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Abstract—Industrial networks become increasingly intercon-
nected, which opens the floodgates for cyberattacks on legacy
networks designed without security in mind. Consequently, the
vast landscape of legacy industrial communication protocols
urgently demands a universal solution to integrate security
features retroactively. However, current proposals are hardly
adaptable to new scenarios and protocols, even though most
industrial protocols share a common theme: Due to their
progressive development, previously important legacy features
became irrelevant and resulting unused protocol fields now offer a
unique opportunity for retrofitting security. Our analysis of three
prominent protocols shows that headers offer between 36 and 63
bits of unused space. To take advantage of this space, we designed
the REtrofittable ProtEction Library (RePeL), which supports
embedding authentication tags into arbitrary combinations of
unused header fields. We show that RePeL incurs negligible
overhead beyond the cryptographic processing, which can be
adapted to hit performance targets or fulfill legal requirements.

Index Terms—industrial control systems, retrofitting, integrity
protection, message authentication code

I. INTRODUCTION

Cyberattacks on Industrial Control Systems (ICSs) such as
Stuxnet, the attacks on the Ukrainian power grid, or German
Steel Mill become significant threats to modern society [4],
[7]. Still, industrial communication networks are hardly pro-
tected against malicious activities as those networks were
originally designed as “air-gapped” systems, i.e., as systems
not connected to the outside world, and thus assumed resilient
against cyber threats [20]. However, recent events show that
even air-gapped networks are prone to cyberattacks [4] and the
movement to, e.g., interconnected manufacturing plants or re-
mote control, additionally defies these initial assumptions [32].
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Consequently, secure variants of legacy industrial commu-
nication protocols, e.g., Modbus running on top of TLS [2],
or modern protocols such as OPC UA [1], have recently been
standardized. Yet, for established facilities, upgrading to these
secure protocols is often impossible due to necessary hardware
changes, availability requirements, and the associated cost and
risks of breaking a running system [12], [13], [32]. Hence,
research focused on retrofitting security measures into legacy
protocols, with integrity protection being the most important
mechanism for ICS security [2], [5], [8]–[11], [15], [16], [30],
[31], [35], [39]. However, these proposals focus on specific
protocols or scenarios and hardly discuss deployability. This

lack of generalizability leaves many real-world deployments
of ICSs with an unclear path toward security due to the high
diversity of industrial deployments. Moreover, ICS networks
are typically managed by a single operator that thus has the
autonomy to make breaking changes to protocols, resulting in
many flavors of the already diverse protocol landscapes.

In this paper, we propose an adaptable scheme that evades
these limitations by embedding integrity protection in unused
header fields of industrial communication protocols. The fea-
sibility of this approach has already been demonstrated, e.g.,
on traditional Internet protocols to realize covert communi-
cation channels [41]. By targeting industrial application layer
protocols, we can minimize changes to the network, avoid
communication overhead entirely, and interface with legacy
devices that require the original network traffic. Additionally,
our proposal preserves full protocol conformance if required.

To intercept the current growth of protocol-specific security
retrofit solutions, we analyze widespread industrial protocol
headers and observe that they offer significant unused space
that could carry authentication data. This analysis motivates
our design of the Retrofittable Protection Library (RePeL)
as a modular and adaptable security retrofitting solution for
legacy ICS communication. RePeL’s design eases effortless
changes to how a specific protocol is handled (e.g., to leverage
additional fields when they are not used in a given deployment)
or the rapid adoption of new protocols. Additionally, RePeL
offers various authentication mechanisms depending on the
available latency bounds, space constraints, regulations, and
requirements for replay protection. Our evaluation shows that
RePeL can be efficiently deployed natively or as a bump-in-
the-wire solution and introduces hardly any overhead beyond
the cryptographic computations.

Contributions. To retrofit integrity protection into insecure
legacy ICSs protocols, we make the following contributions:

• We propose a novel security retrofitting scheme based on
re-purposing (partially) unused fields of industrial com-
munication protocols, validated by a feasibility analysis
of three common industrial protocols (Section III).

• We design the modular and adaptable Retrofittable
Protection Library (RePeL) that provides customizable
and easily integrated security solutions to protect indus-
trial networks against cyberattacks (Section IV).

• We implement, open-source, and evaluate RePeL: We
demonstrate its low overhead, which makes it a practicalAuthor manuscript.



solution to retrofit integrity protection for a variety of
currently unsecured industrial networks (Section V).

Availability Statement. Our RePeL implementation is
available at https://github.com/fkie-cad/RePeL.

II. RETROFITTING SECURITY TO INDUSTRIAL PROTOCOLS

Networks in ICSs stand in stark contrast to the modern
Internet in many regards. Hence, we give a short overview of
the current state of industrial communication (Section II-A)
and introduce current efforts to retrofit protection against
cyberattacks to widely used protocols (Section II-B). Finally,
we present our idea, including respective design goals (Sec-
tion II-C), that improves upon the current state-of-the-art
to achieve flexible and resource constraint-aware retrofittable
cybersecurity (Section II-D).

A. Background on Industrial Networks

In contrast to modern IT networks, ICS networks do not
necessarily connect to the Internet but are traditionally air-
gapped, i.e., isolated networks designed with no external
connectivity [22]. Further, they typically exhibit recurring and
predictable communication patterns, as their primary purpose
is the transmission of monitoring information and occasional
control commands [18], [38]. Thus, respective industrial com-
munication protocols reflect these schemes in their design,
showing various conceptual similarities. Unfortunately, the
combination of industry-tailored, partially proprietary proto-
cols without basic security considerations, and the ongoing
digitization of ICS networks render current security assump-
tions obsolete. Porting serial protocols to IP-based communi-
cation – with ModbusTCP as a prominent example – eases cy-
berattacks against the respective ICS networks, demonstrated
by a growing number of recent incidents [4]. Meanwhile,
retroactively securing such networks poses a significant chal-
lenge for several reasons. Proprietary and specialized devices
with lifespans of multiple decades are hard to update and
costly to replace [26]. Even when (software) updates are
possible, hardware constraints often render the implementation
of security mechanisms, e.g., TLS, infeasible [32]. Since
the implementation of traditional security mechanisms itself
might induce violations of real-time requirements [33] or even
unavailability of devices (either by processing overhead [40],
or misconfiguration), they are generally not applicable for ICS
networks, where – in contrast to traditional networks – (phys-
ical) safety and process availability are of utmost importance.
Consequently, research focuses on the development of tailored,
retrofittable security solutions for these legacy networks that
interrupt current operations as little as possible [33] while
mitigating the risk of cyberattacks.

B. Related Work on Securing Legacy Industrial Networks

Several security retrofit solutions have been proposed over
the years that can be divided into two categories: Extensions
to legacy industrial protocols [2], [8], [10], [11], [16], [31]
and the design of additional devices (so-called bump-in-the-
wire devices) that create protected tunnels between them but

forwards legacy communication to existing hardware [5], [9],
[15], [30], [35], [39]. We discuss the current state-of-the-art
with respect to both of these categories in the following.

Considering updates to existing protocols, a first set of
those simply encapsulate protocols such as ModbusTCP [2]
or EtherNet/IP [8] in an additional TLS layer. This encap-
sulation does, however, introduce significant bandwidth and
computational overhead and requires the implementation and
support of an entirely new protocol layer. Alternatives propose
the integration of authentication tags into existing packets to
remain protocol-compliant or reduce the need for additional
bandwidth. Here, protocol compliance can be achieved by
using the least-significant bits of data values or delays between
messages to embed authentication data, which, however, lim-
its security guarantees and restricts which messages can be
authenticated [10]. Moreover, the transmission of additional
data fields in the Ethernet/IP protocol [11], opportunistically
embedding tags into free message space [31] or combining
error detection and integrity protection by overwriting the CRC
checksum in CAN bus messages [16] have been proposed.
Similarly, the IEC 62351-6 [3] standard proposes to embed
signatures into reserved fields of the GOOSE protocol.

Most security retrofitting solutions do, however, built
on bump-in-the-wire solutions to introduce more intrusive
changes to the protocol, while still reducing the overhead
compared to a full-grown TLS stack. YASIR [35] appends an
authentication tag to each packet, while a dedicated verifier
module forwards the packet at a reduced rate such that it
can corrupt the last byte of the transmission if a packet’s
integrity could not be verified. Other proposals encapsulate
traffic between CAN network segments [9] or append authen-
tication data and change logs (e.g., after protocol translation)
to messages [15]. Moreover, the transmission of dedicated
packets containing signatures over recent communications has
been investigated with the benefit of not interfering with
existing traffic, but at the cost of increased bandwidth needs
and delayed attack detection [5]. MARMAC [30], on the other
hand, appends multiple tags to NMEA0183 packets to retrofit
sender authentication to broadcast communication at the cost
of significant bandwidth and computation overhead. Finally,
the recently proposed GuardBox [42] is a bump-in-the-wire
that encrypts and authenticates GOOSE messages while pro-
tecting keying material within trusted execution environments.

These security retrofit solutions for industrial networks are
diverse but mostly focus on individual protocols. Thus, the cur-
rent state-of-the-art puts little focus on generalizability across
the wide range of industrial protocols and flavors deployed
in the real world. Moreover, it is hardly discussed how the
proposed retrofittable security schemes would be deployed in
practice without interfering with ongoing operations. With our
work, we want to provide a solution that can be easily adopted
to a variety of different protocols, thus not only addressing
security issues in common protocols such as ModbusTCP, but
also making security much more achievable for more exotic
and less-used protocols.

https://github.com/fkie-cad/RePeL
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Fig. 1: RePeL can be deployed natively on devices, embedding
or authenticating legacy protocol communication as they exit
or enter the devices networking stack. Alternatively, RePeL
can be deployed as a bump-in-the-wire to segment networks
or protect those devices that cannot be updated.

C. Requirements of a Retrofittable Security Solution

Related work mostly offers legacy-compliant security solu-
tions tailored to specific scenarios and protocols, disregarding
the wide variety of industrial environments and the difficulties
in deploying proposed solutions. To mitigate these limitations
of the current state-of-the-art, a deployable security retrofit
solution must fulfill several requirements.

Legacy Compliance. To protect legacy devices, authentica-
tion data should not interfere with the original communication.
Thus, no originally transferred information should be lost, and
no additional information (e.g., authentication tags) should be
forwarded to the legacy protocol implementation. Specifically,
the receiver of a protected packet should be able to recover
the originally sent packet in its entirety irrespectively of any
retrofitting. Moreover, the packet should closely follow the
protocol standard while being transmitted, such that potential
middleboxes, e.g., rule-based IDSs such as Snort, can be easily
adapted to ignore the presence of authentication data. An
added benefit of this requirement is stealthy authentication that
an intruder may not recognize and then uncover themselves
when trying to manipulate allegedly unprotected traffic.

Adaptable to Concrete Industrial Environments. To be
widely applicable, a security retrofit solution must be adapt-
able to various industrial scenarios. On the one hand, this
implies that it has to be easily adaptable to new protocols
and conditions depending on how authentication data can be
embedded. On the other hand, constraints in terms of avail-
able computation resources, tolerable latencies, and approved
cryptographic algorithms dictate which authentication scheme
can be used. Furthermore, the required security level can vary
between applications. While at least 128-bit security is always
desirable, some industrial applications with high-frequency
data exchanges can be sufficiently protected by as little as 32
bit of authentication data [27]. Hence, the variety of protocols
and constraints in industrial networks demand a flexible and
adaptable solution for the retrofitting of data authentication.

Ease of (Incremental) Deployment. Even if security so-
lutions for concrete industrial scenarios exist, limited update-
ability of devices and resource limitations prevent adoptions
in many cases. Hence, security retrofit solutions must be

designed to cope with limited resources and be deployable
directly on devices for increased security and as a bump-in-
the-wire solution for better deployability. The former allows
the incremental integration of end-to-end security, while the
latter can act as a gateway between already protected and
unprotected network segments, and between legacy devices
with firmware that cannot be updated. For reducing the risks
of interruptions and minimizing downtime during an ICSs
operation, providing an incremental upgrade path is inevitable.

D. The Idea behind RePeL: Recycling Unused Protocol Fields

To achieve these outlined requirements, we design and
implement RePeL. RePeL offers a flexible security solution
such that a wide variety of network protocols and deploy-
ments can be protected by a common solution with minimal
configuration. These properties are achieved by integrating
authentication data into unused protocol fields of industrial
communication protocols, as successfully used to introduce
covert channels into traditional Internet communication [41].

The high-level approach of RePeL is illustrated in Figure 1.
The sender and receiver operate identically to a legacy network
when RePeL is deployed. Transmitted network traffic is then
intercepted either by a lower layer of the communication
devices, respectively shortly after transmission or before re-
ception by a dedicated device (bump-in-the-wire). When in-
tercepted, the legacy protocol header is enriched with authen-
tication data. The packet is thus integrity protected until this
authentication data is subsequently removed by the receiving
RePeL instance that recovers the originally transmitted packet.

E. Threat Model

For the design of RePeL, we consider an attack that aims
to manipulate messages sent over a communication channel in
industrial networks. Our attacker already gained access to the
network but has no control over the two entities involved in
the targeted communication as defined in the Dolev-Yao threat
model [14]. Accordingly, the attacker can arbitrarily read, alter,
reroute, inject, and drop packets. Within our threat model,
RePeL should prevent the attacker from undetectably changing
messages. Denial of Service (DoS) attacks, fingerprinting, and
side-channels attacks are out of scope in this paper as these
kinds of attacks affect any security protocol.

III. ANALYSIS OF REPURPOSABLE PROTOCOL FIELDS

To assess the potential of RePeL, we analyze the feasibility
of directly integrating authentication data into unused fields in
protocol headers and the subsequent recovery of the original
packet without information loss. In particular, we look at
three popular ICS protocols, namely EtherNet/IP, PROFINET,
and ModbusTCP [19]. Throughout their analysis, we observe
common patterns in protocol header designs that RePeL can
take advantage of. To this end, Figure 2 highlights suitable
fields in the analyzed protocols headers (in grey), revealing
the presence of unused bits across many different header
fields. Furthermore, we provide a concrete description of how
and when these header fields can be leveraged for integrity



Protocol Header Field Size Reusable Usage Description

ModbusTCP

8 byte header
↓

up to 36 free bits

Transaction Identifier 16 bit 12 bit As the standard limits the maximum number of concurrently in-flight messages to 16,
four bits are sufficient for request/response matching.

Protocol Identifier 16 bit 16 bit According to the standard, this field should be set to zero, such that it carries no
additional information.

Unit Identifier 8 bit 0-8 bit This field is used to identify serial Modbus devices in a ModbusTCP network, which
do rarely exist. The field carries no addtional information beyond this identification.

EtherNet/IP

24 byte header
↓

up to 63 free bits

Command 16 bit 7 bit The first byte is only comprised of reserved bits, of which the first one can mark that
the remaining seven bits can be used for authentication data.

Session Handle 32 bit 0-24 bit Used to uniquely identify a communication session. However, even the decently sizes
SWAT testbed [17] requires less than 200 session ids over an one hour period.

Sender Context 64 bit 0-32 bit Used to match requests and responses. Like other protocols, the full range of identifiers
is rarely needed, such that some bits can be used for bidirectional authentication data.

PROFINET

10 byte header
↓

up to 40 free bits

Service ID 8 bit 3 bit The first nibble is comprised of only reserved bits, of which the first bit can mark
that the remaining three bits can be used for authentication data.

Service Type 8 bit 5 bit Six bits are reserved for future extensions and could be used to integrate authentication
data. Again, one bit would be used to notify about the embedded authentication data.

Xid 32 bit 0-16 bit Used to match requests and responses. Like other protocols, the full range of identifiers
is rarely needed, such that some bits can be used for bidirectional authentication data.

Padding 16 bit 16 bit Unused two bytes field to extend the length of unicast frames that can be defined to
carry authentication data.

TABLE I: Our analysis of three industrial protocol identifies several fields that can be (partially) used to embed more than 32
bit of authentication data. For each field, we indicate the number of realistically reusable bits and how they could be used.

Transaction
Identifier

Protocol
Identifier

Length Unit
Identifier

Function
Code Data

2 byte 2 byte 2 byte 1 byte 1 byte

(a) The ModbusTCP protocol fields.

Command Length Session
Handle Status Sender

Context
Options Data

2 byte 2 byte 4 byte 4 byte 8 byte 4 byte

(b) The EtherNet/IP protocol fields.

ServiceID ServiceType Xid
ResponseDelayFactor

Padding
DCPDataLength Data

1 byte 1 byte 4 byte 2 byte 2 byte

(c) The PROFINET protocol fields.

Fig. 2: The three analyzed industrial protocols, namely Mod-
busTCP, EtherNet/IP, and PROFINET, each exhibit significant
potential to embed authentication data (highlighted in gray).

protection in Table I. In the following, we discuss different
patterns that we identified among these protocols.

A. Message Identifiers

Message identifiers are a concept for matching requests and
responses used by all three analyzed protocols. These fields
are typically 16 to 32 bits long and can be freely selected
by the sender of a request. The receiver of a request then
echoes the field, such that the requester can match the response
to the correct request. This behavior already allows the fully
protocol-conform unidirectional transfer of authentication data
by using a truncated authentication tag as message identifier.
This procedure can also be adapted to enable bidirectional

message authentication: by using only the, e.g., 16, most
significant bits of the identifier for request-response matching,
the rest of the field can carry authentication data. Then,
the responder would echo the first part of the identifier and
compute new authentication data for the response that fills the
second part of the identifier. As fewer identifiers than avail-
able are encodable concurrently (e.g., ModbusTCP has 65536
identifiers while only allowing 16 unanswered requests), no
impact on the operation of devices is expected, especially as
these changes do not prevent RePeL from exposing the original
behavior of message identifiers to the application layer.

B. Unused Fields for Legacy Reasons
For backward compatibility, fields such as the Unit Identifier

in ModbusTCP exist to differentiate multiple serial Modbus
devices located behind one ModbusTCP gateway. However,
most network deployments nowadays do not contain such
devices. Thus, the corresponding fields remain unused, and no
harm is done by redefining the interpretation of the contained
data. Such fields with hardly any relevance today can thus be
reused in many cases. However, vendor-specific requirements
for static values in these fields might have to be considered
before packets are forwarded to legacy devices.

C. Reserved Bits
The analyzed protocol headers contain a sizable number of

reserved bits for future extensions. Ideally, one of these bits
can be used to indicate that the rest of them are used for
authentication data. Then, future extensibility of the protocols
remains possible, while the currently unused bits can be put
to good use by carrying authentication data. As these bits are
expected to be set to a static value (0 in most cases), RePeL
can recover the original packets after integrity verification and
before forwarding packets to legacy applications.



D. Padding Bits

A final common component of communication protocols
are padding bits to e.g., adjust the length of different header
variants. PROFINET, for example, uses padding to ensure that
broadcast and unicast messages have the same length. Such
adjustments can ensure faster parsing or prevent information
leakage if traffic is encrypted. These padding bits can be
redefined to carry authentication data. While some protocol
standards ask for a static value, no information is lost if the
content of such a field is replaced with authentication data.
Thus, the recovery of the original packet remains possible.

E. Conclusion

Summarizing our findings, we conclude that unused bits
are present in each of the analyzed protocol headers, as
detailed in Table I. The most space to embed authentica-
tion data can be found in the EtherNet/IP header, with up
to 63 bits. The other protocols also offer up to 36 bits
for ModbusTCP and 40 bits for PROFINET. As we many
similarities across the analyzed protocols, we expect that
many further industrial protocols expose similar behavior.
However, we also observe that this space is fragmented and
that, depending on the specific network, updateability, and
required level of protocol conformance, a different fraction
of those bits can be repurposed. Moreover, the previously
outlined requirements towards latency, approved cryptographic
algorithms, and requested security level demand a flexible and
adaptable use of the limited available space to offer protection
for industrial protocols. In this paper, we specifically argue
for the use of available space in industrial protocol head-
ers to carry authentication data. However, related work also
proposes embedding authentication data into e.g., the least
significant bits of noisy measurement data as the impact of
these changes are negligible to industrial processes running
in the background [10]. RePeL adopts to such approaches for
maximizing the available space for authentication data. We
conclude that industrial protocols offer sufficient unused space
in various application scenarios that can be used to protect the
integrity of industrial communications.

IV. REPEL: THE RETROFITTABLE PROTECTION LIBRARY

To take advantage of unused space in industrial protocols
headers, we design the Retrofittable Protection Library (Re-
PeL).1 RePeL embeds authentication into protocol headers
before transmission and verifies the integrity of packets upon
reception. We first present RePeL’s high-level modular design,
before diving into the specifics of each module.

A. High-level Design

RePeL protects legacy traffic between two RePeL endpoints
by embedding authentication data into the packets that is later
verified and removed. To see widespread applicability, RePeL
needs to be adaptable to the local requirements of different
ICS environments. Most importantly, these requirements can

1Code available at: https://github.com/fkie-cad/RePeL
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Fig. 3: RePeL is composed of three modules to embed and
verify authentication tags. These tags are computed by sender
and receiver over a common packet state that each packet
is first brought into. If a received packet is genuine, it is
forwarded and discarded otherwise.

include the support for specific protocols, the latency (trans-
lating to a limited processing time), legal requirements w.r.t.
allowed security schemes, and the tolerance for packet loss.

To achieve this kind of customizability within a single
framework, RePeL is composed of three modules: The Parser
module, the MAC module, and the Nonce module. The in-
teraction of the different modules is shown in Figure 3. To
protect a packet, it is first parsed to extract the location of bits
that can be used for authentication data. Then, the packet is
brought into a deterministic state which can be recovered even
after the authentication tag is embedded. Finally, the MAC and
the Nonce modules can jointly compute an authentication tag,
which is subsequently embedded as authentication data.

At the receiving end, RePeL verifies the previously em-
bedded authentication tag. Therefore, the embedded bits are
first extracted from the packet before it is brought back
into the previously discussed deterministic state. Then, a new
authentication tag is computed over the received packet and
compared to the extracted tag. If both of them match, the
packet’s integrity is verified. Otherwise, an alarm is raised,
and the packet is not forwarded for further processing. In the
following, the three RePeL modules are presented in detail
after discussing key management within RePeL.

B. Key Establishment and Resynchronization

Before diving into the details of how RePeL authenticates
messages, we first want to discuss key management. ICSs are
characterized by being managed by a single operator, and often
networks remain mostly static, i.e., no new communication
entities join a network. Therefore, secrets shared only by two
entities that have to communicate can be established during the
deployment of RePeL by the operator. From this shared secret,
authentication keys can be derived. This key derival can be
triggered automatically, i.e., on first communication of when

https://github.com/fkie-cad/RePeL


the nonce counter is about to overflow, or by special messages
communicated only between the RePeL instances (thus no
breaking legacy compliance with the application layer).

If RePeL were deployed in a more dynamic setting, com-
municating instances might not share a secret when first
wanting to communicate. Here, traditional key establishment
as specified in e.g., TLS 1.3 [28] could be used, either in
plaintext or over a prolonged sequence of covert messages.
Most importantly, this key exchange can be conducted during
production downtime, when latency and bandwidth limitations
are significantly more relaxed.

C. Highly Adaptable Protocol Parsing Module

The main module of RePeL takes care of parsing packets
in an efficient and modular way. This parsing includes the
identification of free space for authentication tag inclusion,
embedding and extracting the tags at the sender and receiver,
respectively, and the restoration of packets to their pre-
embedding state for tag computation and further processing.

RePeL’s parser executes its duties with three passes over a
packet for efficient parsing. In the first step, the number of
available bits for authentication tags is extracted. The second
step clears the packet of any potential inconsistencies to a
form that can also be reproduced by the receiver. This step, for
example, includes mapping long message identifiers to their
shortened form that allows the inclusion of authentication data.
Finally, the embedding or extracting of the authentication tag
is done in a final pass over a packet.

To remain adaptable, RePeL provides custom functions to
peek into, skip over, or manipulate individual bits of a packet
header. This structure enables fast parsing, while remaining
highly adaptable: A single line in a protocol’s definition can
be changed to include or exclude e.g., the protocol identifier
of ModbusTCP as a field that can be retrofitted with authen-
tication data. This flexibility allows a fast adaption to the
requirements of vastly different ICS deployments.

D. MAC Module

RePeL’s second module computes the authentication tag
that is subsequently embedded into packet headers. These
authentication tags are computed by a Message Authentication
Code (MAC) scheme, i.e., a combination of a sign and verify
cryptographic algorithm. The sign algorithm computes the tag
based on the data to be authenticated, a secret key shared
between sender and receiver, and an optional nonce for replay
protection. The verify algorithm compares the received tag to
a locally computed version based on the same inputs. If both
tags match, the packet is genuine and rejected otherwise.

To function properly, both algorithms need the same data
as input, which is why a packet is first cleared/restored (i.e.,
to a state that sender and receiver can reproduce) before an
authentication tag is computed over this data. Note that using
the restored packet, instead of defining individual blocks of the
message that should be skipped during authentication, saves
valuable memory and computation resources on constrained
legacy devices, as all computations can be done in-place.

+
MAC

packet

(a) For protocols in-
cluding a nonce, re-
play protection is nat-
urally provided.

noncepacket +
MAC

(b) For reliable pro-
tocols (e.g., TCP), an
implicit counter acts
as nonce.

noncepacket +
MAC

least sig-
nificant bits

(c) To handle packet
loss, the least signif-
icant bits of a counter
can be transmitted.

Fig. 4: Depending on the deployment scenario, efficient replay
protection is provided with three different mechanisms.

The MAC module further contributes to RePeL’s adaptabil-
ity, as the optimal message authentication code (MAC) scheme
selected may depend on different requirements and available
resources. As such, the common HMAC-SHA256 algorithm
might be supported by hardware acceleration or is mandated
by regulation. However, if stronger security guarantees are
required with limited available space, aggregated [21] and
progressive MAC schemes [6], [36] may be advantageous.
Similarly, latency-critical applications might require fast gen-
eral schemes such as UMAC [23] or even faster schemes
optimized for short messages such as BP-MAC [37].

E. Integrating Nonces for Replay Protection

The parser and MAC modules allow RePeL to efficiently
integrate authentication tags into messages. However, MAC
schemes generally do not provide replay protection, which
is crucial to prevent an attacker from intercepting and later
injecting an already authenticated message at an (in)convenient
time. To mitigate such attacks, MAC schemes can include
nonces as unique additional input to tag computations that
prevent a replayed message from being considered benign.

However, appending a nonce to each message does require
space that is often not available. Hence, RePeL offers three
methods for replay protection that are shown in Figure 4,
which can be selected depending on a scenario’s needs.

Figure 4a highlights the trivial method, where replay pro-
tection is natively provided at the application layer protocol.
This approach is applicable if the industrial protocol includes a
nonce of some form by itself, which is automatically checked
for uniqueness by the application layer, e.g., an increasing se-
quence number. Then, the authentication tag can be computed
over the message which already includes a nonce.

Most industrial protocols do, however, not include a nonce
in their headers, such that RePeL needs to provide replay
protection. Here, RePeL uses a zero-initialized counter as
nonce that counts the number of sent packets and includes
this number during tag computations and verifications. As
shown in Figure 4b, this nonce does not necessarily need to be
embedded into a packet. Instead, if a reliable communication
channel with no data loss (e.g., TCP) is used, the nonce can
be tracked by both communication partners without active
communication. Thus no valuable space is consumed, while
the MAC module still has access to the same unique nonce at
the sender’s and receiver’s end.



To accommodate for packet loss on unreliable channels, e.g.,
UDP, without transmitting the entire nonce with each packet
and thus occupying space for authentication data, RePeL relies
on a similar mechanism as used by MiniSec [24] and in the
proposed DTLS 1.3 standard [29]. Instead of transmitting the
entire nonce (a zero-initialized counter) with each packet, only
its, e.g., four least-significant bits are embedded into the packet
header following the authentication tag as shown in Figure 4c.
As our nonces are sequential, the transmitted bits allow us to
detect dropped packets and recover the full sequence number
of a sent packet. If, e.g., three packets are lost, the received
partial nonce is off by three from the expected sequence num-
ber, and the receiver knows that the actual count can only be
higher than its internal state. Hence, the receiver can add three
to its counter and use that value to verify the authentication
tag. This method computes the correct nonce as long as error
bursts are not longer than what is trackable by the embedded
bits. Thus, before deployment, the number of bits reserved
for nonce transmission should be carefully chosen to optimize
the amount of available authentication data and achieve a
low desynchronization probability. If an authentication tag
verification fails, this must be communicated to the sending
RePeL instance. Then, the RePeL keying can be reset (i.e.,
new keys are derived and the nonce reset to zero) and further
messages are no longer rejected due to synchronization issues
following a long burst of errors.

Overall, RePeL provides flexibility and adaptability in terms
of protocol parsing, authentication scheme selection, and the
mechanism used for replay protection. Thus, RePeL is not
another retrofitting attempt tailored to a specific deployment
but a customizable solution to optimally protect a wide variety
of industrial scenarios where other security solutions do not
meet performance or legal requirements or simply do not exist.

V. PERFORMANCE ANALYSIS

Beyond the technical feasibility of embedding authentica-
tion data in legacy packet headers, the achievable performance
on embedded hardware is also critical to understand RePeL’s
applicability. Legacy devices, but also newer industrial IoT
devices, typically offer reduced processing power that now
need to execute expensive cryptographic operations [32]. To
show that the overhead of RePeL is well-manageable even
for severely resource-constrained devices, we consider two
devices representative of low-power embedded hardware: the
Zolertia Z1 (MSP430 @ 16 MHz, 8 kB RAM) and the Zolertia
RE-Mote (ARM Cortex-M3 @ 32MHz, 16 kB RAM).

For our evaluation, we first design a RePeL instance for the
ModbusTCP protocol in Section V-A. In Section V-B, we then
analyze the latency overhead introduced by RePeL and how it
is influenced by packet lengths. Furthermore, in Section V-C,
we compare how native security deployments fare against
bump-in-the-wire approaches that introduce specific hardware
to handle the authentication of legacy traffic.

A. A RePeL Instance to Protect ModbusTCP Traffic
To demonstrate the utility and usability of RePeL, we con-

figure a ModbusTCP parser, leveraging the highly adaptable

design of the parser module, and taking advantage of the three
fields proposed in Table I for ModbusTCP. Here, we discuss
the sender side of the code in more detail while noting that
the receiver uses similar variants of these functions.

At first, the number of embeddable bits is extracted, which
may require a first pass over the header or is fixed for a given
RePeL instantiation. In our case, 32 bits are available, which is
sufficient to achieve adequate integrity protection [27], which
is thus propagated to the MAC module. Afterward, the header
is cleared, i.e., the reused fields are set to a deterministic
value that can be recovered by the receiver, as shown in
Algorithm 1. Here, RePeL offers predefined functions that
allow quick restoration of most fields, e.g., the clearing of
the protocol identifier field to zero. These are used to, e.g.,
learn the packets’ transaction identifier and replace it with
a shortened one. We store this mapping to later replace the
shortened identifier with the original one once a response
packet arrives, such that our modification remains transparent
to the application layer protocol. Finally, our clear function for
ModbusTCP skips over the length fields and enforces the unit
identifier field to be 0xFF, the default value for ModbusTCP.

Algorithm 1: Clear Functionality for ModbusTCP
Input: packet pkt
tid = peek(&pkt, 16) ▷Transaction Identifier
copy(&pkt, new_tid, 4) ▷ embed new 4 bit id
push(&pkt,0, 12); ▷ clear remaining bits
store_mapping(tid, new_tid);
push(&pkt, 0, 16); ▷Protocol Identifier
skip(&pkt, 16); ▷Length
copy(&pkt, 0xff, 8); ▷Unit Identifier

Algorithm 2 then shows how the tag computed over the
restored packet by the MAC module is finally embedded into
the ModbusTCP packet header. Unmodified (partial) fields,
such as the most significant bits of the transaction identifier,
are skipped, while the rest of the fields are replaced with the
segmented authentication tag.

Algorithm 2: Embed Functionality for ModbusTCP
Input: packet pkt, authentication tag tag
skip(&pkt, 4); ▷Transaction Identifier
copy(&pkt, &tag, 12);
copy(&pkt, &tag, 16); ▷Protocol Identifier
skip(&pkt, 16); ▷Length
copy(&pkt, &tag, 8); ▷Unit Identifier

B. Influence of Packet Length on Delays

To assess RePeL’s performance on constrained devices, we
first look at the processing time for native deployments and
how it scales with varying payload lengths. Therefore, we
authenticate varying-length payloads and embed a 16-byte
authentication tag within the header. Having achieved com-
parable results on the receiver side, we only show the sender
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Fig. 5: Native deployments of RePeL on embedded hardware
can have vastly different processing times depending on avail-
able resources. This processing overhead is dominated by the
computations of HMAC-SHA256 digests.

side measurements here. The used authentication scheme is
HMAC-SHA256. For each length, we authenticate 1000 pack-
ets and repeat this measurement 30 times. Figure 5 includes
the 99% confidence intervals, which are barely visible. The
measurements are repeated for the Zolertia Z1 and Zolertia
RE-Mote. For the RE-Mote, we repeat the measurements also
with enabled hardware acceleration for SHA256.

In total, we see significant, but for many applications
acceptable [25], overhead ranging between 22.71±0.02 ms and
137,27±0.03 ms on the Zolertia Z1. The observed staircase-
like increase in overhead can be explained by the block size
of the used cryptographic hash function; if the payload size
increases by 64 bytes, an additional block has to be computed,
which is reflected by the increased processing overhead. As
the processing is dominated by computing the cryptographic
hash function, the processing time is nearly constant between
these jumps and thus independent of payload lengths.

For the software implementation of RePeL on the Zolertia
RE-Mote, we see a similar picture, with the main difference
being that processing times lay between 1.88±0.02 ms and
10.36±0.02 ms. Thus, the RE-Mote is over an order of mag-
nitude faster. Still, most processing is required to compute the
cryptographic hash function. Using the hardware-accelerated
SHA-256 implementation, we see another speedup of nearly
an order of magnitude. Here, the overhead introduced by the
cryptographic hash function is no longer dominating, and we
see a more constant increase in processing time w.r.t. the
payload size. Overall, processing overhead is low enough that
even constrained industrial devices can handle them [25].

Most importantly, we see that RePeL’s overhead is dom-
inated by the processing of HMAC-SHA256. Consequently,
the overhead of deploying RePeL on comparatively weak
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Fig. 6: RePeL deployed on a NanoPi R2S as a bump-in-the-
wire reduces processing times at the expense of increased jitter.

hardware, represented by the Zolertia Z1, can be intolerable for
some applications. For such cases, RePeL’s modular design of-
fers the use of more suitable MAC schemes, e.g., UMAC [23]
or BP-MAC [37], if higher performance is required.

C. RePeL as a bump-in-the-wire deployment

Many proposals to retrofit security into ICS communication
take advantage of a bump-in-the-wire approach to protect the
network [5], [9], [15], [30], [35], [39]. Here, special-purpose
devices are added to bridge legacy hardware and the network
or to segment networks. The devices will then ensure secure
communication between themselves. Only the last hop to
the legacy hardware remains unprotected. RePeL is the first
security retrofitting solution that offers both, native as well as
bump-in-the-wire deployments. This enables the incremental
deployment of true end-to-end security but also helps us to
assess the direct performance comparison between the native
and bump-in-the-wire security retrofitting solutions.

To this end, we deployed RePeL on a NanoPi R2S to
measure the delays by the deployment of an additional device
to embed and verify authentication data into packets. We mea-
sured this delay for UDP packets with payload lengths ranging
again between 20 and 1380 byte. Figure 6 shows our results of
30 measurements of packets for each length, including 99%
confidence intervals. We observe that the superior processing
power of the NanoPi R2S more than compensates for the
overhead introduced by passing the Linux networking stack
two additional times with delays mostly staying below 1ms.
It is thus also hardly surprising that the actual packet length,
in contrast to native deployments as evaluated in Section 5,
has little influence on the overall delay. Meanwhile, we see
significantly higher jitter in these measurements. Hence, bump-
in-the-wire deployments offer lower latencies at the expense
of increased jitter, which can be problematic in ICSs [34].

VI. CONCLUSION

The wide variety of legacy industrial protocols and their
plentiful flavors call for adaptable mechanisms to retrofit
security that protect industrial control systems against mod-
ern cyberattacks. However, current solutions often focus on
specific protocols and leave wide-scale deployability as an af-
terthought. To address these shortcomings, we propose RePeL,



a modular and adaptable framework to embed authentication
tags into unused protocol header fields, which are widespread
in industrial protocols. RePeL’s adaptability enables customiz-
ing which fields are used depending on the protocol and the
concrete deployment. RePeL’s modularity furthermore allows
to, e.g., choose a dedicated authentication scheme based on
the deployment’s needs, such as fast processing, low space
demands, or regulations. Our prototypical open-source imple-
mentation of RePeL shows strong performance both when
deployed natively on embedded hardware as well as on bump-
in-the-wire solutions ensuring secure communication between
RePeL instances.
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