
SpinTrap: Catching Speeding QUIC Flows
Ike Kunze, Constantin Sander, Lars Tissen, Benedikt Bode, Klaus Wehrle

Chair of Communication and Distributed Systems, RWTH Aachen University, Aachen, Germany
{kunze, sander, tissen, bode, wehrle}@comsys.rwth-aachen.de

Abstract—The resilience of the Internet to high traffic loads
fundamentally relies on hosts responding to congestion, i.e., that
they back off when the network is overloaded. Despite the
corresponding wide-spread deployment of congestion control,
unresponsive hosts still represent a danger and can wipe out all
benefits of modern congestion management approaches, such as
L4S. Hence, identifying (and isolating) unresponsive flows can
contribute to improving the Internet’s resilience. Yet, existing
approaches only provide broad or probabilistic solutions which
become inapplicable with QUIC or also harm benign traffic.

In this paper, we propose SpinTrap, a speed trap for Internet
flows designed to identify unresponsive traffic. Leveraging the
QUIC spin bit, SpinTrap first monitors the sending behavior
of QUIC flows before assessing their congestion responsiveness
by checking for reduced sending rates as reaction to congestion
signals (packet loss and ECN markings). Evaluating our eBPF
prototype, we show that SpinTrap can accurately track the
sending rates and assess the responsiveness of QUIC traffic,
singling out flows that do not react to congestion. As such,
SpinTrap provides a novel building block for Internet congestion
management that can help in improving the Internet’s resilience.

I. INTRODUCTION

© IEEE, 2024. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: https://doi.org/10.1109/NOMS59830.2024.10575719

Avoiding an Internet congestion collapse relies on the
cooperation of all participating entities. Applications typically
deploy congestion control (CC) [1] provided by congestion-
aware transport protocols or implement their own CC [2] and
are expected to react to congestion once per round trip [3].
Today’s congestion management further includes active queue
management (AQM), i.e., services deployed in the network
that give end-hosts earlier and more specific feedback on the
current congestion status. Latest proposals, such as L4S [4],
take this approach to the extreme and aim at providing very
low queuing delays with very low congestion loss, but require
a well-aligned interaction between CC and AQM.

Despite this progress, the Internet’s resilience to high traffic
loads still relies on the assumption that most traffic is CC-
driven while unresponsive flows remain a potential cause for
future congestion collapses [5]. In this context, AQM could
provide incentives for deploying CC [6] and, indeed, many
proposals include mechanisms to limit the advantages of CC
free riders [7]–[9]. However, these approaches only probabilis-
tically or broadly identify misbehaving traffic, e.g., by random
packet drops to target large bandwidth flows, which also hurts
benign actors. Hence, while AQM can prevent unresponsive
flows from gaining unlimited advantages, it struggles with
such traffic and benefits are often wiped out (cf. L4S [10]).
Thus, congestion management needs solutions for identifying
unresponsive flows, e.g., via their sending behavior.

Traditionally, flows using CC are driven by the so-called
congestion window (cwnd) which caps the in-flight data.
Hence, most related works assess CC behavior via estimating
the cwnd [11]–[14]. However, the cwnd is not directly
exposed to passive observers and needs to be inferred from
flow behavior. For TCP, this process involves assigning the
transmitted data to individual round trips, which have to be
inferred as well [15]. Additional challenges are the increasing
use of pacing and novel CC algorithms, such as BBR [16], that
are no longer directly driven by the cwnd. Solutions assessing
the flow behavior of TCP are thus prone to errors.

Instead of a detailed classification, other approaches assume
TCP to be responsive and UDP to be unresponsive [17], [18]
which is problematic in light of a changing Internet land-
scape [19]. For example, QUIC [20] represents a new class of
responsive UDP applications and there is no general way to
distinguish QUIC from other UDP traffic [21], which makes
broad classifications by related work infeasible. Yet again,
QUIC, implemented in user space, also poses new challenges
as its CC can be easily modified [22], [23], such that it cannot
be simply classified as responsive, either. Fortunately, QUIC
also enables a new solution space as we show in this paper:
its optional spin bit mechanism, while intended for round-trip
time measurements, lends itself for accurately tracking the
sending behavior of QUIC flows, which makes it possible to
assess their congestion responsiveness.

Hence, we propose SpinTrap, a speed trap for Internet
flows. SpinTrap leverages the spin bit for tracking the sending
volumes of QUIC traffic and observes any visible congestion
signals in the form of packet drops or Explicit Congestion
Notification (ECN) markings. Based on this information,
SpinTrap assesses the congestion responsiveness of flows by
checking whether they react to the observed signals: those
subject to signals should show a corresponding decrease in
the sent data volume. Evaluating a prototype of SpinTrap with
three QUIC stacks, we find that it can accurately track the
sending behavior and assess the responsiveness of the studied
flows. SpinTrap even uncovers that some stacks do not always
adequately react to the congestion signals. Overall, this paper
contributes the following:

• We propose SpinTrap which uses the QUIC spin bit to
identify unresponsive QUIC flows.

• We prototype SpinTrap in eBPF and evaluate it using
three popular QUIC stacks.

• Our results indicate that SpinTrap can serve as a novel
building block for Internet congestion management and
that it enables a broad spectrum of future work.

https://doi.org/10.1109/NOMS59830.2024.10575719

II. A PRIMER ON CONGESTION MANAGEMENT

The decentralized allocation of bandwidth is a key chal-
lenge in the Internet as most flows strive for maximizing their
throughput. Addressing the concomitant risk of a congestion
collapse, end-hosts are encouraged to deploy congestion con-
trol (CC) [1], i.e., adjust their sending rates to the current
network congestion status. For this, senders typically maintain
a congestion window (cwnd), using network feedback, e.g.,
via congestion signals, to estimate how much data can be sent
without causing congestion and then limiting their unacknowl-
edged in-flight data to this estimate. We label flows that neither
deploy CC nor react to congestion signals as unresponsive.
Congestion signals. Packet loss is the traditional indicator
for overflowing buffers and an overloaded network, but it
comes with performance penalties [16]. In contrast, Explicit
Congestion Notification (ECN) [3] allows signaling impending
congestion without packet loss using two bits in the IP header:
end-points can use any of two available ECT codepoints to
enable ECN while network hops can signal congestion by
changing ECT to CE. CE markings are typically emitted by
active queue management (AQM) mechanisms that give early
feedback to end-hosts and actively assist in the allocation of
bandwidth. Classic CC interprets CE signals equally to packet
loss and should react to both once per window of data [3]
while scalable CC can react more than once [24].
Advanced congestion management. Originally intended to
avoid a congestion collapse, congestion countermeasures in-
creasingly aim to additionally improve end-to-end perfor-
mance. As a latest innovation, L4S [4], e.g., envisions provid-
ing ultra-low queuing delays across the Internet by sending
fine-grained, more frequent ECN markings for a DCTCP-
style, scalable CC [25] that relies on end-host and network
support. Hence, the discussed concepts demand different
forms of end-host cooperation and congestion management.
Congestion management adoption. Avoiding a congestion
collapse “only” requires end-hosts to deploy some form of
responsive CC. RFC 7567 [5], thus, recognizes unresponsive
traffic as a threat while Floyd and Fall [6] identify AQM
mechanisms as potential incentive givers for using CC, e.g.,
by restricting the bandwidth of unresponsive flows. Further
reducing congestion-related effects, e.g., with L4S, stretches
the assumed support to ECN awareness and scalable CC.
Extending Floyd and Fall’s thought, AQM could again provide
incentives for the needed technological deployments, e.g.,
via L4S benefits for benign flows, but first requires suitable
measures for identifying and handling unresponsive traffic.
Related work on handling unresponsive traffic. Many
popular AQM mechanisms, such as RED [26] and CoDel [27],
and even algorithms designed with unresponsive traffic in
mind, such as CHOKe [7], struggle when facing unresponsive
flows [8]. CHOKe, e.g., assumes large queue and traffic
shares of misbehaving flows and compares each incoming
packet to a random packet in the queue, dropping both if
they belong to the same flow. However, this mechanism has
trouble singling out unresponsive traffic and also significantly

affects benign traffic [9]. Similar problems arise for related
works that also equate high queue shares or flow arrival rates
with unresponsiveness [28]–[32]. Some approaches follow
an orthogonal path, broadly assuming all UDP flows to be
unresponsive and isolating them [17], [18].
The need for assessing responsiveness. Probabilistic solu-
tions always carry the risk of harming benign traffic. Global
considerations, such as demonizing UDP, are even more
problematic, especially in light of a changing Internet land-
scape [19] and a growing share of responsive UDP traffic,
e.g., using QUIC [33], [34] or representing videoconferencing
software [2], [35]. Yet again, the user-space nature of QUIC
introduces a lot of variability in CC implementations [22],
[23], bringing into question whether all QUIC traffic should
even be broadly classified as responsive as is generally done
for TCP. Consequently, there is a growing need for assessing
the responsiveness of traffic more closely.
Related work on assessing congestion responsiveness.
There are many works studying the congestion response of
remote hosts that aim to identify their CC algorithms (CCAs);
we focus on passive approaches as the only suitable options
for in-line co-deployment with AQM. While some works
use end-to-end machine learning (ML) [36], [37], most rely
on estimating and analyzing the cwnd. Jaiswal et al. [11],
e.g., replicate the sender-side cwnd state with a finite state
machine but need to explicitly model CCAs. This approach
is impractical, especially considering the variety of QUIC
implementations [22], [23]. Other approaches instead use the
flow round-trip time (RTT) to approximate the cwnd as
the amount of inflight bytes per RTT, e.g., via the “flight
method” [12] or the TCP timestamp option [13]. However, the
accuracy of intermediate RTT estimates is challenged by, e.g.,
the increasing use of pacing, i.e., spreading out transmissions
over entire RTTs. Finally, Hagos et al. [14] estimate the in-
flight bytes of a connection to then approximate the cwnd
via ML. Notably, no solution actually assesses the respon-
siveness of flows as they only focus on estimating the cwnd.
Consequently, there is no suitable method for identifying
unresponsive traffic for use in conjunction with AQM.
Takeaway. Today’s congestion management has evolved from
its original intention of preventing a congestion collapse and
increasingly strives for performance benefits. These bene-
fits rely on an increasing coupling between network-based
AQM and end-host CC, and an increasing deployment of
corresponding mechanisms, such as ECN or scalable CC.
Ideally, existing techniques are equipped with mechanisms to
encourage CC (or even ECN/L4S) while still being capable of
handling unresponsive traffic. As existing works are not up for
this task, we require new approaches that can reliably assess
the congestion responsiveness of flows.

III. SYSTEM DESIGN

Fully leveraging today’s congestion management ap-
proaches requires identifying (and isolating) unresponsive
traffic as it can wipe out all potential benefits (cf. Sec. II).
Addressing this need, we propose SpinTrap, an Internet speed

① Sending Window Tracking ② Responsiveness Assessment

cwnd

Server Client
Spin: 0

cwnd Spin: 1

Observer

Spin cycle se
nd

in
g

w
in

do
w

Spin cycles / round-trips

Spin: 1

Spin: 0
congestion signals

window references

Fig. 1. SpinTrap uses the spin bit semantics for 1 tracking the instantaneous sending window. For 2 assessing responsiveness, it stores a sliding window
of window estimates (blue line) and congestion signals (packet loss, CE markings; orange bolts). It then compares window estimates with congestion signals
(red dots with bolts) with ones that could have reacted on them (red dots without bolts). Flows without window reduction are classified as unresponsiveness.

trap that 1 tracks the sending behavior of QUIC flows and
2 assesses their congestion responsiveness as visualized in

Fig. 1. In particular, we monitor the instantaneous sending
window, i.e., the amount of bytes transmitted in each round
trip, and then check if flows react to congestion signals by
reducing their sending volumes. Subsequent applications can
then use the assessment to, e.g., provide better performance to
responsive flows, thus incentivizing CC and ECN deployment.
In this paper, we solely focus on identifying unresponsive
traffic to provide a solid foundation for future work. For this,
we examine the QUIC spin bit as one solution for tracking
the sending behavior (1) while we leverage packet loss and
ECN to assess responsiveness (2).

A. Tracking the Instantaneous Sending Window – 1
The first main component of SpinTrap tracks the amount of

data transmitted by QUIC flows in each round trip using the
explicit measurement signals of QUIC’s spin bit.
Spin bit. The spin bit is a binary, explicit measurement signal
designed to enable RTT measurements. As illustrated in Fig. 1
(left), the server of a connection always reflects the spin bit,
i.e., it sends out the last value it has received, while the client
spins the bit, sending out the inverse. Two consecutive flips of
the resulting square wave constitute a spin cycle and indicate a
round trip while the time between these flips equals the RTT.
Tracking sending windows via the spin bit. The cwnd
defines the maximum amount of unacknowledged payload
bytes a connection may have in flight. Considering that the
process from sending a packet to receiving an ACK takes
at least one round trip, the amount of bytes transmitted in
this round trip can, in the best case, correspond to the cwnd,
further coinciding with the spin bit semantics as visualized
in Fig. 1 (left). However, there are several cases where
this correlation does not apply, such that we focus on the
aforementioned instantaneous sending window.
Why SpinTrap does not track the cwnd. In practice, senders,
besides being application-limited, can transmit less than the
cwnd, e.g., if packets of the previous cycle are still unac-
knowledged and block sending capacity. Additionally, some
CCAs, such as BBR [16], do not directly follow the cwnd. As
a consequence, estimating the cwnd based on the transmitted
bytes is prone to error. Instead, using the instantaneous send-
ing window allows us to assess the perceivable impact of the

tracked flows. SpinTrap, thus, stores the spin bit state of each
flow to distinguish spin cycles, counts the transmitted QUIC
bytes for each cycle to estimate the instantaneous sending
window, and logs the count at each spin bit flip. Overall, the
instantaneous sending window represents the amount of data
a sender sends and is still ultimately governed by CC.
Sources of inaccuracy. RFC 9002 [38] specifies that QUIC
protocol headers and header protection mechanisms are con-
sidered in the cwnd and, thus, in the payload sending window.
However, some QUIC packets, e.g., only containing ACK
frames, are not subject to CC, but indistinguishable on the wire
due to QUIC’s encryption. Hence, counting all QUIC bytes
theoretically causes an overestimation of the instantaneous
sending window while misclassified spin cycles, e.g., due
to reordering, could cause an underestimation. Additionally,
RFC 9000 [20] mandates end-hosts to disable the spin bit
for one in 16 connections to address privacy concerns [39],
disabling the mechanism altogether for some connections.

B. Congestion Responsiveness Assessment – 2

In a second step, SpinTrap assesses the congestion re-
sponsiveness of flows using its sending window estimates
and information on observed congestion signals. Tradition-
ally, these signals equate to packet loss while ECN offers
an additional, explicit signal. In any case, flows subject to
these signals are expected to decrease their sending windows
to free up queues and relieve congestion. Hence, SpinTrap
observes congestion signals and checks for the described
behavior; flows ignoring congestion signals are classified as
unresponsive. The challenge for SpinTrap lies in correctly
identifying whether or not a flow has seen a congestion signal.
Tracking packet loss. For packet loss, e.g., caused by overfull
buffers or deliberately by AQM, the signal can only be
determined unequivocally on the device causing the packet
loss and on the end-hosts involved in the connection while it is
inaccessible at other hops, especially with QUIC’s encryption.
Co-located with access to queuing and/or AQM information,
SpinTrap can capture these packet loss signals directly.
Tracking ECN. In contrast to packet loss, ECN is an explicit
signal that is set in the IP header. Hence, SpinTrap can track
ECN markings even if these were emitted at other hops earlier
on the flow path. As such, this variant can also be used in a

standalone deployment, e.g., as additional on-path device or
via mirror ports. In this paper, we study both variants.
Assessing the CC reaction. Classic CC is expected to react to
congestion signals once per round trip [3]. As the signal needs
time to propagate back to the sender, the first reaction will, at
the earliest, arrive at the observer one full RTT later (cf. Fig. 1
(left)). Translated to spin cycles, we have to track the sending
window for two to three consecutive spin cycles depending on
whether or not the spin bit flip and congestion signal coincide.
Intuitively, as conceptualized in Fig. 1 (right), the sending
window should be smaller after observing a congestion signal
as reaction to congestion. Hence, for classic CC, tracking if
any congestion signal has been emitted suffices.
Scalable CC. L4S envisions the use of DCTCP-style, scal-
able CC which works on fine-granular queuing statistics
via frequent ECN signals, such that its reaction may also
depend on the number of signals [4]. Thus, assessing its CC
responsiveness potentially requires a more advanced logic,
e.g., including the number of CE markings. However, we
use a simple classification logic which defines those flows as
responsive that have a smaller sending window after observing
at least one CE marking or packet drop. Yet, accommodating
corresponding extensions, SpinTrap also tracks the number of
dropped packets and the number of CE markings.

C. Further Design Considerations

For this paper, we focus on the design of SpinTrap based
on three considerations that we discuss in the following.
QUIC vs. TCP. Conceptually, SpinTrap could track TCP and
QUIC alike. However, as already touched upon in Sec. II and
discussed in more detail by Allman et al. [40], leveraging
implicit TCP semantics for measuring flow characteristics
is imprecise. Allman et al. consequently argue for adding
explicit measurement semantics into end-to-end protocols.
QUIC follows this call with the spin bit, an optional feature
enabling RTT measurements [20]. SpinTrap, thus, focuses on
QUIC and the spin bit to leverage the explicit information,
ideally yielding a more robust assessment. Yet, SpinTrap is
not limited to QUIC and can be extended for TCP, e.g., using
concepts discussed in Sec. II, which we leave for future work.
QUIC identification. QUIC is generally indistinguishable
from other UDP traffic [21]. For simplicity, SpinTrap identifies
QUIC by checking for the fixed bit of QUIC version 1.
While this approach relies on a single bit and might even
become infeasible in light of QUIC bit greasing [41], we leave
providing a robust QUIC identification for future work.
Flow identification. SpinTrap needs to keep per-flow state
and distinguish flows to assess their sending behavior. We
rely on the four-tuple of source and destination IP addresses
and UDP ports. However, with QUIC, multiple connections
could use the same four-tuple and be captured as a single
flow. As an alternative, QUIC enables differentiating flows via
their connection ID, yet connection migration with drastically
changed network conditions without changing IDs could inter-
fere with any subsequent sending behavior assessment. As the
latter scenario seems more likely than the former, we equip

Responsiveness Assessment

enqueue:
full -> drop

dequeue:
AQM drop & ECN

bytes &
spin bit

Fig. 2. SpinTrap tracks the sending windows of flows using a tc filter
(middle) and observes congestion signals using Linux tracepoints (left, right).
The responsiveness assessment is attached as a tc filter and uses the
collected information to classify the responsiveness of flows.

SpinTrap with the four-tuple approach, which can be easily
adapted to the five-tuple to also accommodate TCP.

IV. SpinTrap EBPF PROTOTYPE

We prototype SpinTrap using a combination of eBPF and
Linux kernel tracepoints as visualized in Fig. 2. Via trace-
points, we collect information on packet drops caused by over-
flowing buffers at packet enqueue (left) and packet drops or
CE markings caused by AQM at dequeue (right). We track the
byte counts and spin bit state for packets that have entered the
queue (middle) via a tc filter. SpinTrap’s responsiveness
assessment uses the combined information and is also attached
as a tc filter. Basing on the considerations in Sec. III-C,
we next present relevant details of our implementation.
Short and long headers. Only short header packets carry
the spin bit. However, at connection startup, short header
packets can be coalesced together with long header packets
in a UDP datagram. In this case, there can be at most one
short header packet appearing as the last entry [20]. Hence,
to correctly track all sent bytes, we also check for coalesced
packets by disassembling the entire UDP datagram using
length information in QUIC’s long headers and extracting any
trailing short header packet.
Per-flow state. Using the flow four-tuple as key, a hashmap
stores all relevant per-flow statistics. For estimating the in-
stantaneous sending window, we track the last spin bit state,
and the observed QUIC bytes since the last flip. For assessing
responsiveness, we further track the sending window estimates
of the three previous spin cycles, the congestion signals
(packet drops and CE markings) observed in those cycles,
and a classification; new flows are initialized as unclassified.
Sending window estimation. For packets with a known four-
tuple in the hashmap, we first check for a spin bit flip. In
case of a flip, SpinTrap extracts (i) the current byte count,
and (ii) the current congestion signal counts, updating the
hashmap accordingly before proceeding with the congestion
responsiveness assessment. Otherwise, we only increment
the byte count by the current packet size, i.e., the length
of the QUIC header and payload, leaving the classification
untouched as the current round trip is not yet complete.
Congestion responsiveness assessment. In a final step, Spin-
Trap assesses the responsiveness based on the sending window
estimates and the congestion signal counts. Upon detecting a
spin bit flip, SpinTrap first checks the number of congestion
signals in the oldest cycle. If this count is larger than 0, flows

Delay Shaping

Bandwidth Shaping

Server ClientBottleneck
SpinTrap

Fig. 3. Our testbed consists of three machines. The Bottleneck machine
emulates different network scenarios and deploys SpinTrap while the Server
machine transmits data to the Client machine using three QUIC stacks.

are expected to have reduced their window and we check
for this reaction by comparing the corresponding sending
windows. If the window has indeed decreased, the flow is
classified as responsive; other traffic is classified as unrespon-
sive. SpinTrap pessimistically assumes a noticeable reaction
two RTTs after the initial congestion signal (cf. Sec. III-B).

V. EVALUATION

We extensively study SpinTrap in a controlled testbed,
evaluating the window tracking and congestion responsiveness
assessment for different QUIC stacks and CCAs in different
network scenarios. In the following, we first present our
evaluation methodology before discussing our main findings.

A. Methodology

We conduct our evaluation in the testbed illustrated in
Fig. 3. It consists of three machines running Ubuntu 20.04
that are interconnected with Gigabit Ethernet. QUIC servers
on the Server machine (left) transmit data to QUIC clients on
the Client machine (right), both using a Linux 5.15 kernel.
The Bottleneck machine runs an out-of-tree 5.10. kernel [42];
it shapes network characteristics and deploys our prototype.
Network configuration. We add delay on the ingress of
the interface from Client to Bottleneck using Intermediate
Functional Block (IFB) interfaces and tc netem. We em-
ulate bandwidths on the egress of the same interface using
a Hierarchical Token Bucket (HTB) to which we can attach
child tc qdiscs for modelling different queues and AQM
mechanisms. In all settings shown in this paper, we configure
a bottleneck queue size equal to the bandwidth delay product
(BDP) and use a bottleneck bandwidth of 50 Mbps.
Studied queues. We study the behavior of SpinTrap subject
to a standard drop-tail queue and CoDel [27]. The latter is one
prominent AQM mechanism that can emit the CE markings
needed for SpinTrap’s standalone mode.
Studied QUIC stacks. We test SpinTrap with three QUIC
stacks. Again accounting for SpinTrap’s standalone mode, we
focus on stacks that do support ECN while most do not imple-
ment it [43]. In particular, we use Microsoft’s MsQuic [44],
Amazon’s s2n-quic [45], and picoquic [46], a well-maintained
independent QUIC implementation. We add the spin bit to
MsQuic and s2n-quic as they do not support it by default.
Traffic generation. Throughout all scenarios and connections,
the server transmits one 100 MB file. To investigate the
optimal achievable performance, we enable the spin bit on all
connections, ignoring the recommendations of RFC 9000 [20].
Studied CCAs. We select a common subset of CCAs from
the three QUIC stacks. In particular, all stacks support Cubic,

a classic loss-based CCA that relies on the cwnd and serves
as the TCP default on Linux. We further select BBR as a
modern model-based CCA which does not use the cwnd to
track congestion, but instead estimates the available capacity
via measurements of the BDP. The stacks notably differ
in their BBR implementations: MsQuic uses a pure BBRv1
which does not react to packet loss or ECN while s2n-quic
uses BBRv2, a newer BBR version that also considers these
signals. Picoquic uses an adapted version of BBRv1 described
to also react to packet loss and ECN. Hence, the BBR
implementations might not all provide the expected response
to congestion signals and represent a challenge for SpinTrap.
Measurements. We capture two main forms of information:
for all QUIC end-hosts (server and client), we collect logs
provided by the different QUIC stacks. Picoquic uses the
qlog format [47] while the other stacks use custom formats.
We further capture the detailed output of SpinTrap, including
the timestamp of each spin bit change, the observed sending
window, and the responsiveness classification.
Experiments. We perform twenty independent measurement
runs for each configured scenario.

B. Tracking the Sending Window.

In a first set of experiments, we assess the accuracy of
SpinTrap’s sending window tracker, comparing its estimates
with the groundtruth provided by the QUIC stacks. Here, we
specifically mind the semantics of different frames in QUIC
w.r.t. CC. In particular, packets only carrying ACK frames
are not governed by CC and should not be counted, yet
our Client will mainly only acknowledge the payload of the
Server. SpinTrap might, thus, overestimate the client’s sending
window. To characterize this difference, we subtract the bytes
of packets only carrying ACK frames from the overall number
of bytes sent by the QUIC hosts to correctly represent the
sending window without ungoverned packets and compare it
with SpinTrap’s prediction. Further, to rule out a temporal bias
at the end of the experiment, we filter out the last spin cycle.
Experiment Setup. We start a single flow using each stack
and each CCA, four different RTTs from 5 ms to 100 ms, and
three different queues. Fig. 4 shows the mean absolute differ-
ence in bytes normalized per spin cycle between SpinTrap’s
estimate and the bytes that should be counted at a drop-tail
queue (a), CoDel with packet drop ((b), top), and CoDel with
ECN ((b), bottom). Each point represents one measurement
run; darker circles correspond to tracking the server, lighter
crosses to the client which mainly sends ACKs.

1) Drop-Tail Queue: We first study the accuracy of Spin-
Trap’s sending window tracking on a regular drop-tail queue.
Results. Starting with the servers (darker points in Fig. 4 (a)),
we observe that SpinTrap achieves (near) perfect accuracy
for picoquic and s2n-quic. For MsQuic, there are only slight
overestimations which are caused by MsQuic sending pure
ACK frames that SpinTrap mistakenly includes in its estima-
tion. As the difference is negligibly small (less than 50 bytes),
we conclude that SpinTrap can accurately track the sending
behavior of QUIC stacks that primarily send data.

0 1000 2000 3000

Droptail,5 ms

0 1000 2000 3000

Droptail,10 ms

0 1000 2000 3000

Droptail,50 ms

0 1000 2000 3000

Droptail,100 ms

0.0 0.2 0.4 0.6 0.8 1.0
(a)

01

0 200 400 600

CoDel Drop,5 ms

0 5000 10000 15000

CoDel Drop,100 ms

0 250 500 750

CoDel ECN,5 ms

−4000 −2000 0 2000

CoDel ECN,100 ms

0.0 0.2 0.4 0.6 0.8 1.0
(b)

01
0.0 0.2 0.4 0.6 0.8 1.0

Absolute difference per spin bit cycle [Byte]
0.0

0.2

0.4

0.6

0.8

1.0

s2n-quic
BBR
Cubic
MsQuic
BBR
Cubic
picoquic
BBR
Cubic

Fig. 4. Mean absolute difference between the sending window estimated by SpinTrap and the bytes that should be counted for single flows at a drop-tail
queue (left), a CoDel queue with packet drop (right, top), and a CoDel queue with ECN (right, bottom) with different RTTs.

To study the behavior of QUIC end-points that mainly
acknowledge data, we also inspect the inverse sending di-
rection (lighter crosses in Fig. 4 (a)). In this setting, we
can observe a similar behavior for picoquic and s2n-quic as
both mostly transmit ACK frames with PADDING, meaning
that (almost) all QUIC packets count toward the inflight.
In contrast, MsQuic again sends many ACK frames without
PADDING: these do not count toward the sending window,
causing a large overestimation by SpinTrap. To protect such
pure ACKing flows from a subsequent misclassification, we
could equip SpinTrap with thresholds on a minimum sending
volume that needs to be reached before flows are classified.

2) CoDel: For standalone deployments, SpinTrap’s respon-
siveness assessment requires CE markings, e.g., emitted by
AQM. Hence, in a second scenario, we study the behavior
of SpinTrap’s window tracking subject to CoDel with packet
drop and with ECN. We only configure CoDel’s queue size,
use default or recommended values otherwise, and keep the
remaining configuration from Sec. V-B1 without changes.
Results. Fig. 4 (b) illustrates the mean absolute differences
for CoDel with packet drops (top) and ECN (bottom) for
RTTs of 5 ms (left) and 100 ms (right). The results for CoDel
with packet drops indicate that deploying AQM in general
does not change the fundamental observations from before:
SpinTrap can still track the sending window of all stacks and
CCAs accurately. However, for CoDel with ECN, there are
two noteworthy observations. First, SpinTrap again slightly
overestimates the sending window for MsQuic Cubic which
we attribute to ACK frames without PADDING as before. Sec-
ond, there are significant underestimations for MsQuic BBR
in about half of our experiments which we pinpoint to burst
loss on the ingress interface of our bottleneck machine. In
particular, each experiment shows exactly one spin cycle with
heavy packet loss before the packets reach SpinTrap. Hence,
the inaccuracy is caused by packets not reaching SpinTrap
and not by flaws of our prototype. Yet, this observation shows
that the path from the sender to SpinTrap has a non-negligible
impact on the measured sending windows.
Takeaway. SpinTrap can accurately track the sending window
of all stacks and CCAs in most cases. The main challenges
are overestimations caused by ACK frames sent without
PADDING and underestimations caused by packet loss on
the path from the sender to SpinTrap. However, for picoquic

and s2n-quic, we achieve very high accuracy independent of
the used CCA and traffic pattern. Hence, overall, the sending
window estimation of SpinTrap fulfills its intended task.

C. Congestion Responsiveness Assessment

Given that SpinTrap can accurately track the sending behav-
ior of QUIC flows, we now evaluate how well this information
can be leveraged for assessing the flows’ responsiveness. In
this paper, we use a simple classification logic which checks
for a decreased instantaneous sending window two round trips
after a congestion signal has been noticed. In case there is no
congestion signal for a new classification, we use the previous
one. We further experiment with additional logic in the form
of majority voting: we collect the individual classifications,
but reclassify the flow based on the maximum number of
classifications overall. Thus, a flow that has already been
classified several times as unresponsive will also be classified
as unresponsive even if one individual classification attests
responsiveness. For simplicity, we emulate an unresponsive
sender by fixing the cwnd of a picoquic flow to 4 × BDP
(No CC). Note that this flow still shows some reaction if
packet loss caps its in-flight, preventing No CC from trans-
mitting at full rate (cf. Sec. III-A). In the following, we first
study the assessment quality for single flows before evaluating
a scenario with multiple interacting flows.

1) Single Flow: For the single flow scenario, we mostly
reuse the setup of Sec. V-B: we start a single flow using each
stack and each CCA as well as No CC and setup the testbed
with three different queues and four RTTs. We then compute
the responsiveness score as the fraction of spin cycles in which
a flow has been classified as responsive. Hence, SpinTrap
would ideally give a low score to No CC while all other flows
should get a high score. Fig. 5 shows the responsiveness score
for each flow and iteration at a drop-tail queue (a), CoDel with
packet drop ((b), top), and CoDel with ECN ((b), bottom);
each data point represents the value for one iteration. The
values for the raw classifications are plotted in the unshaded
areas while the shaded regions represent the majority voting.
Drop-Tail. As can be seen in Fig. 5 (a), SpinTrap achieves
very accurate assessments for many stack and algorithm
combinations, such as s2n-quic, MsQuic Cubic, and picoquic
BBR. Where the plain classification struggles, the additional
majority voting can often significantly improve the results,

DropTail,5 ms0
20
40
60
80

100

DropTail,10 ms

DropTail,50 ms0
20
40
60
80

100

DropTail,100 ms0.0 0.2 0.4 0.6 0.8 1.0
01

CoDel Drop,5 ms CoDel Drop,100 ms 0
20
40
60
80
100

CoDel ECN,5 ms CoDel ECN,100 ms 0
20
40
60
80
100

0.0 0.2 0.4 0.6 0.8 1.0
01

Responsiveness
Score

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Re
sp
on

siv
en
es
s
Sc

or
e

s2n-quic
BBR
Cubic
MsQuic
BBR
Cubic
picoquic
BBR
Cubic
NO_CC

(a) (b)

Fig. 5. Responsiveness scores for single flows at a drop-tail queue (left), a CoDel queue with packet drop (right, top), and a CoDel queue with ECN (right,
bottom) with different RTTs. Shaded columns indicate the majority voting results.

which is especially noticeable for MsQuic and s2n-quic Cu-
bic: both see a large range of responsiveness scores in the
plain classification across most settings, but have near perfect
responsiveness scores when applying majority voting.

SpinTrap expectedly struggles when classifying MsQuic
BBR, an implementation of BBRv1, which does not react
to packet loss and ECN. Surprisingly, SpinTrap also fails to
correctly classify picoquic Cubic which it mostly classifies as
unresponsive. Studying our results in more detail, we find that
picoquic Cubic tends to only react to larger numbers of packet
loss, e.g., as part of burst loss, while it seldomly reacts on few
lost packets. As this behavior arguably constitutes unrespon-
siveness, we consider the decision of SpinTrap correct.

Finally evaluating the results for No CC, we observe that
the plain classification is undecided in a lot of cases, indi-
cated by raw responsiveness scores of around 50 % in most
scenarios, meaning that SpinTrap mistakenly deems No CC
responsive in half of the cases. In contrast to these rather
steady results, the majority voting fails to provide a clear
classification, instead yielding a large range of responsiveness
scores which corresponds to SpinTrap constantly flipping its
decision. The main reason for these results is that our emulated
unresponsive sender No CC shows some responsiveness as it
reduces its sending rate when packets are already lost on the
wire but not yet declared lost by the sender which blocks part
of the sending window. Overall, however, SpinTrap generally
fulfills its task despite only using a very simple logic.
CoDel. Next, we study the assessment quality of SpinTrap as
reported in Fig. 5 (b) when using CoDel with packet drops
(top) or ECN markings (bottom) for RTTs of 5 ms (left)
and 100 ms (right). Starting with CoDel with packet drops,
we observe that most settings are similar to the drop-tail
queue. Notable exceptions are picoquic’s and MsQuic’s BBR,
which see lower responsiveness scores. The reason is that
CoDel drops packets earlier than a drop-tail queue, but gives
a less aggressive signal. Hence, the BBRv1 implementation of
MsQuic and the adapted BBRv1 version of picoquic do not
seem to react as strongly. The same holds for picoquic Cubic
due to the reasons discussed in the previous paragraph. Hence,
SpinTrap again arguably identifies unresponsiveness correctly.

Inspecting the ECN variant, we see similar behavior in most
cases. The largest difference is notable for picoquic’s Cubic
implementation which does not react to packet loss, but does
react to ECN and now sees near perfect scores.

Takeaway. Overall, SpinTrap can provide a correct assess-
ment for most CCAs in most cases for single flows. Yet, it
expectedly struggles with BBR and our emulated unresponsive
sender as both do not show a clear behavior. Additionally,
SpinTrap uncovers unexpected unresponsiveness of picoquic’s
Cubic implementation which we verified with additional anal-
yses. Hence, even in cases where SpinTrap mistakenly clas-
sifies flows as unresponsive, the flows also do react in an
unresponsive way, showing that SpinTrap works as intended.

2) Multiple Flows: Lastly, we evaluate SpinTrap in a more
challenging scenario with multiple flows. For this, we let four
flows with CC compete against four flows with No CC. We
judge the responsiveness assessment quality using F1 scores:
unresponsive flows classified as such are true positives, while
responsive flows that are correctly classified as responsive
represent true negatives. Fig. 6 shows the F1 scores for each
stack and CCA with CoDel with packet drop (top) and CoDel
with ECN (bottom). Due to heavy congestion, we further
slightly modify SpinTrap to require a reduction to 90 % or
less of the original window1 and only assess responsiveness
if the original window is larger than four full-size packets to
not classify flows at their extreme lows. Fig. 6 (left) shows
the original results, Fig. 6 (right) the modified results; each
data point again represents the value for one iteration and the
shaded regions again represent the majority voting.
Unmodified SpinTrap. Inspecting Fig. 6 (a), we only observe
few good results, mainly for CoDel with packet loss and
a small RTT. The main reason for this bad performance is
that the bandwidth is severely limited and each NO CC flow
constantly pressures the queue, hence causing the responsive
flows to back off. However, these already operate at their
lower limits and hence cannot back off further causing many
false positives. Similarly, the heavy congestion causes sig-
nificant packet loss for the NO CC flows which hence also
implicitly react to the congestion, thus causing false negatives.
Accounting for these observations, we next study the behavior
of SpinTrap with the modifications described above.
Modified SpinTrap. Looking at Fig. 6 (b), we can see that
the modifications significantly improve the performance of
SpinTrap. In particular, all stacks and CCAs that we have
previously identified as being indeed responsive now see F1
scores of up to 100. However, some algorithms, such as

1For reference, TCP Cubic reduces its cwnd to 70 % upon congestion [48].

CoDel Drop,5 ms0
20
40
60
80

100

CoDel Drop,100 ms

CoDel ECN,5 ms0
20
40
60
80

100

CoDel ECN,100 ms0.0 0.2 0.4 0.6 0.8 1.0
(a) Unmodified

01

CoDel Drop,5 ms CoDel Drop,100 ms 0
20
40
60
80
100

CoDel ECN,5 ms CoDel ECN,100 ms 0
20
40
60
80
100

0.0 0.2 0.4 0.6 0.8 1.0
(b) Modified

01

F1
Score

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
F1

Sc
or
e

s2n-quic
BBR
Cubic
MsQuic
BBR
Cubic
picoquic
BBR
Cubic

Fig. 6. F1 scores of the responsiveness assessment with (right) and without modifications (left) for multiple flows and CoDel with packet drop (top) and
CoDel with ECN (bottom) with different RTTs. Shaded columns indicate the majority voting results.

picoquic Cubic and MsQuic BBR, still challenge SpinTrap’s
classification as they do not show a truly responsive behavior.
Takeaway. SpinTrap is challenged by our emulated unre-
sponsive sender and falsely classifies flows as unresponsive
if they cannot back off further. However, equipping Spin-
Trap with simple additional filters significantly improves the
classification performance, both for packet loss and ECN.
We conclude that SpinTrap can provide a solid basis for
classifying the responsiveness of real Internet flows and that
there is additional potential in focusing its feature set and
studying its performance across even more diverse settings.

VI. DISCUSSION

Our evaluation shows the general usefulness of SpinTrap. In
the following, we discuss a selection of further considerations,
especially regarding its operational use.
Deployment location. SpinTrap relies on packet loss informa-
tion or CE markings. For using packet loss, SpinTrap needs to
be co-located with access to queuing or AQM information. As
such, it could be integrated into existing monitoring systems,
e.g., by leveraging the growing programmability with SDN or
P4 [49]. With ECN, SpinTrap can also be deployed standalone
as an additional on-path device or via mirror ports. Yet,
observed CE markings can be lost on the way to the receiver
after passing SpinTrap as misbehaving devices are known to
interfere [43]. Affected flows would not have a fair chance
to react and might be classified as unresponsive. Hence, for
more reliable assessments, SpinTrap should be deployed close
to the destinations, e.g., at ISP access links.
Which flows to monitor? Tracking all flows with per-flow
state at Internet-scale is infeasible [50]. However, related work
has already shown that random sampling can be sufficient in
many applications [50]–[52] and Internet traffic is generally
imbalanced as relatively few flows carry large shares of the
overall volume [53]. Further considering that these flows pose
a bigger threat if they are unresponsive, using SpinTrap in
combination with a heavy-hitter detection, such as PRECI-
SION [54], could be a sensible deployment scenario.
Using the spin bit. SpinTrap relies on the spin bit, an optional
mechanism of QUIC [20] not contained in other protocols.
However, more than 50 % of QUIC hosts reachable via IP
already support the mechanism [39]. As our approach under-
lines the usefulness of explicit measurement information, we

argue that adding the spin bit on a permanent basis to QUIC,
and maybe as an option to TCP, can help in providing more
measurable information to the network. One open challenge is
checking the spin bit’s correctness as malicious actors could
fake spin cycles, e.g., to hide their unresponsiveness.
Using ECN. While ECN sees broad support for TCP, QUIC
stacks are significantly lacking behind [43] and the use of
ECN with QUIC is currently severely limited as the needed
mirroring of ECN signals is only usable on a small fraction
of connections [43]. However, this will likely change in the
future as ECN mirroring is a mandatory feature of QUIC.
Responsiveness assessment logic. SpinTrap achieves good
results with a simple assessment logic. We further show that
extending our concept with a majority voting and additional
filtering rules can improve the results. Hence, we believe that
SpinTrap provides a solid foundation for future experimenta-
tion to fine-tune the responsiveness assessment. For example,
vanilla SpinTrap considers flows as responsive if they show
any response, i.e., a reduction of 1 byte suffices while larger
reductions might be desirable for larger flows as demonstrated
by our modifications. Finally, incorporating L4S and scalable
CC might require a new assessment logic. We leave studying
these considerations in more detail to future work.

VII. CONCLUSION

Unresponsive flows still strain the resilience of the Internet
and many approaches aiming to limit their advantages cause
unnecessary harm to benign flows. Additionally, unresponsive
traffic can wipe out all performance benefits provided by
modern congestion management approaches, such as L4S,
thus negatively affecting others with their behavior. Hence,
there is a need for identifying unresponsive Internet flows.

In this paper, we propose SpinTrap, a novel building block
for Internet congestion management. SpinTrap leverages the
spin bit to track the sending windows of QUIC flows and
combines this information with observations on packet loss
and ECN markings to assess the flows’ responsiveness. We
prototype SpinTrap in eBPF and evaluate it with popular
QUIC stacks, finding that simple logic suffices for assessing
responsiveness. The resulting flow classification can be used
in multiple ways and lays the foundation for future efforts
protecting the Internet from unresponsive traffic.

ACKNOWLEDGEMENTS

This work has been funded by the German Research Foun-
dation DFG under Grant No. WE 2935/20-1 (LEGATO). We
thank the anonymous reviewers for their valuable feedback.

REFERENCES

[1] V. Jacobson, “Congestion Avoidance and Control,” ACM SIGCOMM
Computer Communication Review, vol. 18, no. 4, pp. 314–329, 1988.
[Online]. Available: https://doi.org/10.1145/52325.52356

[2] K. MacMillan, T. Mangla, J. Saxon, and N. Feamster, “Measuring the
Performance and Network Utilization of Popular Video Conferencing
Applications,” in Proceedings of the 2021 ACM Internet Measurement
Conference (IMC), 2021. [Online]. Available: https://doi.org/10.1145/
3487552.3487842

[3] K. K. Ramakrishnan, S. Floyd, and D. L. Black, “The Addition of
Explicit Congestion Notification (ECN) to IP,” IETF, RFC 3168, 2001.
[Online]. Available: https://doi.org/10.17487/RFC3168

[4] B. Briscoe, K. De Schepper, M. Bagnulo, and G. White, “Low
Latency, Low Loss, and Scalable Throughput (L4S) Internet
Service: Architecture,” IETF, RFC 9330, 2023. [Online]. Available:
https://doi.org/10.17487/RFC9330

[5] F. Baker and G. Fairhurst, “IETF Recommendations Regarding Active
Queue Management,” IETF, RFC 7567, 2015. [Online]. Available:
https://doi.org/10.17487/RFC7567

[6] S. Floyd and K. Fall, “Promoting the Use of End-to-End Congestion
Control in the Internet,” IEEE/ACM Transactions on Networking,
vol. 7, no. 4, pp. 458–472, 1999. [Online]. Available: https:
//doi.org/10.1109/90.793002

[7] R. Pan, B. Prabhakar, and K. Psounis, “CHOKe - a stateless
active queue management scheme for approximating fair bandwidth
allocation,” in Proceedings of the 2000 IEEE Conference on
Computer Communications (INFOCOM), 2000. [Online]. Available:
https://doi.org/10.1109/INFCOM.2000.832269

[8] G. Abbas, Z. Halim, and Z. H. Abbas, “Fairness-Driven Queue
Management: A Survey and Taxonomy,” IEEE Communications
Surveys & Tutorials, vol. 18, no. 1, pp. 324–367, 2016. [Online].
Available: https://doi.org/10.1109/COMST.2015.2463121

[9] G. Abbas, U. Raza, Z. Halim, and K. Kifayat, “ARCH: A dual-mode
fairness-driven AQM for promoting cooperative behaviour in best effort
Internet,” IET Networks, vol. 8, no. 6, pp. 372–380, 2019. [Online].
Available: https://doi.org/10.1049/iet-net.2018.5089

[10] K. De Schepper, O. Albisser, O. Tilmans, and B. Briscoe,
“Dual Queue Coupled AQM: Deployable Very Low Queuing
Delay for All,” arXiv.2209.01078, 2022. [Online]. Available: https:
//doi.org/10.48550/arXiv.2209.01078

[11] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley, “Inferring
TCP Connection Characteristics Through Passive Measurements,”
in Proceedings of the 2004 IEEE International Conference on
Computer Communications (INFOCOM), 2004. [Online]. Available:
https://doi.org/10.1109/INFCOM.2004.1354571

[12] J. Oshio, S. Ata, and I. Oka, “Identification of Different TCP
Versions Based on Cluster Analysis,” in Proceedings of the 2009
International Conference on Computer Communications and Networks
(ICCCN), 2009. [Online]. Available: https://doi.org/10.1109/ICCCN.
2009.5235248

[13] G. Casagrande, F. Granelli, and D. Miorandi, “TCPMoon: Monitoring
the Diffusion of TCP Congestion Control Variants in the Internet,”
in Proceedings of the 2011 IEEE International Conference on
Communications (ICC), 2011. [Online]. Available: https://doi.org/10.
1109/icc.2011.5963408

[14] D. H. Hagos, P. E. Engelstad, A. Yazidi, and Ø. Kure, “General TCP
State Inference Model From Passive Measurements Using Machine
Learning Techniques,” IEEE Access, vol. 6, pp. 28 372–28 387, 2018.
[Online]. Available: https://doi.org/10.1109/ACCESS.2018.2833107

[15] S. Shakkottai, R. Srikant, N. Brownlee, A. Broido, and K. Claffy,
“The RTT distribution of TCP flows on the Internet and its impact on
TCP based flow control,” CAIDA, Technical Report, 2004. [Online].
Available: https://catalog.caida.org/paper/2004 tr 2004 02

[16] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and
V. Jacobson, “BBR: Congestion-Based Congestion Control: Measuring
bottleneck bandwidth and round-trip propagation time,” ACM Queue,
vol. 14, no. 5, pp. 20–53, 2016. [Online]. Available: https:
//doi.org/10.1145/3012426.3022184

[17] S. Yilmaz and I. Matta, “On Class-based Isolation of UDP,
Short-livedand Long-lived TCP Flows,” in Proceedings of the 2001
International Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems (MASCOTS), 2001.
[Online]. Available: https://doi.org/10.1109/MASCOT.2001.948894

[18] T. Yamaguchi and Y. Takahashi, “A queue management algorithm for
fair bandwidth allocation,” Computer Communications, vol. 30, no. 9,
pp. 2048–2059, 2007. [Online]. Available: https://doi.org/10.1016/j.
comcom.2007.04.002

[19] A. Feldmann, O. Gasser, F. Lichtblau, E. Pujol, I. Poese, C. Dietzel,
D. Wagner, M. Wichtlhuber, J. Tapiador, N. Vallina-Rodriguez,
O. Hohlfeld, and G. Smaragdakis, “The Lockdown Effect: Implications
of the COVID-19 Pandemic on Internet Traffic,” in Proceedings of the
2020 ACM Internet Measurement Conference (IMC), 2020. [Online].
Available: https://doi.org/10.1145/3419394.3423658

[20] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed
and Secure Transport,” IETF, RFC 9000, 2021. [Online]. Available:
https://doi.org/10.17487/RFC9000

[21] M. Kühlewind and B. Trammell, “Manageability of the QUIC
Transport Protocol,” IETF, RFC 9312, 2022. [Online]. Available:
https://doi.org/10.17487/RFC9312

[22] A. Mishra, S. Lim, and B. Leong, “Understanding Speciation in
QUIC Congestion Control,” in Proceedings of the 2022 ACM
Internet Measurement Conference (IMC), 2022. [Online]. Available:
https://doi.org/10.1145/3517745.3561459

[23] A. Mishra and B. Leong, “Containing the Cambrian Explosion
in QUIC Congestion Control,” in Proceedings of the 2023 ACM
Internet Measurement Conference (IMC), 2023. [Online]. Available:
https://doi.org/10.1145/3618257.3624811

[24] K. De Schepper and B. Briscoe, “The Explicit Congestion Notification
(ECN) Protocol for Low Latency, Low Loss, and Scalable Throughput
(L4S),” IETF, RFC 9331, 2023. [Online]. Available: https://doi.org/10.
17487/RFC9331

[25] K. De Schepper, O. Tilmans, B. Briscoe, and V. Goel,
“Prague Congestion Control,” IETF, Internet-Draft, 2023, work
in progress. [Online]. Available: https://datatracker.ietf.org/doc/
draft-briscoe-iccrg-prague-congestion-control/

[26] S. Floyd and V. Jacobson, “Random Early Detection Gateways
for Congestion Avoidance,” IEEE/ACM Transactions on Networking,
vol. 1, no. 4, pp. 397–413, 1993. [Online]. Available: https:
//doi.org/10.1109/90.251892

[27] K. Nichols and V. Jacobson, “Controlling Queue Delay,” ACM
Queue, vol. 10, no. 5, pp. 20–34, 2012. [Online]. Available:
https://doi.org/10.1145/2208917.2209336

[28] G. Chatranon, M. A. Labrador, and S. Banerjee, “BLACK: Detection
and Preferential Dropping of High Bandwidth Unresponsive Flows,”
in Proceedings of the 2003 IEEE International Conference on
Communications (ICC), 2003. [Online]. Available: https://doi.org/10.
1109/ICC.2003.1204258

[29] I. Yeom, “A rate-based drop policy for punishing unresponsive flows,”
Computer Communications, vol. 29, no. 10, pp. 1868–1878, 2006.
[Online]. Available: https://doi.org/10.1016/j.comcom.2005.05.012

[30] J. Zheng, L. Zhao, and T. Zhang, “Improving Unresponsive Flow
Control by Active Queue Management Algorithm,” in Proceedings of
the 2007 IEEE Wireless Communications and Networking Conference
(WCNC), 2007. [Online]. Available: https://doi.org/10.1109/WCNC.
2007.795

[31] S. Yi, X. Deng, G. Kesidis, and C. R. Das, “A dynamic
quarantine scheme for controlling unresponsive TCP sessions,”
Springer Telecommunication Systems, vol. 37, no. 4, pp. 169–189,
2008. [Online]. Available: https://doi.org/10.1007/s11235-008-9104-2

[32] G. Aldabbagh, M. Rio, and I. Darwazeh, “Fair Early Drop: An
Active Queue Management Scheme for the Control of Unresponsive
Flows,” in Proceedings of the 2010 IEEE International Conference
on Computer and Information Technology (CIT), 2010. [Online].
Available: https://doi.org/10.1109/CIT.2010.449

[33] J. Rüth, I. Poese, C. Dietzel, and O. Hohlfeld, “A First Look at QUIC
in the Wild,” in Proceedings of the 2018 International Conference
on Passive and Active Network Measurement (PAM), 2018. [Online].
Available: https://doi.org/10.1007/978-3-319-76481-8 19

https://doi.org/10.1145/52325.52356
https://doi.org/10.1145/3487552.3487842
https://doi.org/10.1145/3487552.3487842
https://doi.org/10.17487/RFC3168
https://doi.org/10.17487/RFC9330
https://doi.org/10.17487/RFC7567
https://doi.org/10.1109/90.793002
https://doi.org/10.1109/90.793002
https://doi.org/10.1109/INFCOM.2000.832269
https://doi.org/10.1109/COMST.2015.2463121
https://doi.org/10.1049/iet-net.2018.5089
https://doi.org/10.48550/arXiv.2209.01078
https://doi.org/10.48550/arXiv.2209.01078
https://doi.org/10.1109/INFCOM.2004.1354571
https://doi.org/10.1109/ICCCN.2009.5235248
https://doi.org/10.1109/ICCCN.2009.5235248
https://doi.org/10.1109/icc.2011.5963408
https://doi.org/10.1109/icc.2011.5963408
https://doi.org/10.1109/ACCESS.2018.2833107
https://catalog.caida.org/paper/2004_tr_2004_02
https://doi.org/10.1145/3012426.3022184
https://doi.org/10.1145/3012426.3022184
https://doi.org/10.1109/MASCOT.2001.948894
https://doi.org/10.1016/j.comcom.2007.04.002
https://doi.org/10.1016/j.comcom.2007.04.002
https://doi.org/10.1145/3419394.3423658
https://doi.org/10.17487/RFC9000
https://doi.org/10.17487/RFC9312
https://doi.org/10.1145/3517745.3561459
https://doi.org/10.1145/3618257.3624811
https://doi.org/10.17487/RFC9331
https://doi.org/10.17487/RFC9331
https://datatracker.ietf.org/doc/draft-briscoe-iccrg-prague-congestion-control/
https://datatracker.ietf.org/doc/draft-briscoe-iccrg-prague-congestion-control/
https://doi.org/10.1109/90.251892
https://doi.org/10.1109/90.251892
https://doi.org/10.1145/2208917.2209336
https://doi.org/10.1109/ICC.2003.1204258
https://doi.org/10.1109/ICC.2003.1204258
https://doi.org/10.1016/j.comcom.2005.05.012
https://doi.org/10.1109/WCNC.2007.795
https://doi.org/10.1109/WCNC.2007.795
https://doi.org/10.1007/s11235-008-9104-2
https://doi.org/10.1109/CIT.2010.449
https://doi.org/10.1007/978-3-319-76481-8_19

[34] J. Zirngibl, P. Buschmann, P. Sattler, B. Jaeger, J. Aulbach, and
G. Carle, “It’s Over 9000: Analyzing Early QUIC Deployments with
the Standardization on the Horizon,” in Proceedings of the 2021 ACM
Internet Measurement Conference (IMC), 2021. [Online]. Available:
https://doi.org/10.1145/3487552.3487826

[35] C. Sander, I. Kunze, K. Wehrle, and J. Rüth, “Video Conferencing
and Flow-Rate Fairness: A First Look at Zoom and the Impact
of Flow-Queuing AQM,” in Proceedings of the 2021 International
Conference on Passive and Active Network Measurement (PAM), 2021.
[Online]. Available: https://doi.org/10.1007/978-3-030-72582-2 1

[36] C. Sander, J. Rüth, O. Hohlfeld, and K. Wehrle, “DeePCCI:
Deep Learning-based Passive Congestion Control Identification,” in
Proceedings of the 2019 ACM SIGCOMM Workshop on Network
Meets AI & ML (SIGCOMM NetAI), 2019. [Online]. Available:
https://doi.org/10.1145/3341216.3342211

[37] X. Chen, S. Xu, X. Chen, S. Cao, S. Zhang, and Y. Sun,
“Passive TCP Identification for Wired and Wireless Networks: A
Long-Short Term Memory Approach,” in Proceedings of the 2019
IEEE International Wireless Communications & Mobile Computing
Conference (IWCMC), 2019. [Online]. Available: https://doi.org/10.
1109/IWCMC.2019.8766577

[38] J. Iyengar and I. Swett, “QUIC Loss Detection and Congestion
Control,” IETF, RFC 9002, 2021. [Online]. Available: https://doi.org/
10.17487/RFC9002

[39] I. Kunze, C. Sander, and K. Wehrle, “Does It Spin? On the Adoption
and Use of QUIC’s Spin Bit,” in Proceedings of the 2023 ACM
Internet Measurement Conference (IMC), 2023. [Online]. Available:
https://doi.org/10.1145/3618257.3624844

[40] M. Allman, R. Beverly, and B. Trammell, “Principles for Measurability
in Protocol Design,” ACM SIGCOMM Computer Communication
Review, vol. 47, no. 2, pp. 2–12, 2017. [Online]. Available:
https://doi.org/10.1145/3089262.3089264

[41] M. Thomson, “Greasing the QUIC Bit,” IETF, RFC 9287, 2022.
[Online]. Available: https://doi.org/10.17487/RFC9287

[42] “Linux kernel tree with L4S patches,” 2023. [Online]. Available:
https://github.com/L4STeam/linux

[43] C. Sander, I. Kunze, L. Blöcher, M. Kosek, and K. Wehrle, “ECN
with QUIC: Challenges in the Wild,” in Proceedings of the 2023 ACM
Internet Measurement Conference (IMC), 2023. [Online]. Available:

https://doi.org/10.1145/3618257.3624821
[44] “MsQuic,” 2023. [Online]. Available: https://github.com/microsoft/

msquic
[45] “S2n-quic,” 2023. [Online]. Available: https://github.com/aws/s2n-quic
[46] “Picoquic,” 2023. [Online]. Available: https://github.com/

private-octopus/picoquic
[47] R. Marx, L. Niccolini, M. Seemann, and L. Pardue, “Main

logging schema for qlog,” IETF, Internet-Draft, 2023, work
in progress. [Online]. Available: https://datatracker.ietf.org/doc/
draft-ietf-quic-qlog-main-schema

[48] I. Rhee, L. Xu, S. Ha, A. Zimmermann, L. Eggert, and R. Scheffenegger,
“CUBIC for Fast Long-Distance Networks,” IETF, RFC 8312, 2018.
[Online]. Available: https://doi.org/10.17487/RFC8312

[49] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming Protocol-Independent Packet Processors,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 3, pp. 87–
95, 2014. [Online]. Available: https://doi.org/10.1145/2656877.2656890

[50] T. Holterbach, E. C. Molero, M. Apostolaki, A. Dainotti, S. Vissicchio,
and L. Vanbever, “Blink: Fast Connectivity Recovery Entirely in the
Data Plane,” in Proceedings of the 2019 USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2019. [Online].
Available: https://www.usenix.org/system/files/nsdi19-holterbach.pdf

[51] M. Apostolaki, A. Singla, and L. Vanbever, “Performance-Driven
Internet Path Selection,” in Proceedings of the 2021 ACM SIGCOMM
Symposium on SDN Research (SOSR), 2021. [Online]. Available:
https://doi.org/10.1145/3482898.3483366

[52] S. Sengupta, H. Kim, and J. Rexford, “Continuous In-Network
Round-Trip Time Monitoring,” in Proceedings of the 2022 ACM
SIGCOMM Conference, 2022. [Online]. Available: https://doi.org/10.
1145/3544216.3544222

[53] S. Bauer, B. Jaeger, F. Helfert, P. Barias, and G. Carle, “On the
Evolution of Internet Flow Characteristics,” in Proceedings of the 2021
ACM/IRTF Applied Networking Research Workshop (ANRW), 2021.
[Online]. Available: https://doi.org/10.1145/3472305.3472321

[54] R. Ben Basat, X. Chen, G. Einziger, and O. Rottenstreich, “Designing
Heavy-Hitter Detection Algorithms for Programmable Switches,”
IEEE/ACM Transactions on Networking, vol. 28, no. 3, pp. 1172–1185,
2020. [Online]. Available: https://doi.org/10.1109/TNET.2020.2982739

https://doi.org/10.1145/3487552.3487826
https://doi.org/10.1007/978-3-030-72582-2_1
https://doi.org/10.1145/3341216.3342211
https://doi.org/10.1109/IWCMC.2019.8766577
https://doi.org/10.1109/IWCMC.2019.8766577
https://doi.org/10.17487/RFC9002
https://doi.org/10.17487/RFC9002
https://doi.org/10.1145/3618257.3624844
https://doi.org/10.1145/3089262.3089264
https://doi.org/10.17487/RFC9287
https://github.com/L4STeam/linux
https://doi.org/10.1145/3618257.3624821
https://github.com/microsoft/msquic
https://github.com/microsoft/msquic
https://github.com/aws/s2n-quic
https://github.com/private-octopus/picoquic
https://github.com/private-octopus/picoquic
https://datatracker.ietf.org/doc/draft-ietf-quic-qlog-main-schema
https://datatracker.ietf.org/doc/draft-ietf-quic-qlog-main-schema
https://doi.org/10.17487/RFC8312
https://doi.org/10.1145/2656877.2656890
https://www.usenix.org/system/files/nsdi19-holterbach.pdf
https://doi.org/10.1145/3482898.3483366
https://doi.org/10.1145/3544216.3544222
https://doi.org/10.1145/3544216.3544222
https://doi.org/10.1145/3472305.3472321
https://doi.org/10.1109/TNET.2020.2982739

	Introduction
	A Primer on Congestion Management
	System Design
	Tracking the Instantaneous Sending Window – 1
	Congestion Responsiveness Assessment – 2
	Further Design Considerations

	SpinTrap eBPF Prototype
	Evaluation
	Methodology
	Tracking the Sending Window.
	Drop-Tail Queue
	CoDel

	Congestion Responsiveness Assessment
	Single Flow
	Multiple Flows

	Discussion
	Conclusion
	References

