
Poster: Vulcan – Repurposing Accessibility Features for

Behavior-based Intrusion Detection Dataset Generation

Christian van Sloun
sloun@comsys.rwth-aachen.de

RWTH Aachen University
Aachen, Germany

Klaus Wehrle
wehrle@comsys.rwth-aachen.de

RWTH Aachen University
Aachen, Germany

ABSTRACT

The generation of datasets is one of the most promising approaches
to collecting the necessary behavior data to train machine learning
models for host-based intrusion detection. While various dataset
generation methods have been proposed, they are often limited and
either only generate network traffic or are restricted to a narrow sub-
set of applications. We present Vulcan, a preliminary framework
that uses accessibility features to generate datasets by simulating
user interactions for an extendable set of applications. It uses behav-
ior profiles that define realistic user behavior and facilitate dataset
updates upon changes in software versions, thus reducing the ef-
fort required to keep a dataset relevant. Preliminary results show
that using accessibility features presents a promising approach to
improving the quality of datasets in the HIDS domain.

CCS CONCEPTS

• Security and privacy→ Intrusion/anomaly detection and

malware mitigation.

KEYWORDS

Intrusion Detection, Dataset Generation, Accessibility Features.

ACM Reference Format:

Christian van Sloun and Klaus Wehrle. 2023. Poster: Vulcan – Repurposing
Accessibility Features for Behavior-based Intrusion Detection Dataset Gen-
eration. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’23), November 26–30, 2023, Copenhagen, Den-
mark. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3576915.
3624404

1 INTRODUCTION

With human security monitoring capabilities quickly reaching their
limits due to the increasing number of cyber attacks, organiza-
tions rely on Intrusion Detection Systems (IDSs) based on Machine-
Learning (ML) to deal with the number of potential alerts and focus
the attention of personnel to only deal with security-relevant events.
However, training such systems relies on high-quality datasets to
distinguish between benign and malicious behavior. This raises two
critical questions: (i) where does the training data come from, and
(ii) how to judge whether the training data is useful?

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CCS ’23, November 26–30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0050-7/23/11.
https://doi.org/10.1145/3576915.3624404

Export 
system logs

Manage and simulate 
user interaction 2

Load VMs and 
behavior 
profiles

Export 
labeled 
trace

6

Behavior 
Profiles

Dataset

 Controller

 Behavior Management

Dataset Management

1a
Configure 
VM target

1b

Issue/receive user 
interaction/notifications 
via accessibility features

3

5

Interact with UI elements 
to controll application 4

Virtual Machine

Kernel 
Space

User 
Space

Hardware

OS Core

Applications

Controller Core

Behavior 
Manager

Labeling, 
Documentation

Application 
Plugins

Trace/Log 
Gatherer

Accessibility
(UI Automation)

Remote Access
(Helper Program)

Event Logging

Figure 1: Vulcan’s architecture design.

To improve the performance of IDSs, researchers rely on pub-
lic datasets as these allow objective comparison of different ap-
proaches, and several datasets for both Network IDSs (NIDSs) and
Host IDSs (HIDSs) have been proposed over the years [3, 5, 14].
However, especially for HIDSs, relevant datasets are equally often
criticized as being unrealistic [5, 10], outdated [3, 5, 6], contain-
ing errors [1, 4], or simply missing features that are required for
a new IDS approach [5]. Consequently, significant effort has gone
into developing realistic datasets [5, 8, 14] and dataset generation
methods [2, 9, 13]. We observe a significant bias toward generat-
ing realistic network traffic for NIDS use [11, 13, 14]. At the same
time, the generation methods of existing datasets, or mechanisms
designed to create new datasets for HIDS use, presently rely on
rudimentary tools, e.g., network services [3, 5, 8] or remote access
and dedicated Application Programming Interfaces (APIs) [2, 9],
that only support a narrow subset of applications and behavior.

We focus on extending dataset generation methods to a wide
range of applications, making the generation of host behavior more
representative of real-world environments and more maintainable.
We propose to repurpose accessibility features already present in
most Operating Systems (OSs) to simulate the system interaction
by real users that provide realistic system behavior and use this to
derive system behavior in a reproducible and repeatable way. We
build upon the intuition that most system behavior ultimately orig-
inates from human input, either directly, e.g., via a Graphical User
Interface (GUI), the network, e.g., by users interacting through a
web interface, or other applications requiring network connectivity.
The same holds for most malicious behavior, e.g., internal attacks
or attacks carried out via the network.

Therefore, we design Vulcan, a novel approach to generating
host activity based on predefined user behavior by repurposing
accessibility features as a universal control method to simulate
human interaction with applications and systems.

2 VULCAN

Vulcan generates IDS datasets based on user-behavior models to
overcome the limitations of previous approaches w.r.t. behavior

https://orcid.org/0009-0000-7021-3691
https://doi.org/10.1145/3576915.3624404
https://doi.org/10.1145/3576915.3624404
https://doi.org/10.1145/3576915.3624404


CCS ’23, November 26–30, 2023, Copenhagen, Denmark Christian van Sloun and Klaus Wehrle

generation for arbitrary applications. The focus of Vulcan is facili-
tating the generation of IDS datasets by generating realistic system
traces, e.g., system calls or logs, or network data, by repurposing
accessibility features to simulate the interaction of human users
with applications. By enabling direct interaction with GUI elements,
accessibility features render the need for dedicated remote control
APIs unnecessary and promise to support a wide range of OSs and
applications. Since accessibility features mimic human interaction,
they are ideal for realizing programmatic control over various (GUI-
based) applications. They can simulate human-like interactions and
enable Vulcan to generate realistic and comprehensive datasets
that closely model real-world environments.

Fig. 1 visualizes the general architecture of Vulcan. It uses a
database of behavioral profiles describing a user’s interaction with
an application as the basis for its simulation. Each profile defines se-
quences of interactions with applications or how the simulated user
reacts to external events, e.g., receiving a notification. As accessibil-
ity features use unique identifiers or the position of UI elements in
an abstract hierarchy of UI elements, we add an abstraction layer by
introducing the concept of application-specific plugins that allow
behavior profiles to work on a more abstract description of user
interaction. For example, instead of defining the specific sequence
of interactions with UI elements required to save a file, it allows
specifying such tasks by their intention, i.e., saving the file.

The main components of Vulcan are a controller and Virtual
Machines (VMs) serving as the end hosts generating host data. To
generate new datasets, the controller loads a description of the avail-
able VMs and behavior profiles (Step 1a○), which act as blueprints
for the system traces, i.e., the recorded host activity, that is gener-
ated when simulating the user’s behavior on the target machine.
The controller configures the VMs required for the planned execu-
tion (Step 1b○) by installing necessary applications and configuring
logging. Subsequently, Vulcan establishes a control channel to
allow the controller access to the internally available accessibility
features of the OS running in the VM. A subcomponent of the con-
troller, the behavior management (Step 2○), manages the current
step in the behavior profiles for each virtual user and decides which
actions are executed next.

Furthermore, the behavior management interprets events, e.g.,
notifications, that users would react to and adapts the planned in-
teractions accordingly. The plugins then translate the interaction
into application-specific UI actions (Step 3○) and react to poten-
tial prompts, e.g., error messages, by interpreting the result and
handing control back to the Behavior Manager. An OS-specific
helper program, started inside each VM, accesses the accessibil-
ity interface of the OS (Step 4○) and returns relevant information
about running processes, available windows, and UI elements to
the controller. Further, it receives the instructions generated by the
applications-specific plugins and executes the requested interac-
tions using available accessibility features. During execution, each
VM streams relevant system information as traces to the controller
(Step 5○), where the data is collected.

Additionally, the controller uses the information from the Be-
havior Manager to label the traces by associating the received log
data to the behavior profile and its current state of execution in
the corresponding VM. Finally, the traces are exported (Step 6○),
potentially compressed, and stored as part of the new dataset.

Chrome
Vulcan

Chrome
Manual

Word
Vulcan

Word
Manual

Outlook
Vulcan

Outlook
Manual

Thunderbird
Vulcan

Thunderbird
Manual

Chrome
Vulcan

Chrome
Manual

Word
Vulcan

Word
Manual
Outlook
Vulcan

Outlook
Manual

Thunderbird
Vulcan

Thunderbird
Manual

0.01 0.08 0.53 0.53 0.55 0.55 0.52 0.45

0.08 0.00 0.51 0.51 0.54 0.54 0.50 0.43

0.53 0.51 0.01 0.02 0.13 0.14 0.54 0.48

0.53 0.51 0.02 0.01 0.13 0.13 0.54 0.48

0.55 0.54 0.13 0.13 0.01 0.07 0.58 0.51

0.55 0.54 0.14 0.13 0.07 0.01 0.59 0.51

0.52 0.50 0.54 0.54 0.58 0.59 0.01 0.28

0.45 0.43 0.48 0.48 0.51 0.51 0.28 0.10

±0.02 ±0.11 ±0.10 ±0.11 ±0.15 ±0.15 ±0.05 ±0.11

±0.11 ±0.01 ±0.10 ±0.10 ±0.15 ±0.16 ±0.06 ±0.10

±0.10 ±0.10 ±0.01 ±0.01 ±0.14 ±0.15 ±0.11 ±0.12

±0.11 ±0.10 ±0.01 ±0.01 ±0.13 ±0.15 ±0.12 ±0.12

±0.15 ±0.15 ±0.14 ±0.13 ±0.01 ±0.04 ±0.18 ±0.17

±0.15 ±0.16 ±0.15 ±0.15 ±0.04 ±0.03 ±0.19 ±0.18

±0.05 ±0.06 ±0.11 ±0.12 ±0.18 ±0.19 ±0.01 ±0.21

±0.11 ±0.10 ±0.12 ±0.12 ±0.17 ±0.18 ±0.21 ±0.18

Figure 2: Comparison of the symmetric Word Mover’s Dis-

tance and standard deviation between Vulcan and manually

generated traces.

3 EVALUATION

The design of Vulcan hinges on the assumption that accessibility
features, part of common OSs, allow for the automated generation
of realistic datasets for HIDS. To evaluate the quality of datasets
generated via accessibility features, we implemented a prototype for
Windows 11 that supports programmatic control of Google Chrome,
Microsoft Word, Microsoft Outlook, and Mozilla Thunderbird. We
used Sysmon and adapted the sysmonconfig-trace configuration
by F. Roth [12] to log security-relevant events.
Behavior Profiles. We evaluated our framework through three
scenarios that are conceivable workflows performed by employees
interacting with their workstations: (i) Using a web browser to
request a webpage, navigating to several subsequent pages via
hyperlinks before closing the application. (ii) Using the OS’s file
explorer to open a Microsoft Word document, edit the document,
and save changes back to disk. (iii) Receiving and reading the newest
email and forwarding it to a new recipient. The last scenario is
repeated for both Microsoft Outlook and Thunderbird.
Evaluation Metrics. As system traces originate from an applica-
tion executing its program code, they inherit a structure defined
by the program flow. Thus, they can be represented as a sentence
containing system events. To compare the dissimilarity of the re-
sulting traces, we use the Word Mover’s Distance (WMD) [7] since
it measures the dissimilarity between two sentences. Therefore, to
objectively quantify the difference between Vulcan and manually
performed executions of the same workflow, we use a word2vec
model trained on 100 Vulcan traces from each scenario and com-
pare 30 traces produced by Vulcan to 30 traces that are performed
by hand. Additionally, we split the preprocessed corpus of the Vul-
can-generated traces into training, test, and validation sets.

We aim to study whether dataset traces generated by Vulcan
resemble realistic behavior and if the proposed control method via
accessibility features introduces anomalies in the recorded system
behavior. As each trace consists of sentences representing the exe-
cution of each process, we measure the dissimilarity between two
traces by computing the WMD for matching processes contained
in both traces. When comparing traces for which one contains a
process that has no equivalent in the other trace, e.g., a process
checking for updates, no direct comparison can be performed. In
such cases, we compute the minimumWMD of the process in ques-
tion and all processes in the other trace. Using the maximum would
produce a high dissimilarity between disjunct applications but also
would not be meaningful when comparing the same application.



Poster: Vulcan – Repurposing Accessibility Features for Behavior-based Intrusion Detection Dataset Generation CCS ’23, November 26–30, 2023, Copenhagen, Denmark

0 5 10 15 20 25 30
4
3
2
1
0

Tr
ac

eI
D

Vulcan's traces of Chrome

0 5 10 15 20 25 30
Time (s)

4
3
2
1
0

Tr
ac

eI
D

Manual traces of Chrome

ProcessCreate
FileCreationTimeChanged
NetworkConnection
ProcessTerminate

ImageLoad
FileCreate
RegistryEvent_(Create/Delete)
RegistryEvent_(ValueSet)

PipeCreated
PipeConnected
DNSQuery
FileDeleteDetected

Figure 3: The temporal structure of different events across

five randomly chosen Google Chrome traces.

Preliminary Results. We compare Vulcan and manual traces
for all four applications to evaluate whether Vulcan introduces
behavioral anomalies and compute the average dissimilarity and
standard deviation across compared traces. Fig. 2 visualizes the dis-
similarity of Vulcan and manual traces across all four applications.
The comparison shows a low dissimilarity (0 denotes that traces are
identical) between traces generated using Vulcan and also between
manually generated traces, implying that the applications behave
consistently. The only exception, the manually generated traces of
Thunderbird, show an increase in dissimilarity. When comparing
manual traces and those generated by Vulcan, a slight increase in
the average dissimilarity and standard deviation can be observed
for Google Chrome, Microsoft Word, and Outlook. However, Thun-
derbird shows a significant increase that is caused by the already
higher dissimilarity between the manual traces, affecting the com-
parison with Vulcan traces. Comparing applications reveals that
they generate markedly distinct traces. Notably, Microsoft Word
and Outlook show a lower degree of dissimilarity, which the shared
code basis of these applications can explain.

The comparison, especially for Microsoft Word, shows that Vul-
can produces realistic traces indistinguishable from traces gener-
ated by a human user. Nevertheless, there are slight variations for
other applications. A closer look at Google Chrome and Microsoft
Outlook shows very low dissimilarity between manual and Vulcan
traces but an increased dissimilarity when comparing them. Upon
inspection (cf. Fig. 3) of different Sysmon events across a subset
of five Vulcan/manual Chrome traces, the Vulcan traces contain
“PipeConnected” events that cannot be found in manual traces. This
results from howMS UI Automation provides access to accessibility
features for applications as it connects named pipes to each accessed
process. Due to how Google Chrome’s GUI framework operates
(multiple processes are started to perform rendering tasks), many
such events are generated and logged by our Sysmon configuration.
However, using named pipes, the associated events can easily be
identified. Sysmon can be configured to ignore these events, im-
proving the dissimilarity between manual and Vulcan Chrome
traces to 0.059 ± 0.068. Thunderbird’s dissimilarity is caused by
telemetry transmissions toMozilla, which appear in 27 of 30 manual
executions. Interestingly, all Vulcan and three manual traces do
not show this behavior, which indicates that outside influences may
cause this. Excluding these processes improves the dissimilarity
between Vulcan and manual Thunderbird traces to 0.095 ± 0.040.

4 CONCLUSION AND FUTUREWORK

Our results show that Vulcan can accurately simulate human
interaction with minimal effect on the operation of the controlled
application. Furthermore, effects introduced by Vulcan can be
identified and filtered out, demonstrating its ability to simulate
realistic system activity. However, our work is still preliminary, and
we are extending it to investigate several specifics:
Universality. Firstly, while application-specific plugins promise to
ease the adaption of Vulcan to additional OSs and applications, the
effort required for broader applicability warrants further analysis.
Scalability. Second, using VMs that are coordinated via the net-
work promises scalability. However, quantifying the overhead in-
troduced by accessibility features when controlling complex user
behaviors requires a dedicated performance evaluation.
Realistic user/attacker behavior. Third, while it is possible to
define behavior manually, to make a synthetic dataset resemble the
real world, methods deriving behavior from real-world or red-team
activity would significantly reduce the effort to generate large-
scale datasets. We believe that accessibility features could also be a
promising approach to record how a user interacts with a system
and allow for easy generation of behavior profiles.
Quality of generated datasets. Finally, to assess the quality of
datasets generated by Vulcan, it is necessary to evaluate the gen-
erated dataset against an IDS. We plan to extend our evaluation by
generating a large-scale dataset containing user behavior.

Despite the items listed above, we believe that with Vulcan, we
present a promising approach to improving the quality of datasets
in the HIDS domain due to its ability to simulate users interacting
with systems realistically. We believe realistic datasets to become
increasingly relevant to improve the ability of IDS to detect internal
attackers or advanced persistent threats.

REFERENCES

[1] M. M Anjum et al. 2021. Analyzing the Usefulness of the DARPA OpTC Dataset
in Cyber Threat Detection Research. In ACM SACMAT.

[2] H.-K Bui et al. 2021. CREME: A Toolchain of Automatic Dataset Collection for
Machine Learning in Intrusion Detection. J. Netw. Comput. Appl. (2021).

[3] G Creech et al. 2013. Generation of a New IDS Test Dataset: Time to Retire the
KDD Collection. In IEEE WCNC.

[4] G Engelen et al. 2021. Troubleshooting an Intrusion Detection Dataset: The
CICIDS2017 Case Study. In IEEE SPW.

[5] M Grimmer et al. 2019. A Modern and Sophisticated Host Based Intrusion
Detection Data Set. In IT-Sicherheit als Voraussetzung für eine erfolgreiche Digital-
isierung.

[6] W Haider et al. 2017. Generating Realistic Intrusion Detection System Dataset
Based on Fuzzy Qualitative Modeling. J. Netw. Comput. Appl. (2017).

[7] M Kusner et al. 2015. From Word Embeddings to Document Distances. In Pro-
ceedings of the 32nd International Conference on Machine Learning.

[8] M Landauer et al. 2022. Maintainable Log Datasets for Evaluation of Intrusion
Detection Systems. IEEE Trans. Dependable Secure Comput. (2022).

[9] M Landauer et al. 2021. Have It Your Way: Generating Customized Log Datasets
With a Model-Driven Simulation Testbed. IEEE Trans. Reliab. (2021).

[10] J McHugh. 2000. Testing Intrusion Detection Systems: A Critique of the 1998 and
1999 DARPA Intrusion Detection System Evaluations as Performed by Lincoln
Laboratory. ACM Trans. Inf. Syst. Secur. (2000).

[11] M Ring et al. 2017. Flow-Based Benchmark Data Sets for Intrusion Detection. In
ECCWS.

[12] F Roth. 2023. Sysmon-Config | A Sysmon Configuration File. https://github.
com/Neo23x0/sysmon-config Accessed: 2023-08-17.

[13] I Sharafaldin et al. 2018. Towards a Reliable Intrusion Detection Benchmark
Dataset. Software Networking (2018).

[14] I Sharafaldin et al. 2018. Toward Generating a New Intrusion Detection Dataset
and Intrusion Traffic Characterization:. In ICISSP.

https://github.com/Neo23x0/sysmon-config
https://github.com/Neo23x0/sysmon-config

	Abstract
	1 Introduction
	2 Vulcan
	3 Evaluation
	4 Conclusion and Future Work
	References

