genomic data of
donors remains confidential and inaccessible to third
parties.

Matching Confidentiality: Ensure that the identified cell
clusters of the data providers are not accessible to anyone
else, such that the intellectual property of the data providers
is protected.

G2

G3 Matching Utility: Ensure that the matching results are
of similar quality as those of scmap, such that the data
providers can source the comparison of their datasets to

bootstrap collaboration.

G4 Scalability: Ensure that the matching process scales to
large datasets, as prevalent in related work, such that the

data providers can compare their datasets efficiently.

I'V. PRELIMINARIES

In this section, we introduce building blocks for scE(match),
namely, the scmap tool for computationally efficient single-cell
cluster mapping and homomorphic encryption for privacy-
preserving computations.

A. scmap: (Un-)supervised Projection of Single Cell Data

scmap [15] is a tool for projecting clusters from one guery
dataset into another reference dataset either on cell (cell-
to-cell matching), or cluster-centroid level (cell-to-centroid
matching). For integration, scmap employs a nearest neighbor
search based on cosine similarity, Pearson correlation, and
Spearman correlation and outputs a corresponding match if
two of the three metrics exceed a certain threshold. In detail,
the cell-to-centroid matching process that we will utilize later
is designed as follows:

1) scmap identifies differentially-expressed genes (i.e., fea-
tures) in the reference dataset either by assessing their
variability [22] (unsupervised) or marker genes [16] (su-
pervised) and then aligns the query dataset to the selected
genes. Clusters in the reference dataset are then reduced
to their centroid, i.e., the median of the cluster member’s
features.

2) scmap computes the cosine similarity besides Pearson and
Spearman correlation between each cell in the query dataset
and cell/centroid in the reference dataset.

3) scmap considers a match if two of these three metrics
consider a combination closest among the analyzed pairs
and one metric exceeds an experimentally evaluated metric
threshold. If neither combination of metrics exceeds the
threshold, scmap treats a cell as unassigned.

Noteworthy, all these steps only involve computationally simple
operations (sums, products, and exponentiation) [15]. While
there is a quadratic complexity due to the pairwise combination
of samples in the query and reference datasets, scmap converges
in a defined number of steps that only depend on the input
dimensionality. This behavior separates scmap from Harmony
(which requires iterative optimization until convergence [17])
and deep-learning approaches like scVI (which require training
and thus a potentially infinite number of steps [25]).

B. Homomorphic Encryption

Homomorphic Encryption (HE) is a cryptographic approach
that enables computations on encrypted data without needing
to decrypt the underlying raw data, thereby maintaining data
confidentiality even during processing [40]. This capability
makes HE particularly valuable for offloading computations to
external (untrusted) third parties [33], [41].

Over time, different HE cryptosystems emerged, each with
distinct implications on expressiveness, performance, and
usability [40]. These range from Partially Homomorphic
Encryption (PHE) [42]-[44], which supports limited opera-
tions, over Somewhat Homomorphic Encryption (SWHE) [40],
which allows for a predetermined number of operations with
manageable overhead, to Fully Homomorphic Encryption
(FHE) [45]-[47], which extends SWHE’s capabilities to unlim-
ited operations but introduces a costly bootstrapping operation.
Consequently, for scE(match), we envisage tailoring the HE
cryptosystem to the required properties, specifically aiming at
avoiding costly bootstrapping operations. Notably, the CKKS
scheme [48] allows us to achieve FHE-level functionality for a
fixed number of operations without the need for bootstrapping,
thus approximating the performance of SWHE.

V. SCE(MATCH): PRIVACY-PRESERVING CLUSTER
MATCHINGS OF SINGLE-CELL DATA

In this section, we introduce scE(match), our privacy-
preserving adaptation of scmap for matching clustered single-
cell data between two parties. We first provide an overview of
the design, followed by a detailed description of the protocol
flow between the two parties and the matching platform, the
involved entities, and implementation-specific characteristics.

A. Design Overview

To enable a privacy-preserving cluster comparison between
two clients A and B (see Section III), we employ an adaption
of scmap [15] that operates under HE to map a query dataset
into a remote reference dataset. By doing so for both directions,
we can aggregate the resulting mapping into a bilateral cluster-
level matching that allows for identifying corresponding clusters
between the two datasets. To this end, we replace the feature
selection in scmap with a distributed, privacy-preserving variant
and adapt the cell-to-centroid mapping step of scmap to operate
on encrypted data.

Fig. 3 provides an overview of the protocol flow between the
two clients A and B and the matching platform. Specifically,
we outsource the mapping to a third party, the mapping server,
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Fig. 3: Overview of scE(match)’s protocol flow between the
two parties and the matching platform.

while keeping the sensitive genetic data confidential. We then
employ another, from the mapping server separate party, the
aggregation server, to exclusively hold decryption keys and
thereby ensure data privacy. The aggregation server decrypts
and aggregates calculated mappings from both parties and
derives statistics, such as the number of commonly identified
cell clusters. These statistics allow the clients A and B to
match similarities between their datasets and findings without
revealing the data or exclusively identified clusters to each other
and shall be used to initiate further collaboration. The overall
protocol flow is illustrated in Fig. 3 and can roughly be divided
into a preparation (Steps @ to ), mapping (Steps @
and .), and aggregation phase (Steps @ to ). In this
protocol flow, the preparation and matching phases utilize our
privacy-preserving adaptation of scmap, and the computation
of matches can be considered a simple downstream analysis
step on the integrated data. In the following, we provide a
detailed description of each phase.

B. Preparation and Privacy-Preserving Feature Selection

Initially, the aggregation server generates a homomorphic
encryption key pair (Step (13)) and distributes the public key

to clients for data encryption (Step ). The clients then
perform feature selection either via dropout [22] (unsupervised)
or NS-Forest [16], [49] (supervised), before communicating
these selected features with the other client (Step @). Based
on these features, the clients then compute centroids for their
labels (Step ) and project their query dataset on the selected

features of the remote client (Step @). In the unsupervised
feature selection case on the one hand, we do not deem this
selection sensitive, as it does not depend on the identified
clusters, i.e., the data-provider’s IP. Clients A and B can
thus exchange their selection without further protection. In
the supervised feature selection case, on the other hand, the
selected genes are marker genes for specific clusters that are
supposed to differ between clusters. As these marker genes
might hint at specific clusters being present in a remote dataset,
we require the clients to exchange a blinded list of features
by randomly sampling additional genes. We later show (cf.

Section VI-D) that this blinding has negligible impact on the
quality of calculated matchings.

Due to limitations in the SEAL homomorphic encryption
library, which lacks support for square roots and division [50],
and necessary comparison for calculating ranks, data must be
preprocessed before encryption. For Pearson, we additionally
need to subtract sample level means, and for Spearman,
we calculate rank vectors before subtracting sample level
means from the rank vector. Afterward, we must scale the
precomputed vectors for all three metrics with their inverse
Euclidean (L2) norm, such that a simple, homomorphically
evaluated cross product yields cosine similarity, Pearson, and
Spearman correlation. Consequently, clients must provide a
pre-computed matrix (Step @) for each metric rather than
solely the cellx gene/centroid matrix, balancing increased com-
munication overhead with enhanced computational efficiency
in homomorphic operations. The clients then encrypt (Step @)
and upload both datasets to the mapping server (Step )
before providing a permuted list of cluster indices per cell in
the query dataset to the aggregation server (Step ), which
is required to provide statistics on cell level later.

C. Privacy-Preserving Cluster Mapping

During this phase, the mapping server maps cells from
the query dataset to the reference dataset based on selected
features. scmap mappings, being directional from the query to
the reference dataset, necessitate bi-directional matching. This
matching involves projecting Client A’s data onto Client B’s
dataset (Step @) and vice versa (Step ) by alternating the
roles of the query and reference datasets. These computations
are independent and can be executed concurrently or sequen-
tially. To match the query to the reference, the mapping server
calculates a dot product between each combination of samples
from the query and reference dataset. The output from this step
includes the calculated scores for all three metrics per cell and
centroid in the query and reference datasets. The aggregation
server then employs these matrices to analyze overlapping
clusters between the two datasets.

D. Statistical Inference at the Aggregation Server

The aggregation server leverages the homomorphically com-
puted mappings to generate statistics on overlapping clusters
between the datasets of Clients A and B. Therefore, it receives
encrypted metric scores from the mapping server in Step @,
which it decrypts using its private key Step ®. This data
comprises directional metric scores for each combination of
cells and centroids in the query and reference datasets. Utilizing
this information, the server evaluates each query dataset item in
Step @) to determine if it meets the matching criteria established
by scmap [15], i.e., exceeding the threshold for at least two
of the three metrics. The threshold’s strictness is adjustable
based on client (mutually agreed) preferences. Subsequently,
the server ranks clusters based on the count of matches from
the opposing client’s dataset and shares these findings with
both clients in Step . While the server primarily focuses on
these match results to facilitate initial collaboration or further



private data analysis, it can generate additional statistics, such
as identifying split or highly overlapping clusters, if clients
agree to share this information.

E. Entities and Operators

In scE(match), the primary entities are Clients A and B,
the mapping server, and the aggregation server. We assume
Clients A and B will initiate the comparison out-of-band. As
the number of laboratories working within the same research
area is limited, they are likely familiar with each other. A third
party operates the mapping server, which mitigates the need for
mutual trust between clients regarding the accurate execution
of the protocol. Conversely, the aggregation server is managed
by a different third party. Non-collusion between the matching
and aggregation servers is essential to prevent data leakage.
Employing independent cloud providers for each server is a
practical strategy to enforce this separation.

The protocol designates the mapping server as the most
computationally demanding component, primarily handling
data matching. In contrast, the aggregation server principally
manages the download and decryption of matched results.
Implementing a fee-for-service usage could motivate third-
party operations. We suggest that research data management
organizations, such as the German NFDI [51], would be ideal
operators. These entities typically lack incentives to deviate
from the protocol, and their reputation could suffer significantly
if collusion is detected (cf. Section III).

F. Implementation

We implemented scE(match) in Python, utilizing the Pythel
library to interface with Microsoft SEAL’s CKKS homomorphic
encryption (HE) scheme [48], [50]. For handling single-cell
data, we employed the h5ad format and scanpy, scipy, and
numpy libraries for manipulation of pre-encryption data. Due
to the original scmap algorithm being implemented in R, we
re-implemented the necessary components in Python. A side-
by-side comparison between the original scmap and our Python
version yielded identical scores on one of the originally used
datasets [52], confirming the accuracy of our implementation.
As our focus is on computational efficiency, we simulated
network communication by serializing data to disk. Moreover,
we first implemented a single-threaded variant to assess its
complexity regarding input data dimensions. To evaluate today’s
state-of-the-art datasets, we also implemented a version that
parallelizes data encryption and homomorphic computations
(used for Section VI-D).

By design, CKKS supports a SIMD architecture, allowing
multiple data points to be encrypted within a single ciphertext.
We optimized the scmap algorithm to capitalize on this feature
by encrypting data from up to eight cells or centroids into
one ciphertext with 4096 slots. This optimization enables
SIMD parallel processing of multiple cells or centroids, thereby
reducing computational load by a factor of eight.

VI. EVALUATION

We now evaluate the precision and performance of
scE(match) to show that (i) the noise induced by homomorphic

TABLE I: Quantitative overview of the plaintext real-world
datasets used for evaluation.

Dataset Plaintext Data Size # Cells # Genes # Types
D1 Litvinukovd et al. [53] 5.01GB 486134 33538 11
D2 Chaffin et al. [54] 13.5GB 592689 36601 21

encryption does not impact the matching results, and (ii) the
protocol is feasible for real-world applications, even on today’s
large single-cell datasets.

A. Experimental Setup and Datasets

We conducted our evaluations on a single server (2x Intel
Xeon Platinum 8160 CPU with 24 cores, hyper-threading,
192 GB RAM, and an SSD). Each experiment was repeated 30
times to establish 95 % confidence intervals. All processes were
executed sequentially on the same server, with data transmission
being simulated via disk storage.

Datasets. Given the unavailability of original scmap datasets
and the emergence of significantly larger single-cell datasets,
we evaluated scE(match) using two recent datasets covering
heart tissues, as shown in Table I. As the control flow of
HE protocols is independent of any data content, we do not
expect significant runtime differences when utilizing other data.
However, these datasets vary in cell and feature counts and
exhibit varying clustering patterns, affecting the data volume
and, thereby, overall runtime.

For the performance and storage evaluation, we subsample
the Dataset D1 via stratified sampling to generate query datasets
with an artificial number of cells. To also create datasets with
an artificial number of clusters, we group clusters by their size
and then perform stratified sampling from the top n clusters.
Here, we use five clusters with a total of 1000 cells as a
baseline. As scmap recommends using 500 features, we fix
this number by instructing our feature selection to select 500
genes.

B. Precision

Given that CKKS ciphertexts approximate real numbers, we
must assess whether this approximation substantially affects the
matching results of scE(match). Here, any early imprecision
might amplify in the following calculations. Fig. 4 illustrates
the difference in metric scores between plaintext scmap and
scE(match). For all three metrics, 99 % of scores calculated
by scE(match) differ by less than 1.16 x 1079 from those
of the pure scmap variant. Moreover, a worst-case analysis
involving random perturbations of metric scores in [0, 1]
indicates that 99 % of metric score deviations that alter the
matching decision, such as failing to recognize a genuine cluster
member, deviate by at least 9.33 x 1073, Consequently, any
imprecision introduced by HE is significantly lower than this
threshold, ensuring that it does not compromise the matching
accuracy of scE(match).

C. Performance and Storage

Initially, we conduct synthetic measurements of the complete
protocol based on dataset characteristics such as the number
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Fig. 4: Deviation due to HE-induced noise in metric scores for
scE(match)’s cell-to-cluster mapping step. We observe errors
in the matching starting at a deviation of 1e 3, i.e., more than
two orders of magnitude above the observed noise level.

of cells and clusters. As shown in Fig. 5 (top), the analysis
begins with a baseline dataset comprising 1000 cells and five
clusters. We then increase the number of cells and clusters at
one client to explore scE(match)’s scaling behavior (G4). Each
step of the process and the computational demands for each
entity are as follows.

Clients. Clients start by reading and preprocessing datasets to
optimize them for HE metric computations. This step includes
data scaling and encryption before uploading the ciphertexts
to the mapping server. For our largest synthetic dataset, i.e.,
100000 cells, these steps consume 158s + 1.9, out of which
the encryption is the most time-consuming operation with 142 s
=+ 1.6. The encryption results in three pre-scaled and encrypted
versions of the feature matrix, requiring 14.8 GB of storage,
an increase of 36.8 x compared to the plaintext dataset but
still manageable with off-the-shelf hardware.

Mapping Server. Upon receiving the encrypted data from
clients, the mapping server calculates metric scores for each cell
and centroid matrix combination in both matching directions.
The runtime of this step is 3186s + 18 for the most extensive
dataset. Again, our measurements indicate the homomorphic
operations as the most resource-intensive consuming 3149s +
18, followed by data serialization and deserialization processes.
The output of this step, i.e., the homomorphically encrypted
metric scores require 51.2MB of storage per dataset, an
increase of 4.2 x compared to the plaintext dataset.

Aggregation Server. The aggregation server’s role is to
download the encrypted metric scores from the mapping server,
decrypt them, and derive matching statistics for all cluster
pairs between the two datasets. It, therefore, has received
anonymized cluster indices from both clients and can attribute
calculated cluster mappings to the correct clusters without
revealing the cluster names. Out of the total runtime of 0.92s
4 0.04 for these steps, the decryption of the metric scores
is most time-intensive 0.16s + 0.01, whereas the rest is
spent on data deserialization and serialization. However, the
aggregation server’s requirements are minimal compared to
the other entities, which is also reflected in the output size of
35.9MB.

Scalability. The dependency of the runtime on each number
of cells and clusters is linear, as shown in Fig. 5. Specifically,
doubling the amount of cells also increases runtime by a factor
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Fig. 5: Runtime and output storage requirements of scE(match)
while fixing the number of clusters to five (top row) and cells

to 1000 (bottom row).

of two. This ratio is even better for the number of clusters, as
we observe a doubling in runtime when increasing the cluster
count by nine. As today’s single-cell datasets mostly scale in
the number of cells but rarely exceed 20 different meaningful
clusters [20], we derive a mostly linear scaling regarding dataset
sizes.

Today’s single-cell datasets are typically well beyond the
cell counts evaluated in Fig. 5. To evaluate larger datasets, we
thus employ a parallelized version of our implementation (cf.
Section V-F), which distributes de/encryption and homomorphic
computation across the up to 96 threads of our server. For
the 100000 cell dataset measured in Fig. 5, this parallelized
version reduces the runtime by a factor of 12.7 compared
to the sequential version. This speedup is sourced mainly
by the parallelizability of the client-side encryption (three
precomputed matrices can be encrypted in parallel) and server-
side mapping operations (ciphertext batches can be processed
in parallel at the cost of duplicating the reference dataset).
Additional startup costs for small datasets dominate the speedup
but tend to reduce for large datasets. For the full version of
Datasets D1 and D2, Table II provides an overview of the
runtime and storage requirements, utilizing the paralellized
implementation. Overall, we find that scE(match)’s performance
renders it well-suited for real-world applications, even on
today’s large-scale single-cell datasets. In the following, we
show that scE(match) also provides useful matching results on
these datasets, which promise to support research in the field.

D. Real-World Utility

To demonstrate that scE(match) facilitates privacy-preserving
clustering comparisons of real-world datasets, we evaluate
its utility (G3) on two distinct datasets. These datasets were



TABLE II: Matching results on the full datasets, via self-
projection with 50 % of data on each client (D1, D2) and
cross-projection with one full dataset on each client (D1 <
D2). Directional precision/recall (A — B/B — A) is macro-
averaged for (Un-)Supervised and supervised blinded (SB)
feature selection.

Dataset FS Runtime Output [GB] Prec. Rec.  Unassig.
(CA/CB/M/A) [%] [%] [%]

U 34m45s 33/33/0.5/0.001  74/73  51/52 25/25

D1 S 7m33s  8.3/8.3/0.5/0.001 81/81  82/81 5.6/6.6
SB 16m 8s 17/17/0.5/0.001  81/81  81/78 7.1/10
1h21m30s 44/44/1.2/0.001  90/90  83/83 6.3/6.7

D2 S 37m 38s 22/22/1.2/0.001  91/92  91/92 1.7/1.6
SB  1h2Im2ls 44/44/1.2/0.001  90/91  90/91 2.9/2.5

D1 U 1h46m4ls 67/87/1.5/0.001  87/85 57/48 32/43
> S 38m8s 33/22/1.5/0.001  86/86  76/77 13/12
D2 SB  1h22m17s 67/44/1.5/0.001  86/87  70/71 20/20

independently collected and analyzed by different research
groups, featuring inherent batch effects and hardware biases,
thus mirroring the intended application scenario for scE(match).

Datasets. After using the Dataset D1 as a basis for subsam-
pling in our synthetic performance evaluation, we now study
the entire Dataset D1, as well as a second Dataset D2 which
also covers heart tissues. While Dataset D1 features different
cell types from healthy donors, Dataset D2 also contains
samples from patients with hypertrophic (HCM) and dilated
cardiomyopathy (DCM) [54], which do not have corresponding
clusters in the D1 dataset. Besides, both datasets contain partly
overlapping cell types that can considered similar. For instance,
D1 includes “Pericytes”, whereas D2 includes “Pericytes_I"” and
“Pericytes_II". To assess matching accuracy, a domain expert
created a baseline mapping of these cell types, which serves as
ground truth for our evaluation of the cross-projection scenario.
Here, an ideal matching between D1 and D2 (with precision
and recall equal to one) would project corresponding cell types
on each other and map remaining cell types to “unassigned”
in the other dataset.

Matching Results. Table II presents the matching outcomes
for entire datasets in both self-projection and cross-projection
scenarios. We observe that scE(match) accurately identifies
most relationships. Supervised feature selection consistently
achieves the highest precision and recall, while its unsupervised
counterpart tends to leave a higher proportion of cells unas-
signed. In the supervised-blinded variant, designed to prevent
direct transmission of marker genes to the other client by adding
a randomly selected feature for each marker gene, there is an
increase in unassigned cells and a reduction in recall. However,
scores remain closer to supervised than to unsupervised feature
selection. Besides, precision remains robust. This supports
the effectiveness of blinding as a strategy to obscure specific
marker genes.

Supervised Feature Selection Reduces Runtime. A side
effect of supervised feature selection can be a reduction of

the selected features for the metric computation. Compared
to the 500 features of unsupervised feature selection, in our
case, supervised feature selection yields between 92 and 173
features which depends on the dataset, dataset size, and random
initialization of NS-Forest. As shown in Table II, this decrease
leads to a reduction in runtime by 78 % for D1, 54 % for
D2 and 64 % for D1<+D2, compared to unsupervised feature
selection and with similar effects on client output sizes.

E. Security and Privacy Discussion

We assume the HE cryptosystem to be secure; as such, it will
ensure data privacy. Nonetheless, our protocol execution might
expose certain information about data and metadata. We detail
these aspects and discuss their implications for the privacy (G1)
and IP (G2) of data providers, and propose potential mitigation
strategies. Additionally, we revisit our security assumptions,
particularly concerning honest-but-curious entities and the non-
collusion requirement between the matching and aggregation
servers (cf. Section III), and discuss the consequences of
relaxing these requirements.

Metadata Leakage. The encrypted dataset size reveals the
approximate number of cells and centroids to the matching
and aggregation servers (cf. Fig. 5). As clients anticipate some
information disclosure as part of the protocol, we consider this
leakage acceptable. Moreover, despite being data-independent,
our protocol does not conceal any communication patterns,
and it reveals the identities of entities and their communication
frequency. Although not considered sensitive, these patterns
could be obscured using mechanisms like Tor [55].

Mapping Granularity. While cluster names need not be
visible to remote clients (they only see anonymized indices),
this complete mapping might still have privacy implications:
For instance, information as shown in Fig. 2 might reveal when
clusters have been further subclustered in a remote dataset,
and we suppose that repeatedly adding artificially placed cells
in the query dataset or additional centroids in the reference
dataset will eventually help to triangulate specific cell clusters.
As a mitigation strategy, the clients could agree to apply
thresholding to the mapping results. Then, the aggregation
server would, for instance, only reveal a relation to the largest
matching cell cluster from the query dataset. For the exemplary
mapping shown in Fig. 2, such a result would, for instance,
exclusively map “Pericyte I” to the “Pericytes” class of the other
dataset, while disregarding all other mappings that originate
from the “Pericyte I cluster. We thus consider filtering a viable
countermeasure to reduce leaking such sensitive IP.

Non-Collusion. Removing the non-collusion requirement
risks severe privacy breaches, such as decrypting precomputed
matrices to infer raw gene expression data. Similarly, collusion
between a client and the aggregation server could expose
detailed metric scores, potentially enabling triangulation of
data positions in the other client’s dataset, thus infringing on
intellectual property rights. However, a client must collude
with the matching and aggregation servers to access the other
client’s raw data. We thus consider this threat to be impractical
in our setting (cf. Section III).



Iterative Protocol Execution. Our protocol is designed
to only provide matching results without detailed correlation
scores at the cellular level. We suppose that frequent re-
evaluation of scE(match) while slightly shifting cells in the
query datasets eventually allows some triangulation of the
centroids in the reference dataset. A single execution of the
protocol, however, can only leak this information on a coarse
level, i.e., for the locally provided centroids. As protocol
execution requires consent from both clients, we do not consider
this attack vector practically relevant.

Overall, we assess the security and privacy implications of
scE(match) to be manageable for the intended applications.

VII. DISCUSSION AND IMPACT

scE(match) provides single-cell researchers with a tool for
privacy-preserving comparison and integration of sensitive
datasets while maintaining data confidentiality. It demonstrates
scalability beyond today’s single-cell datasets, delivers precise
matching results, and facilitates collaboration on previously
inaccessible data. We now explore this research’s implications,
limitations, and future directions.

Impact. scE(match) offers insights into how various re-
searchers categorize their cell datasets, comparing annotations,
cell types, and other cluster-dependent information. Typically,
sharing such detailed information requires a lengthy publication
process or might not occur if findings are inconclusive. Here,
scE(match) constitutes a novel tool that accelerates the initiation
of new collaborations across laboratories, especially where
privacy and intellectual property previously impeded such
efforts. It thus constitutes an ideal tool for privacy-concerned
researchers.

Limitations and Alternative Designs. scE(match) may face
adoption challenges due to its runtime overhead factor of 46.2
compared to plaintext execution and the need for two third
parties for matching and aggregation. Subsampling the query
dataset might be one option to decrease runtime. Alternatively,
moving the matching process to clients poses minimal security
risks, allowing data to be archived locally while waiting for
potential future compromises of the cryptosystem or keys.
If clients are willing to share their encrypted centroids with
each other, the mapping server can thus be omitted. This
approach eliminates the need for a mapping server by directly
sharing encrypted data among clients, significantly reducing
the observed communication overhead by scE(match).

Future Work. As our main objective was to show the
feasibility of scE(match), this study did not evaluate the
networking components. To ensure its practical applicability as
a ready-to-use tool, these components should be implemented
and tested in real-world settings despite anticipated minimal
communication overhead. Besides, future improvements could
involve adapting existing tools like Harmony, which have
surpassed scmap in cell-level integration tasks [16], [17], to
support homomorphic operations for secure data integration
and downstream analysis not only on the cluster but also on
cell level. Here, cell-level integration would enable the privacy-
preserving adaptation of more advanced downstream analysis

tasks, such as joint derivation of annotations with increased
statistical power. Finally, future work should aim at extended
the biological utility of scE(match) by considering more, and
more diverse datasets, such as extending the evaluation to
datasets from and across different tissues or organisms.

Overall, we are the first to add privacy preservation to cluster-
to-cluster matching in single-cell research. Thus, we provide
significant added value for collaborating on private single-cell
datasets.

VIII. CONCLUSION

In this study, we introduced scE(match), a privacy-preserving
tool designed to address significant challenges in collaborative
single-cell RNA sequencing data analysis. By leveraging
homomorphic encryption, scE(match) enables the secure com-
parison of single-cell clusters between different datasets. Our
comprehensive evaluation demonstrates that scE(match) can
accurately match clustered cells across disparate datasets
while maintaining the confidentiality and integrity of the
data. This mitigates risks related to data privacy and IP
leakage and facilitates a collaborative environment where
researchers can securely compare findings and accelerate
scientific discoveries. Although preliminary, our promising
results highlight its potential, with future enhancements planned
for performance optimization and real-world testing of its
networking components.
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Since the evaluation of scE(match) relies on published
datasets [53], [54], our research did not directly involve human
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