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Abstract
The ever-increasing variety of microcontrollers aggravates

the challenge of porting embedded software to new devices
through much manual work, whereas code generators can be
used only in special cases. Moreover, only little technical doc-
umentation for these devices is available in machine-readable
formats that could facilitate automating porting efforts. In-
stead, the bulk of documentation comes as print-oriented
PDFs. We hence identify a strong need for a processor to
access the PDFs and extract their data with a high quality to
improve the code generation for embedded software.

In this paper, we design and implement a modular proces-
sor for extracting detailed datasets from PDF files containing
technical documentation using deterministic table process-
ing for thousands of microcontrollers. Namely, we system-
atically extract device identifiers, interrupt tables, package
and pinouts, pin functions, and register maps. In our evalua-
tion, we compare the documentation from STMicro against
existing machine-readable sources. Our results show that
our processor matches 96.5 % of almost 6 million reference
data points, and we further discuss identified issues in both
sources. Hence, our tool yields very accurate data with only
limited manual effort and can enable and enhance a signifi-
cant amount of existing and new code generation use cases in
the embedded software domain that are currently limited by a
lack of machine-readable data sources.

1 Introduction

With an ever-expanding product catalog of embedded hard-
ware comes the challenge of porting the corresponding
hardware-dependent software (HdS) stack to thousands of
devices [15]. Hardware vendors typically provide a HdS
implementation in the C programming language only. How-
ever, newer compiled languages and dynamic runtime envi-
ronments, such as C++ [34], Rust [59], Python [38], and
IoT-focused Femto-Containers [80], bring new programming
paradigms and features to resource-limited embedded sys-
tems, but they require a custom HdS stack [15, 30].

Porting HdS to other programming languages is mostly a
manual process, where software engineers consult technical
documentation to inform design and implementation deci-
sions, as well as extract device-specific hardware description
data from the documents and convert them into code [15].

However, the technical documentation is often only avail-
able as PDF, which complicates the extraction of structured
data [16, 54] due to its print-oriented content model [43].
Specifically, porting a HdS stack to a new device requires
data for the bootloader (processor, memories, vector table,
power management, clock graph), hardware abstraction layer
(HAL) (pinout, pin functions, peripherals, register map), de-
vice drivers (capabilities, pinout, communication type, regis-
ter map), and board support (microcontroller, external devices,
signal connections, power supply) [15]. Additional data is
needed for part evaluation, configuration tools, build systems,
testing, and simulation [15]. As a result, the porting process
is laborious and thereby slows down new HdS projects [15].

Some projects alleviate these limitations by using code
generators for large parts of their HdS stack [3, 34, 58–60],
with data extracted from machine-readable sources, such as
standardized formats [70], proprietary databases from tool-
ing [64], or provided by manually curated datasets [20, 27].
However, the scope and fidelity of the available machine-
readable data are usually significantly smaller than what is
available in the technical documentation [35, 60]. Exist-
ing work in the area of document information extraction is
focused on generic inputs and cannot provide the domain-
specific data found in technical documentation with the nec-
essary accuracy [9, 16, 54, 73].
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Figure 1: A data processor project 1 combining multiple in-
put sources into a shared database without manual supervision
promises to reduce overall development efforts. 2 A single
project using the database can 3 add features or fix issues
so that 4 all other projects benefit from the improvements.
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These observations motivate the need for combining multi-
ple sources to create the most complete dataset possible in an
automated, unsupervised process. As illustrated in Figure 1,
the database can then be shared among multiple projects,
which would significantly reduce development efforts.

Therefore, we identify a research gap in terms of a data
processor that connects information extraction of technical
documentation with code generation of embedded software.
We split our solution to this problem into four parts: (i) We
first convert the print-oriented PDF technical documentation
content into an accessible, structured form. (ii) We then
extract and assemble the information relevant to our use cases
as determined by domain experts. (iii) We then encode this
data into an unambiguous encoding and provide access to it
for code generation tasks. (iv) For our evaluation, we compare
both the completeness and correctness of the extracted PDF
data with the already existing machine-readable counterpart.

Contributions. Our tool achieves several contributions.
Our processor converts PDF technical documentation to
HTML and provides custom parsers for machine-readable
data. We apply table processing and text mining paradigms
to extract and convert data from the technical documentation
using a deterministic process that yields completely repro-
ducible results. We verify the processor functionality by com-
paring the data extracted from the technical documentation
against the existing machine-readable sources. In addition,
we further check the internal consistency of the processed data.
Thereby, we establish a method to merge multiple sources
and arbitrate conflicts based on qualitative metrics. We also
provide a detailed analysis of the quality, trustworthiness, and
completeness of each data source that can inform and guide
future extraction work. The extracted data is unambiguously
encoded as a knowledge graph via a custom ontology to de-
scribe the embedded hardware, making it widely accessible to
a number of different use cases. Our design is implemented
as a highly modular Python project, which is open-sourced
and maintained as part of the modm project [37].

Paper Organization. This paper is organized as follows.
In Section 2, we introduce the background relevant to the
remainder of this paper. We then describe related work in
Section 3 and define the issues to be addressed by our proces-
sor. In Section 4, we describe the design and implementation
of our processor, which we then rigorously evaluate against
STMicro documentation and data sources, and discuss the
results in Section 5. We conclude this paper in Section 6.

2 Background

In this section, we first lay the foundation for our processor
extracting the hardware description data required for creat-
ing embedded software. Accordingly, we give an introduc-
tion to technical documentation formats, table processing,
hardware-dependent software, and knowledge modeling in
the following.

2.1 Technical Documentation

Hardware vendors publish their products’ technical documen-
tation as PDF files, which, as a print-oriented format, contain
a stream of graphics and text objects placed at precise posi-
tions inside the document canvas [43]. As a result, documents
render identical on all platforms; however, all semantic and
hierarchical information is lost, which makes it difficult to
parse and convert them automatically [54]. For example,
PDFs published by STMicro contain text-supplementing ta-
bles and figures with valuable information [13]. Tables are
rendered using vector graphics to draw the cell borders and
text characters, as visualized in Figure 2. Extracting struc-
tured data from such tables is difficult when relying only on
text extraction heuristics [7,54,62]. Admittedly, deterministic
algorithms consuming vector graphics produce accurate and
reliable results [53].
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Figure 2: This table excerpt shows the bounding boxes of the
individual glyphs in red with their origin marked with a black
cross. Inter-document links like the footnote markers in the
Notes column are marked with a green box [13].

2.2 Table Processing

Table processing edits, converts, and formats data from un-
tagged but semi-structured inputs to semantically valuable
information [16]. Simple tables render an array of data as
a row-column structure of cells [26, 75]; however, complex
tables express hierarchical and multi-dimensional information
presented in their formatting [16, 26]. The visual rendering
of tables includes using different text, separator, and bor-
der styles, spanning cells spread over multiple rows and/or
columns, cells with multi-line content, and even splitting the
entire table into multiple parts to help fit into the presenta-
tion medium dimensions, usually a printable page or a digital
display [54, 75]. To separate the rendering from its logical
structure, the Wang abstract table model [75] defines an in-
dexing relation as a partial function δ that uniquely maps the
multi-dimensional header structure to a table cell resulting in
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an attribute-value pair [16,26]. However, any further interpre-
tation and transformation of the tabular data require domain
knowledge about the content of the table [54].

2.3 Hardware-dependent Software
Hardware-dependent software (HdS) consists of the lowest
layers in an embedded system that directly interact with the
underlying hardware and provide a portable abstraction to
applications on different hardware [6, 30]. In doing so, the
HdS can only implement a system functionality together with
the underlying hardware and would lose its utility without this
dependence [15]. Figure 3 illustrates the typical layers of a
conceptual and simplified HdS architecture, of which embed-
ded software typically only implements the layers necessary
for the scope of the application [6,30]. Our tool focuses on the
hardware description and the HAL since these layers require
the most data and manual effort for porting.

Application
Middleware Board Support

Operating
System

Communication Protocols

Device Drivers

Boot
Firmware

Hardware Abstraction Layer

Peripherals Debug Support CPU Memory

System Bus

Figure 3: The simplified software stack of a typical HdS
architecture with its three layers: software, HdS, and hard-
ware [15]. Our work focuses on the hardware description and
hardware abstraction layer (marked gray).

Modern microcontrollers connect a microprocessor to
generic internal memories and specialized hardware regis-
ters located at specific addresses of an internal bus, known as
memory-mapped input/output (MMIO) [15]. To describe the
register names, addresses, and types, vendors publish system
view description (SVD) files that are the machine-readable
equivalent of the register descriptions in the technical docu-
mentation [4]. The SVD files are converted into C header files
using a closed-source conversion program called SVDConv as
part of the common microcontroller software interface stan-
dard (CMSIS) [72]. This form of MMIO register access is the
de-facto standard for all C-based HALs due to the simplicity
of the header files that work well with many compilers [4].

Vendors also publish custom tooling for their specific prod-
ucts. For example, the STM32CubeMX [64] tool by STMicro
allows a programmer to graphically connect peripheral signals
to pins, configure the clock system, estimate power consump-

tion, and enable several middlewares. The tool can then gener-
ate a complete HdS stack in C for a specific device, which is a
pragmatic choice due to its popularity and history as a system
programming language [6, 15], but also its main limitation.
The tool’s internal database contains a machine-readable ver-
sion of the pin definitions in the technical documentation and
is also available separately on GitHub [67].

Apart from C, open-source toolchains also support a num-
ber of newer compiled languages, such as C++ [5, 11, 34] and
Rust [59, 60]. Optimized runtimes also exist for interpreted
languages such as Python [21, 38, 51] and Go [22]. These
languages bring new programming paradigms and features
to resource-limited embedded systems that are simply not
supported by C, especially compile-time code execution and
extending the type system. However, all of these new lan-
guages must access the underlying hardware with the same
MMIO register mechanism. Therefore, they all require the
same information to generate their language bindings and
support tooling, regardless of what level of abstraction and
convenience they provide. However, in practice, all code
generation approaches that support new languages are limited
to vendor-published, machine-readable, or manually curated
data sources.

2.4 Knowledge Modeling

Knowledge graphs transitively model the available knowledge
about a set of entities; namely, knowledge graphs represent
facts about entities’ relations as edges, which can allow de-
ducting and validating new knowledge about the modeled
domain by combining multiple edges, i.e., deriving additional
rules on how to interpret entities and their relations [23, 28].
The rule set and data graph together constitute a formal rep-
resentation of domain-specific knowledge, an ontology [23],
which can be used to translate the abstract table model via its
partial function δ into related facts [73]. We can define the
scope and detail of an ontology depending on the extent and
quality of the input data and how much additional information
we want to query out of it using the same query language and
graph algorithms regardless of scale [23].

A concrete implementation of knowledge graphs is the se-
mantic web, which annotates HTML resources with semantics
using an XML-based syntax [23]. The data model for seman-
tic web knowledge graphs is the resource description frame-
work, which can be extended with descriptions of semantic
rules of increasing computational complexity relative to the
reasoning capabilities of a solver [23]. The most used exten-
sion is the web ontology language (OWL), which provides
basic vocabulary like a datatype hierarchy and pre-defined
properties using a description logic with well-understood com-
putational properties that allow reasoning solvers to terminate
on all queries [23].

Summary. In conclusion, the limitations of the PDF format
make accessing its text, figures, and tables difficult, while
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table processing allows for working with tabular data in a
format-agnostic way if only it were accessible. The technical
documentation contains important information for generating
HdS in languages other than C that can supplement existing
machine-readable sources, whose complex data model we
can describe using knowledge graphs. With our tool, we
bridge the gaps between these independent areas of research
for improved automation and robustness, irrespective of the
final use, especially for embedded devices.

3 Related Work

After introducing the technical background for this paper, we
now discuss related work in the areas of information extrac-
tion, hardware description pipelines, and embedded software
generators.

3.1 Document Information Extraction
Extracting structured information from non- or semi-
structured inputs is a wide area of research [16]; therefore,
we focus on table processing and knowledge modeling. The
foundation of table processing is the abstract table model [75],
used to decompose a table into its logical structural design,
tabular arrangement, and presentation style. Hurst [26] ap-
plies this abstract model to tables in documents for the pur-
pose of extracting their information into a semantic model.
Embley et al. [16] thoroughly enumerate table input formats,
presentation styles, and table processing paradigms. Out of
the four table categories in this survey, our work only uses two:
Symbolic tables are unambiguously encoded using markup
languages such as HTML or XML that separate the table lay-
out from cell content. Their visualization is performed as a
separate step, which allows for rendering the same table in
different styles [16]. Vector tables are found in PDFs and scal-
able vector graphics (SVG) and encode the table layout and
cell content separately using text instructions for rendering
glyphs and graphics instructions for rendering line art [16].

Table processing first requires detecting and locating, then
understanding the table’s structure and content [16, 29]. For
symbolic tables, detection can be as simple as matching on
special strings in the content stream [8]. However, for vector
tables in PDFs, a common approach is coalescing the bound-
ing boxes of text and graphics into larger clusters [7, 53, 62]
and categorizing these into text, figures, and tables. Three
common approaches exist: Generic, heuristic algorithms use
only the space between text clusters to detect borders [62]
if tables provide enough space between the cell content and
its borders [7, 53, 55, 56, 62]. A more accurate approach uses
the properties of vector graphics to determine table structures
directly [53]. However, in practice, both approaches are com-
bined [7, 10, 53] since figures and tables are often composed
of a mix of text with implicit whitespace borders and differ-
ent font properties, alignment, and graphics with various line

types and widths. A particularly robust method is to first
locate the table captions via text search and then find the cor-
responding graphics and text clusters nearby [10]. The last
common approach is to render the PDF input to images and
then use machine learning to classify the areas visually [57].

Information extraction algorithms then align the table struc-
ture and content with an externally provided schema to guide
the understanding process [16, 54]. Schemas can be user-
defined [18] or heuristically obtained [17] and then incremen-
tally merged into a larger ontology [18, 73]. Alternatively,
an already existing external ontology [9] or one text-mined
from the surrounding text [50, 79] can generate a feasible
table schema mapping. Machine-learning models can then
recognize tables with similar schemas but different format-
ting with 80–85 % accuracy [41]. The resulting ontology and
data are typically modeled via a knowledge graph that can
apply various internal reasoning methods in combination with
additional external data sources to improve accuracy [23, 28].

Historically, manual methods of information detection and
extraction were converted to statistical models and then fur-
ther generalized to machine-learning models that can parse
more input formats with higher accuracy. Recent research
now utilizes large language models [81] to accurately ex-
tract knowledge in structured form, albeit only from text
inputs [14]. To outline how these approaches are applied
in practice, we introduce existing hardware data extraction
pipelines next.

3.2 Hardware Description Data Pipelines

Extracting information from generic documents is a
widespread use case for commercial and open-source tools,
typically by applying optical character recognition to scanned
or photographed documents and heuristic algorithms on the
obtained text [29]. However, due to the format ambiguities
inherent in such documents, user input is usually required to
guide table detection and understanding [29]. For example,
Tabula [44] is a popular, open-source Java application that
extracts tables into Excel format with a graphical interface to
solicit human user input. Khurso et al. [29] compiled even
more methods and tools for table extraction in their survey.
However, we require tools that extract information specifi-
cally from several extensive technical documents related to
embedded software and hardware in an automated manner.

Instabuild [45] is a commercial tool to extract device pinout
descriptions from screenshots of datasheets but requires hu-
man supervision, similar to Tabula. In contrast, uConfig [47]
extracts device pinouts automatically using a carefully crafted
parser that interprets the text bounding boxes inside the rele-
vant figures but only succeeds for some PDF technical doc-
umentation. Finally, Datasheet2SVD [48] uses Tabula to
extract the memory map from reference manuals; however,
it is limited to work for only two Renesas PDFs documents.
To the best of our knowledge, none of these projects utilize

4



Journal of Systems Research (JSys) 2023

Tool or Project Open-Source Maintained Data Source Output Data Scope Interaction

Tabula [44] ✓ ✓ Any PDF Excel, CSV Any table Supervised
Instabuild [45] ✗ ✓ Image of PDF EDA symbol Pinout tables Supervised
uConfig [47] ✓ ✗ Datasheet PDF EDA symbol Pinout figures Scripted
Datasheet2SVD [48] ✓ ✗ Datasheet PDF CMSIS-SVD Register map Scripted

modm-devices [35] ✓ ✓
CMSIS-Header,
STM32CubeMX

Custom XML
with Python API

Peripherals, pinouts,
signals, memories

Scripted with
manual patches

embassy-rs [68] ✓ ✓
CMSIS-SVD,

STM32CubeMX
Custom JSON
with Rust API

Peripherals, pinouts,
signals, register map

Scripted with
manual patches

Table 1: Comparison of tools and projects that extract hardware description data from PDF and machine-readable sources.

vector graphics to detect and segment tables in the documents,
relying entirely on whitespace analysis, which has significant
limitations, and none give any kind of evaluation metric for
their accuracy or device coverage, and none facilitate a simple
merging of multiple information sources.

Other projects extract information only from machine-
readable sources such as CMSIS system view description
(CMSIS-SVD), CMSIS-Header, and the STM32CubeMX
database [64]. modm-devices [35] accumulates data on de-
vice pinouts, pin signal connections, peripheral type and
counts, and memory sizes for STM32, SAM, NRF, and
AVR microcontrollers, which is used to inform the C++ HAL
and toolchain generation in the modm project [34]. The
embassy-rs data pipeline [68] does almost the same for gener-
ating the embassy-rs Rust HAL [60] but is limited to STM32
only. Both tools further store their data in custom formats and
do not share any manual data fixes.

In summary, PDF-based tools are limited to extracting
very specific data for a limited number of devices, while
the most extensive datasets are only generated from the
machine-readable sources STM32CubeMX, CMSIS-Header,
and CMSIS-SVD. We provide a comparison summary of all
these tools and projects in Table 1. To provide an overview
of the use cases that can consume the hardware description
data generated by the pipelines, we present related work in
the area of embedded software in the next section.

3.3 Generating Hardware-dependent Software

Code generation is an essential tool for HdS design since the
limited code space on most devices makes runtime configu-
ration options infeasible [6, 15, 30]. The wide research area
of model-driven software engineering includes HAL genera-
tion [24, 25], automated testing [76], system modeling [61],
and deriving entire software drivers [2] mostly from existing
machine-readable sources (cf. Figure 1).

However, in practice, HdS projects only implement a sub-
set of the proposed research. For example, the Linux Zephyr
project [31] configures hardware via the DeviceTree [32] in-
terface and then formats it as C pre-processor definitions to
be used as an implicit code generator built into the toolchain.

The STM32CubeMX configuration tool [64] instead gener-
ates its C HAL in an explicit step before compilation, as
does modm [34] and Embedded Rust [59] for their respective
C++ and Rust HALs. I2CDevLib [27] accumulates manually
defined register maps for externally connected devices and
provides basic drivers for them. Cyanobyte [20] instead gen-
erates device drivers from an abstract dataset so that projects
with a custom HAL only need to provide a code template to
gain access to all drivers.

Specialized code generators convert CMSIS-SVD regis-
ter maps [70] found on GitHub [69] into language-specific
bindings: SVDConv [72] for generic C, SVD2Rust [58]
for Embedded Rust, SVD2Ada [3] for Embedded Ada, and
SrcGen [71] for generic Assembly, C or Clojure definitions.
However, a crowd-sourced effort to significantly improve
them is not progressing fast enough [65].

In conclusion, we point out that even though data extrac-
tion from tables is a hard but well-understood problem, data
pipelines in the embedded software space do not apply these
lessons at scale and instead either focus only on extract-
ing only specific data such as pinout detection from docu-
ments [45, 47] or only extract data for specific devices [48].
The most extensive pipeline projects [34, 59] eschew doc-
uments altogether and only use already machine-readable
data [64,70]. Projects using code generators are therefore lim-
ited to the scope of easily accessible data, with a current focus
on SVD files, or they are forced to manually build databases
to enable their use case [20, 27]. However, several research
ideas [2, 61, 76, 78] use very extensive datasets for which a
pipeline is missing as of now and, therefore, must derive the
required data heuristically or via user input.

4 Design and Implementation

The outlined lack of approaches that automatically process
and utilize technical documentation convinced us to come
up with a design and corresponding tool that transforms and
merges multiple data sources into a shared representation an-
notated with domain-specific semantics. In this section, we
give an overview of this design and its specifics. We separate
the entire processor into six specialized data pipelines, as visu-
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Figure 4: Design overview of our data processor. It relies on several internal pipelines (illustrated on the left side of the dotted
line: 2 – 7 ) and external access methods (shown on the right side: 9 – 11 ). First, 1 data sources from the hardware vendor
are retrieved. Then, 2 the PDF technical documentation is converted to HTML, and 3 the relevant tables contained within are
extracted into a knowledge graph (OWL). Additionally, the SVD memory maps are 4 extracted from the HTML, 5 CMSIS
header files, and vendor-provided SVD files to be 6 merged into an optimal representation and stored as a knowledge graph
(OWL). Finally, 7 the proprietary database (DB) contained in configuration tools is also converted into a knowledge graph
(OWL). Then, 8 the separate knowledge graphs are evolved into one canonical knowledge graph by a merging strategy that
corrects or at least minimizes data conflicts. This final knowledge graph is then 9 conveniently accessible via an external Python
API, 10 converted into specialized formats such as SVD, or 11 directly accessible via a knowledge graph query language.

alized in Figure 4. As a result, the individual conversion steps
are independent of each other. This modular design also al-
lows for manual or automatic inspection of intermediary data
between the stages to assess its quality and tune the conver-
sion process iteratively. Moreover, the data processor can be
composed of only those pipelines for which data sources are
available, which can then be merged using knowledge graph
evolution. For the design overview, we refer to Figure 4. We
now introduce the data-processing pipelines in more detail.

Input Data. 1 Input sources are usually available at ven-
dor websites (e.g., [63, 64]) or GitHub (e.g., [36, 66, 67, 69]).

PDF → HTML. The 2 PDF to HTML pipeline reverse-
engineers the formatting style of the PDF to assign the equiv-
alent HTML semantics to characters, vector graphics, and
images. To this end, we first abstract the PDF contents into
an internal document model via pypdfium2 v1.11 [49], before
locating table, figure, and image areas using their caption [10]
and vector graphics shape [53], with the remaining areas con-
taining only characters. We then convert each content area
separately into an abstract syntax tree (AST) [7,53,62], which
describes the logical content hierarchy together with vital for-
matting metadata, such as text indentation spacing to indicate
lexical scope. This metadata further contextualizes the in-
dividual object semantics. Subsequently, we unpaginate the
content areas by merging these small ASTs into one large
AST, which is iteratively modified to better align it to the
HTML content model for trivial serialization. The succeed-
ing pipelines can access the documentation now significantly
easier in HTML format.

HTML → X. The HTML representation provides an ab-
stracted input for the following pipelines 3 and 4 . For
tables, we provide a simple column-row (x,y) access with-

out regard for table structure or a partial function δ that pro-
vides attribute-cell pairs as described by the abstract table
model [75]. Together with basic text mining via regex match-
ing and substitution, these interfaces are enough to implement
all functionality. We now have a library of modular, reusable
HTML table queries that operates on the whole document set.

Header → SVD. The 5 CMSIS header files are converted
to CMSIS-SVD files by resolving the C pre-processor macros
into numeric values, which are then matched to the peripheral
and register names of the C type definitions elements to build
our hierarchical memory map. Any memory map definitions
in the CMSIS header format can now be parsed and converted.

X → OWL. The 6 CMSIS-SVD tree format is directly
converted into a knowledge graph. The 7 STM32CubeMX
tool database is encoded as XML and is converted almost
directly without significant effort. The pipelines 3 , 6 , and
7 use a manually-defined ontology and serialize to OWL

via owlready2 v0.40 [40]. All data is now unambiguously
encoded in a common format with shared semantics.

OWL → OWL. The knowledge graph is 8 evolved by
resolving input data conflicts and merging them into a new
knowledge graph. We resolve data conflicts by majority vote
if we have three or more sources available. Otherwise, we
prefer the machine-readable source and add all missing data
from the other. This final output of the data processor contains
the least flawed data from the input sources that is backward
compatible with existing software engineering practice. Other
evolution strategies may be better suited for use cases that do
not need to interface with existing vendor source code, e.g.,
Embedded Rust [59].

OWL → X. To improve the quality of life for users, we
provide several external interfaces ( 9 , 10 , and 11 ) that
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offer machine-readable access to the extracted knowledge.
These data-processing pipelines manage the automated

translation of technical documents and other resources. Hav-
ing cross-platform use in mind, we implemented our de-
sign entirely in Python 3.11, for which we could find well-
maintained libraries for interacting with PDF, tree, and knowl-
edge graph data structures while still being sufficiently perfor-
mant for our use case. Both conceptually and implementation-
wise, we kept our design modular. Hence, it can be adapted
to other technical documents, vendors, and resources. It fur-
ther supports replacing or extending single data pipelines
and promises good utility as pipelines can be (de)selected as
needed. The processor is open-sourced and will be maintained
on GitHub [37] under an MPLv2 license, and we welcome
pull requests that augment our provided data pipelines and
data sources.

5 Evaluation

We now evaluate the performance of our tool and assess the
quality of datasets extracted from technical documentation by
STMicro by comparing them against the corresponding lim-
ited corpus of available machine-readable data. In Section 5.1,
we first describe the execution of our processing pipelines
and which input data is converted into intermediary artifacts
before estimating its performance in Section 5.2 and the im-
plementation effort required for realizing each conversion
step in Section 5.3. Subsequently, in Section 5.4, we compare
the data we extracted from the technical documentation with
their machine-readable counterpart to derive the quality of
our automated processing and the accuracy of the provided
(technical) documentation. We then discuss our findings in
Section 5.5. Finally, we conclude this section with the impact
of the evaluation in Section 5.6.

5.1 Experimental Setup
The data processor and all auxiliary code are written in
Python 3.11 and do not require any special hardware or soft-
ware setup. We execute all pipelines and measurements on
a 2022 MacBook Air with an 8-core Apple M2 processor,
16 GB of memory, and 1 TB of storage. For our evaluation,
we used the latest STMicro data sources as of March 2023.

Data Sources. Before we can properly evaluate our tool,
we first need to convert all data sources into a common knowl-
edge graph format. We automatically scraped the technical
documentation from STMicro every day between 16th Febru-
ary 2022 and 19th March 2023, resulting in a total of 1436
PDFs. The 2 PDF → HTML pipeline converts the latest
revision of 409 PDFs with 156999 pages in total: 70 reference
manuals (70 % of the total pages) and 339 datasheets (30 %).
The 3 HTML → OWL pipeline then only converts the latest
revision of the technical documents, resulting in one knowl-
edge graph for each of the 188 datasheets and 55 reference

manuals, 4 as well as 58 SVD files. The 5 CMSIS header
files for STM32 are converted into 185 SVD files, while 6
the 99 CMSIS-SVD files for STM32 are imported as is. The
STM32CubeMX database [64] expands into 1316 individual
XML files, which the 7 DB → OWL pipeline converts into
one knowledge graph for each of the 3024 STM32 devices.

PDF → HTML Quality. We fine-tuned the accuracy of this
pipeline during development through iterative manual com-
parison between a sample set of representative PDF pages
and their resulting HTML to discover formatting issues and
then adapted the code to address them. If the subsequent
data pipelines fail to validate their input while converting the
tabular data into the expected semantic types, we manually
create an HTML patch. This process allows us to repair only
the minimal set of actually used tables, which significantly
reduces the manual effort compared to supervised detection
methods. The final result consists of 35 patches with 3289
lines of HTML to almost exclusively add missing table cell
borders, which caused unrelated cells to be merged acciden-
tally. We focus on textual information and tables due to their
relevance and intentionally omit figures in the current real-
ization of this pipeline. For our purposes of only extracting
structured tabular data, this limitation comes with a good
trade-off in the implementation effort and does not impact the
data quality and its usefulness.

5.2 Processing Times
In the following, we report the average runtime of all pipelines
over 10 runs to assess their computational performance. All
conversions are compute-bound and utilize the whole proces-
sor with a peak memory usage of about 6 GB. The bulk of the
processing time is consumed during the 2 PDF → HTML
conversion, which takes about 65 min to complete (about
25 ms per page). Conversely, the remaining steps all terminate
after 2–4 minutes each, resulting in an additional processing
time of 12 min. These significantly shorter runtimes underline
the benefit of converting the PDF to an intermediary HTML
format first since the algorithmic complexity and the amount
of data to process would significantly slow down pipelines
depending on the PDF content directly.

5.3 Implementation Effort
Our tool must be realizable and maintainable with an effort
comparable to accessing machine-readable sources directly
to provide a practical alternative. We approximate this metric
by the lines of code, as listed in Table 2.

While the technical documentation pipelines consist
of only about twice the lines of code as the machine-
readable pipelines, they took about 3.5 times as long to
implement. The most complex implementation was the
PDF → HTML → OWL conversion. We estimate that ac-
cessing the technical documentation takes about three times
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Pipeline or Task Lines of Code

1 Downloading technical documentation 105
2 PDF → HTML + 3105
3 HTML → OWL + 1030
4 HTML → CMSIS-SVD + 313

Accessing technical documentation = 4553

1 Downloading machine-readable sources 124
5 CMSIS Header → CMSIS-SVD + 481
6 CMSIS-SVD → OWL + 821
7 STM32CubeMX DB → OWL + 790

Accessing machine-readable sources = 2216

Table 2: Our data processor requires about twice the lines
of code for accessing the technical documentation than the
machine-readable sources, as measured by pygount v1.5 [52].

the effort overall compared to accessing machine-readable
sources. This increased implementation effort is manageable,
especially since most of our pipelines can be reused when
adding new sources or vendors. Thus, the effort is likely less
for future work.

5.4 Quality of Extracted Data

We now compare the quality of the data extracted from the
technical documentation via pipelines 3 – 7 to existing
machine-readable sources, which constitutes the best ground
truth available. Given that different data sources use different
names to refer to the same entities and relations and aggregate
data into unequally large groups of devices, we only evaluate
the completeness of data if we can find an individual device
mapping from one source to another (87–93 % of devices).
We provide an overview of compared sources and utilized
pipelines with their respective sections in Table 3.

Dataset Sources Section

Device Identifiers
3 Datasheet vs.

7 STM32CubeMX
5.4.1

Interrupt Vector Table
3 Reference Manual vs.

5 Header
5.4.2

Package and Pinout
3 Datasheet vs.

7 STM32CubeMX
5.4.3

Pin Functions
3 Datasheet vs.

7 STM32CubeMX
5.4.4

Register Descriptions
4 Reference Manual vs.
5 Header vs. 6 SVD

5.4.5

Table 3: Compared sources and their respective sections.

5.4.1 Device Identifiers

Before we can compare any datasets, we first need to under-
stand which devices they belong to. This mapping needs to be
non-overlapping so that we can have an unambiguous relation
from the device identifier to a dataset for comparison. The 7
STM32CubeMX database [64] includes a list of 3098 STM32
devices. We removed all devices for which no datasheet or
reference manual exists, which retains 3024 devices. For each
3 datasheet, we produce the list of identifiers as an n-fold

cartesian product, which generates a total of 14302 STM32
identifiers, a four-fold increase over STM32CubeMX. Us-
ing the STM32 identifier schema, we compare the two data
sources in Table 4.

Identifier Keys STM32CubeMX Datasheet

Family+Name 167 171 +4
+Pin 656 679 +23
+Size 1230 1266 +36
+Package 1770 4576 +2806

+Variant 1985 6666 +4681
+Temperature 2744 -180 9698 +7134
+Temperature+Variant 3024 -205 14302 +11483

Table 4: Incrementally appending keys to the STM32 device
naming schema shows that the datasheet extraction signifi-
cantly overstates the number of produced devices, whereas
some valid temperature keys are missing from datasheets.

The identifier set matches well until the package key is
added when the datasheet identifier list explodes with 2806
additional devices. Our implementation does not respect that
the pin key, describing the number of pins on a device, inter-
locks with the package key, and therefore not all combinations
can be valid. When we add the temperature key, the miss-
ing devices begin to manifest with the full STM32CubeMX
identifier list containing 205 devices that cannot be mapped
to a datasheet since they are missing these temperature key
combinations. Since we could not find any mention of junc-
tion temperature in any of the relevant datasheet text or tables,
we can only extract 2819 (93 %) devices from the documen-
tation. However, these generated identifiers map onto each
datasheet and reference manual without any overlaps or gaps.

5.4.2 Interrupt Vector Table

The interrupt vector table is extracted from the 3 reference
manual and compared with the 5 CMSIS header files. We
can only check for naming conflicts at the same position, but
not for completeness, since the reference manual contains
the maximum population of the vector table, but the header
files remove the vectors for peripherals not available on the
device. We also ignore datasheets for multi-core devices
that implement incomparable, shared interrupt tables, leaving
2751 (91 %) devices to compare.

8
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Hierarchy Level Total Memory Map Size Reference Manual CMSIS Header CMSIS-SVD Overlap Matching

Peripherals 55 376 B 78.8 % 78.7 % 87.5 % 77.2 % 64.4 %
Registers 1 188 994 B 79.7 % 73.8 % 71.6 % 74.9 % 48.3 %
Bit Fields 5 711 619 bit 73.6 % 48.2 % 73.5 % 60.0 % 30.6 %

Table 5: The flat memory map locations are contributed similarly by all three sources, except for the bit fields, where the CMSIS
header files are missing a significant amount of data. We call memory locations with more than one source overlapping. If the
names of overlapping locations are identical after normalization, we call them matching. The overlap of memory locations gets
progressively worse per hierarchy level, with matching locations yielding unacceptably incomplete results.

Hierarchy Level Conflict Size Total Map Size Conflict-Free Locations Overlap Map Size Matching Locations

Peripherals 2 748 B 55 376 B 95.0 % 42 752 B 93.6 %
Registers 35 406 B 1 188 994 B 97.3 % 891 044 B 96.0 %
Bit Fields 379 180 bit 5 711 619 bit 93.3 % 3 425 903 bit 88.9 %

Table 6: The number of conflicts per level and their percentage of conflict-free locations relative to the total size of the memory
map or just the locations where two or more sources overlap. The low overlap of just 60 % (cf. Table 5) lowers the bit field
numbers even more.

Hierarchy Level Resolvable by
Majority Vote

Reference Manual +
CMSIS Header

CMSIS Header +
CMSIS-SVD

CMSIS-SVD +
Reference Manual

Matching and
Resolved Locations

Peripherals 44.1 % 78.9 % 19.8 % 1.3 % 96.4 %
Registers 41.7 % 40.1 % 15.5 % 44.4 % 97.7 %
Bit Fields 63.0 % 38.8 % 22.9 % 38.3 % 95.9 %

Table 7: Conflicts can be resolved by majority vote only if two sources agree over one other. The reference manual and header
files agree the most; however, this pattern becomes less clear at bit-field level. With the voting mechanism, we can increase the
accuracy of the memory map, but only for overlapping locations.

Our pipeline discovered and assigned the correct table for
all devices after normalizing vector names. We matched
187 887 out of 190 109 (98.8 %) compared vector positions.
Of the mismatched positions, 1115 (0.6 %) were completely
missing, while 1107 (0.6 %) mostly only differed by a single
digit or letter.

5.4.3 Package and Pinout

The package and pinout are extracted from a shared table in
the 3 datasheet (cf. Figure 2), which contains a package
name, the pin positions, and its associated pin name. We
compared 2819 devices with a total of 247 756 pins from the
7 STM32CubeMX database against the data derived from

the datasheets by first finding the correct package, which was
successful for 2810 (93 %) devices, and then matching both
the name and the position of the pin on the package.

With these fixes, we matched 247 466 (99.88 %) matched
pin positions and names. We are left with 53 devices that
share 290 issues where pins were either missing, added, or
unequal in their name and/or position. We investigated each
issue manually and classified them into 12 mistakes in the
datasheet and 8 issues with the STM32CubeMX database,

as detailed in the appendix (Tables 9 and 10). The largest
source of errors is the confusion of packages in devices with
an optional switched mode power supply feature, which is
identified by the variant key and only differs slightly, followed
by missing entries or typos in datasheet tables, with plain
wrong data being very rare. In no cases did we find bugs
in our pipeline implementation or evaluation code, with the
packages for 9 devices simply missing from the datasheet.

5.4.4 Pin Functions

In this evaluation step, we compare the pin function tables in
the 3 datasheets (cf. Figure 2) with the 7 STM32CubeMX
database. We must exclude the STM32F1 device family due
to a different hardware implementation of pin functions, leav-
ing us with 2692 devices with a total of 1 107 035 pin func-
tions. However, since the pin function tables in the datasheet
contain the union of functions for all devices described, we
can only check for conflicts in a signal name against the
alternate and additional function index. After the normaliza-
tion step, we find 1 064 965 (96.2 %) matching pin-function
pairs, with the remaining 42 070 pairs either missing, added,
or wrong in one or the other source. All device families have
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Figure 5: For this graph, we arrange the total peripheral memory map sizes for each comparison by device family and alphabetical
order. Simpler device families, such as the STM32F0 and STM32L0, have smaller peripheral maps than complex devices,
such as STM32H7 and STM32L4+. The memory maps extracted from the PDF reference manuals can compete with the
machine-readable sources. Notice how closely the reference manual matches the CMSIS header for the STM32F3 family, while
the SVD files are better suited for STM32G4 devices.
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Figure 6: The large differences between the bit field memory maps can be explained by the CMSIS header files omitting
descriptions for registers with only a single bit field, thus significantly reducing the map’s total size. The effect is multiplied
when a device contains large arrays of registers with only one bit field, as seen with the STM32L4+ devices. In contrast, the
SVD files can define all possible bit fields, even if they do not exist on the specific device, as shown with the STM32F7 family.

a relative conflict rate of between 0.8 % and 8.2 %, as listed in
the appendix (Table 11). However, the STM32L1 family has
a relative conflict rate of 20 %, pointing to a systemic issue in
the data, which we investigated manually. A selection of the
most prominent patterns is part of the appendix (Table 12).

5.4.5 Register Descriptions

To evaluate the register description, we compare three sources:
the 4 reference manuals, the 5 CMSIS header files, and the
6 CMSIS-SVD files. We only compare STM32 devices with

an identical MMIO design (excluding ARMv8-M designs),
which leaves 2621 (87 %) devices for which all three sources
exist. Since these sources have limited device resolution, we
perform 183 unique three-way comparisons by checking for
name conflicts but not completeness.

Each register description is a tree structure made of pe-

ripherals ∋ registers ∋ bit fields. Therefore, we perform the
same conflict check at each level. We convert each level into
a flat memory map by expanding the peripheral, register, or
bit field from the tuple [address, width] into a range of bytes
or bits with the corresponding name attached. The total size
of each memory map and the amount each source contributes
and overlaps are listed in Table 5.

To better understand these numbers, we plot the size of
the memory map per three-way comparison, starting with the
register level in Figure 5. The figure visualizes how closely
our pipeline can reconstruct the register map from the refer-
ence manual. The reason for the large discrepancies in the
STM32H7 devices is due to the CMSIS header files defin-
ing registers related to dual-core management, which are not
classified as peripherals in the reference manual or simply
omitted in the CMSIS-SVD files. The bit field memory map
sizes in Figure 6 show a lack of data from the CMSIS header
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Figure 7: The distribution of register conflicts is not equally distributed, with simple devices having almost no conflicts, while
complex devices in the STM32H7 family have a significant 4 % conflict rate. The opportunity to use majority voting also
decreases with complex devices.
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Figure 8: The distribution of bit field conflicts is spread wider than for the registers; however, it compensates with an even higher
use of majority voting across all devices.

files compared to the reference manuals and SVD files. On
inspection, we noticed that the CMSIS header files do not
contain bit field definitions for registers that consist of only a
single integer value since a 32-bit or 16-bit value can be na-
tively constructed using the C types uint32_t or uint16_t,
respectively.

We continue our evaluation by highlighting all memory lo-
cations whose names do not match after normalization for all
three levels resulting in Table 6. Compared to the whole mem-
ory map size, over 97 % of register locations are conflict-free;
for bit fields, still 93 % of locations are conflict-free. We can
improve these results with majority voting, which requires
two agreeing sources overruling one other per location. These
requirements are fulfilled by about 42–63 % of overlapping
memory locations, as shown in Table 7. We can also see sig-
nificant differences per level in the source combinations that
agreed most during the voting process, particularly on register
and bit field level, where the combinations using the reference
manuals agree most often, demonstrating the accuracy and
usefulness of our pipeline. This simple voting mechanism is
sufficient to significantly improve the percentage of conflict-
free overlapping memory, resulting in 98 % of registers and
96 % of bit fields.

When visualizing the relative conflict rate of registers per
device family in Figure 7, we discover that both the conflict
distribution as well as the majority voting opportunities are
not equally distributed among the memory maps. The largest
amount of conflicts is attributed to the STM32F7, STM32H7,
and STM32L4+ families, which are complex microcontrollers.
Simpler devices exhibit fewer conflicts to begin with and a
higher share of successful majority voting. For the bit field
conflict distribution shown in Figure 8, these patterns are
spread more widely, and the simpler devices have even more
opportunities to use majority voting.

When we aggregate the register conflicts into the top five
associated peripherals as compiled in the appendix (Table 13),
the STM32H7 devices alone are responsible for over half of
the observed conflicts. Comparing the three sources manu-
ally, we discovered most of the colliding register locations
to have aliases with differing bit fields depending on the
peripheral runtime configuration. While our 4 reference
manual pipeline extracts these location aliases faithfully, the
6 CMSIS-SVD files do not always encode these aliases cor-

rectly, and the 5 CMSIS headers get compromised by using
a single neutral name instead of a C union. Our linear memory
map model does not model multiple names per location and,
instead, keeps only the last name of register or bit field aliases,
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Dataset Sources Method of Comparison Result N

Device Identifier

3 Datasheet vs. 7 CubeMX

Datasheet ⊇ CubeMX 93.2 % 3024
Package Datasheet = CubeMX 99.68 % 2819
Pinout Matching pin name at package position 99.88 % 247756
Pin Function Matching index for function name at pin 96.2 % 1107035

Interrupt Vector Table 3 Reference Manual vs. 5 Header Matching vector name at table position 98.8 % 190109

Peripheral
4 Reference Manual vs.
5 Header vs. 6 SVD

Matching peripheral, register, or bit field name
at byte or bit address after majority voting

96.4 % 42752
Register 97.7 % 891044
Bit Field 95.9 % 3425903

All Datasets All Sources Weighted average over all data points 96.5 % 5910442

Table 8: The summary of all data comparisons we performed for this evaluation. The overall quality of the extracted data is very
high when compared to the machine-readable sources.

which can lead to artificial conflicts.
We conclude our evaluation with a summary of all the com-

pared datasets in Table 8. Our implementation was able
to match existing machine-readable data sources both in
quantity and quality with a high accuracy of 96.5 %. We
took care to eliminate systemic problems in our pipelines by
validating the consistency of our results and finding justifica-
tions for outliers manually.

5.5 Discussion of Findings

Overall, we studied four aspects related to technical documen-
tation: accessing them, processing their content, encoding the
extracted information, and assessing the resulting quality.

We accessed the technical documentation using a custom,
vendor-specific PDF parser, implemented with only three
times the effort compared to accessing machine-readable
sources directly. Still, we expect our modular design to reduce
this overhead when adding additional documentation styles
from more vendors in the future. The accuracy of the resulting
HTML is sufficient to yield reproducible results, with patches
required only to repair already-existing formatting issues in
the vendor-provided PDFs.

Both the table processing and a simple regex-based text
mining interface were simple to implement and yielded prac-
tical performance, even for complex table structures and text
fields, and derived highly-detailed datasets. We were able to
derive additional context from table captions and surrounding
text to further increase our device coverage. However, we
found that regex-based text mining is too limiting in practice,
as footnotes and text present important information often us-
ing different keywords and phrases, complicating the creation
of matching patterns.

We encoded the extracted hardware description data to-
gether with our custom ontology as a knowledge graph. We
solved naming differences between sources using only regex
substitution patterns. For sources that supported majority vot-
ing, we were able to merge machine-readable sources with

the technical documentation to detect and repair many data
conflicts automatically. The final knowledge graph is eas-
ily discoverable using third-party ontology editors, such as
Protégé [39], and can be accessed via the owlready2 Python
package [40] for integration with code generation tools.

Our extensive evaluation demonstrated the ability of our
pipelines to extract highly accurate and complete data from
the technical documentation, even when compared to (vendor-
provided) machine-readable sources. On top, we were able to
find issues in the machine-readable sources, particularly in the
pinouts and pin functions, that would have been very difficult
to detect manually. We can use these identified patterns to
guide manual patching efforts much more effectively, thereby
increasing the quality of all available data sources. Even for
the very large and complex register descriptions, we were
able to reconstruct a sufficient device resolution to match
other sources and repair conflicts via majority voting. While
we can send patches for machine-readable data to some of
the STMicro GitHub repositories [65–67], to the best of our
knowledge, a process to report issues or even encode patches
for the PDF documentation is missing so far, making our
HTML patches the only known mechanism to do so reliably.

These results give us high confidence in using our
pipeline for extracting data without machine-readable
counterparts and achieving similar accuracy, at least for
STMicro technical documentation. However, the architecture
of our pipelines and evaluation code is flexible enough to
accommodate new data sources and vendors in the future.

5.6 Impact of our Tool

The overall accuracy and flexibility of our processor removes
the bottleneck of manual data aggregation for many previously
described use cases in Section 3. Projects that were limited
only by accurate PDF access, such as Datasheet2SVD [48],
only need to port the PDF → HTML and relevant subsequent
pipelines instead of starting from scratch. Once the vendor
port is complete, it creates an opportunity to extract signif-
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icant amounts of tabular data with very little effort due to
the similar tabular data structures across a vendor’s product
line. Projects based on machine-readable data, such as the
modm-devices [35] and embassy-rs [68] projects, can now
collaborate on a common data processor (cf. Figure 1), reduc-
ing implementation efforts and sharing new fixes and features.

The extraction of data also applies beyond STM32 micro-
controllers: For example, about 40 % of the already converted
STMicro datasheets describe sensors, storage, and communi-
cation devices, which are interfaced through external busses
and controlled through registers. The I2CDevLib [27] and
Cyanobyte [20] projects would strongly benefit from adapted
HTML → X pipelines to extract device properties, create
SVD register maps, and state machines to generate drivers.
Since HTML is a widely used format, projects that previously
relied on custom PDF parsers for highly specific tasks, such
as uConfig [47] extracting package pinouts, can implement
their data extraction directly on HTML even without using our
subsequent pipelines. This flexibility can foster an ecosystem
of independent data extraction pipelines that can be integrated
back into our processor if needed.

Finally, in addition to this evaluation in March 2023, we
performed a previous evaluation in July 2022. While STMi-
cro released a total of 63 new datasheets and 18 new reference
manuals, our pipeline only required little adaptation, mainly
related to updating the HTML patches. The total number
of compared data points increased by about 1.7 %, yet the
relative quality presented in Table 8 varied by less than 0.3
percentage points. In addition, all intermediary results of the
individual comparisons (presented in Section 5.4) were very
similar, strongly hinting that our processor implementa-
tion will remain stable long-term with very few mainte-
nance requirements, ensuring the usefulness of our tool.

6 Conclusion and Outlook

Our evaluation has underlined the benefits and potential of
our tool—a modular processor for automatically extracting
hardware descriptions from PDF technical documentation. In
the following, we first conclude this paper before presenting
alternative concepts and orthogonal pointers for future work.

6.1 Conclusion
Our data processor presents a significant improvement over
existing generic information extraction solutions when ap-
plied to technical documentation due to a specialized PDF
parser, unsupervised and fast operation, domain-specific data
encoding, and highly accurate results. Our extensive evalu-
ation results confirm that our pipelines are free of systemic
issues and can extract information relevant to existing code
generation use cases with very high accuracy. In addition, our
tool is immediately applicable to a number of open-source
projects that would significantly benefit from its use.

With over 150 thousand captioned tables in our HTML
archive of STMicro technical documentation, they showcase
the significant potential for extracting data not available in
a machine-readable format and therefore provide access to
information only published in the documentation. We expect
many entirely new use cases to be made possible with our tool
that are unrelated to code generation: comparing revisions
of PDF documents in normalized HTML form, linking code
to sections of documentation automatically, using constraint
solvers to find layout solutions for pin signal usage in elec-
tronic design, validating compatibility of existing software
drivers with newly released microcontrollers.

6.2 Potential Tool Improvements

We anticipate three specific improvements to our tool that
increase its usefulness even beyond our current usage:

Text Mining. Our implementation uses regex pattern
matching to find information in text, which is a brittle and
error-prone manual process. However, since technical doc-
umentation uses a lot of domain-specific jargon with many
nouns and abbreviations only making sense in context, the
use of traditional text mining approaches may be difficult.
However, cutting-edge machine learning projects accessing
PDFs using large language models show significant promise
and can output data in structural form as well [14, 81, 82]. A
solution could be to enrich these machine-learning models
with the knowledge graph generated by our tool [19, 77].

Processing Figures. For our work, we only focused on
tables and text in the technical documentation since table pro-
cessing is a well-researched approach, and the table content
mirrored the data in the machine-readable source most accu-
rately. However, in addition to the 152 041 tables, the STMi-
cro datasheets and reference manuals also contain 52 568
figures. Other applications could benefit from processing
these figures since some data, especially state machine dia-
grams and board pinouts, is only encoded graphically. We
could convert the Postscript-based graphics into scalable vec-
tor graphics to preserve the vector and text data [16] so that
it can be programmatically accessed later on. For example,
quasi-regular tabular structures in figures can be found using
whitespace analysis [7, 10, 53] or by interpreting text in ge-
ometric shapes such as rectangles as imaginary table cells,
which allows using table processing for content extraction.
However, more complex figures will require more specialized
approaches with a better understanding of graphics rendering.

Mathematical formulas are a special case of graphics mixed
with text, e.g.,

√
2, which our implementation cannot correctly

detect or convert. An approach could be to convert them to
a markup language such as MathML [74] using a machine-
learning model [12].

Performance. Converting over 150 thousand PDF pages of
STMicro documentation to HTML currently takes a few hours
(cf. Section 5.2). While the PDF parsing library pdfium [46]
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is implemented in C++, the majority of the pipeline is written
in native Python code and thus relatively slow. A rewrite of
the PDF → HTML pipeline entirely in C++ or Rust could sig-
nificantly improve conversion times and apply future pipeline
improvements to a large set of documents much faster. The
remaining pipelines, however, are less compute intensive and
may therefore benefit less from a rewrite.

Other Technical Documents. Our PDF → HTML pipeline
design is highly flexible, and its implementation already sup-
ports two distinct PDF formats from STMicro. We are confi-
dent that adapting our pipeline to PDFs from other vendors
is feasible with only limited effort. However, the multitude
of technical documentation, also unrelated to electronic hard-
ware designs, hinders the implementation of a single universal
solution (pipeline). For these expert domains, extending our
processor can be a first step to making a lot of data accessible.

6.3 Future Work

We also anticipate future work in the fields of knowledge
modeling and machine learning to be enabled by our tool.

Hardware Ontologies. While many general-purpose and
specialized ontologies that allow complex reasoning about
their knowledge domain are available, we were unable to
discover an ontology that captures electronic hardware. As
we described in Section 3.3, existing use cases are limited to
machine-readable datasets, which are highly specialized. Our
tool can solve this chicken-and-egg problem by making the
large amounts of data in technical documentation accessible,
thus creating the demand for a hardware ontology.

With a sufficiently large ontology comes the ability to rea-
son about hardware, enabling, for example, implicitly compar-
ing and discovering peripheral implementations of the same
bus protocol between different microcontrollers, even if they
do not support these protocols officially. Such details can be
particularly helpful for parts selection and cost minimization.

Semantic Datasheets. Knowledge graphs in OWL format
can be encoded directly in HTML as part of the semantic
web technology stack [42], resulting in a format that is both
human- and machine-readable. This concept can be extended
to validate the document’s and knowledge graph’s integrity
using rule languages [33]. By integrating JavaScript into the
HTML document, the encoded structural information can be
made discoverable interactively directly inside the documents.
Presenting knowledge to a domain expert effectively also
presents a usability challenge worth investigating.

Machine Learning. The main challenge for creating ef-
fective machine-learning models is finding suitable training
data. Our tool can output finely tuned, deterministic, and large
datasets for every conversion pipeline with a reasonable man-
ual implementation effort and excellent quality that a model
can be trained against. The trained models can then extract
ontologies and data from documents without support in our
tool or from unrelated knowledge domains.

There are many more opportunities for future work to build
on our data processor to extract information from technical
documentation in other fields than just for firmware develop-
ment. Our tool lays the foundation for developing challenging
new use cases that require automatically processing technical
documentation and thus provides a vital contribution to im-
proving the porting process of embedded software. We will
actively maintain our tool in an open-source project to foster
its evolution [37].
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Artifacts

The specific processor evaluated in this paper has been
archived [1]. We will further develop and maintained the
processor as an open-source project on GitHub [37] under a
MPLv2 license and we welcome pull requests that augment
our provided data pipelines.
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A Appendix

In addition to our evaluation in Section 5, we inspected several
data points manually to confirm that our processor was free
of systematic issues that could skew our datasets. Here, as an
addendum, we present a selection of these manual evaluations
based on the STMicro input sources from March 2023.

A.1 Pinout

The device pinouts we extracted from the technical documen-
tation in Section 5.4.3 matched the STM32CubeMX data
very accurately at 99.88 %, with only 20 discrepancies. We,
therefore, manually investigated these issues by comparing
the PDFs with the raw STM32CubeMX database, where we
found formatting issues and confused packages to be the main
source of errors. The results of our manual evaluation are
encoded in Table 9 and Table 10.

A.2 Pin Functions
When we evaluated the pin functions in Section 5.4.4, we
noticed that the STM32L1 device family had a significantly
higher relative amount of conflicts than the rest, as shown
in Table 11. Since this amount of conflicts was too much
to manually inspect, we instead investigated the most promi-
nent patterns that emerged, in particular, the conflict of an
analog or special hardware function (“additional function”)
with a digital signal multiplexer (“alternate function”). We
verified that the hardware implementation of the alternate
functions is identical across all compared devices; therefore,
these conflicts are easy to detect since an analog signal can-
not be routed through the digital multiplexer and neither the
other way around. When we applied these assumptions to
our data, we found that particularly the STM32L1 family suf-
fers from systemic conflicts of only a few analog functions,
which were mapped wrong across the whole device range,
explaining why the family is such an outlier. A selection of
prominent patterns, including their explanations, is presented
in Table 12.

A.3 Register Descriptions
During the comparison of the register descriptions in the ref-
erence manuals, CMSIS header, and CMSIS-SVD files in
Section 5.4.5, we noticed a significant amount of register
conflicts in the STM32H7 devices, as listed in Table 13. Com-
paring the three sources manually, we found a lot of register
locations to have aliases with differing bit fields depending on
the peripheral runtime configuration. We also noticed slightly
different names in the reference manuals than in the other
sources; however, the bit field structures and their function-
ality appears to be compatible, according to the associated
textual descriptions. We imagine these issues to be the re-
sults of the large complexity of the peripherals, having many
registers with similar names and interlocking functionality.
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Affected Devices -Missing, +Added, =Renamed Positions Cause of Issue in Datasheet Table and Figures

STM32G431CBYx -A4, +A43 Typo for position A4, figure is correct.

STM32L412TBY6P -E5 Typo for position F5, figure is correct.

STM32H745XxHx,
STM32H747XxHx,
STM32H755XxHx,
STM32H757XxHx

+VDD VDD name is placed into the position column instead of name column.

STM32H747ZIY6 -A13 Missing pin position, figure shows A13=NC.

STM32H750XBH6 -G2, -F1 Missing pin position, figure shows G2=NC, F1=NC.

STM32H757ZIY6 -A13 Missing pin position, figure shows A13=NC.

STM32L071VxIx,
STM32L072VxIx -E3 Missing pin position, figure shows E3=VSS.

STM32L151QCH6,
STM32L152QCH6,
STM32L162QCH6

-K1 Missing pin position, figure shows K1=OPAMP3_VINM.

STM32L053CxUx,
STM32L063CxUx

Pins 2. . . 7
renamed Position cells are shifted down by 1 row.

STM32L062C8U6 -46 Missing position row, figure shows 46=PB9.

STM32L412CBxxP
22=(PB11, VDD),
45=(PB8, PB9),
46=(PB9, VDD)

Missing both package column and figures for the SMPS package variant.
Our pipeline instead uses the closest non-variant match.

STM32L562QEI6P B4=(PG15, VDD12),
M11=(PG11, VDD12)

Missing both package column and figures for the SMPS package variant.
Our pipeline instead uses the closest non-variant match.

Appendix Table 9: These pin position and name mismatches are all attributed to mistakes in the datasheet: missing entries, typos
in cells, and formatting issues. Our pipeline could not find two packages for devices with a switched mode power supply (SMPS)
feature and instead used the closest non-variant match.

Affected Devices -Missing, +Added, =Renamed Positions Cause of Issue in STM32CubeMX Database

STM32F038E6Y6 E2=(PB1, NPOR) Wrong entry, datasheet table and figure both show E2=NPOR.

STM32F048TxY6 D2=(NPOR, PB1),
F2=(PB1, NPOR) Wrong entry, datasheet table and figure both show D2=PB1 and F2=NPOR.

STM32L452REYxP 29 renamed pins Uses non-variant instead of SMPS package.

STM32L476QxIxP,
STM32L4P5QxIxS,
STM32L4R5QxIxP

C6=(PG14, VDD12),
L11=(PB11, VDD12) Uses non-variant instead of SMPS package.

STM32L476QxIxP,
STM32L4P5QxIxS,
STM32L4R5QxIxP

C6=(PG14, VDD12),
L11=(PB11, VDD12) Uses non-variant instead of SMPS package.

STM32L4R5AII6P C6=(PG15, VDD12),
M10=(PH11, VDD12) Uses non-variant instead of SMPS package.

STM32L552QEI6

B4=(V15SMPS, PG15),
M10=(VLXSMPS, PG13),
M11=(V15SMPS, PG11),
M9=(VDDSMPS, PG14)

Uses SMPS instead of non-variant package.

STM32L552VET6 Pins 20. . . 51,
98, 99 renamed Uses SMPS instead of non-variant package.

STM32L552ZETx Pins 31. . . 73,
126. . . 143 renamed Uses SMPS instead of non-variant package.

Appendix Table 10: The STM32CubeMX database is often using the wrong package for devices with an optional switched mode
power supply (SMPS) feature as indicated by the variant key in the identifier. As shown in the first two rows, only three other
pins were simply wrong, with the rest of the data matching the datasheet.
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Family Number of Functions Number of Conflicts Absolute Rate of Conflicts Relative Rate of Conflicts

STM32H7 215442 10184 24.2% 4.7%
STM32L1 30124 6037 14.3% 20.0%
STM32G0 66469 3960 9.4% 6.0%
STM32L4 174531 3889 9.2% 2.2%
STM32F4 130518 3750 8.9% 2.9%
STM32F7 114590 3130 7.4% 2.7%
STM32F0 29487 2430 5.8% 8.2%
STM32G4 85415 1539 3.7% 1.8%
STM32F2 22151 1411 3.4% 6.3%
STM32L0 62437 1220 2.9% 2.0%
STM32F3 43468 1052 2.5% 2.4%
STM32U5 52067 1047 2.5% 2.0%
STM32L5 19778 858 2.0% 4.3%
STM32WB 8487 677 1.6% 8.0%
STM32WL 5888 384 0.9% 6.5%
STM32H5 42602 321 0.8% 0.8%
STM32C0 3581 181 0.4% 5.1%

Appendix Table 11: The conflict rates of pin functions sorted by absolute rate. The STM32H7 devices have the largest amount of
pin functions and, therefore, also the largest absolute share of conflicts, while their relative rate of about 5 % is comparable to
other families. Meanwhile, over one-fifth of the pin functions of the STM32L1 family conflict, pointing to a systemic data issue.

Occurances Functions Conflict Description and Cause of Issues

654
23

COMPx_INP
COMPx_INM

A ̸=14
Comparator input is analog, STM32CubeMX database is wrong for the entire STM32L15x
family.

446 TIMx_ETR 1̸=A Digital signal where the STM32CubeMX database is wrong for the entire STM32L1 family.

514
319

SYS_WKUP
SYS_TAMP

A ̸=0
Special digital input signal hardwired into PA0 pin to wake up from deep sleep and tamper
detection. STM32CubeMX database is wrong for the entire STM32L1 family.

497
497

RCC_OSC_IN
RCC_OSC_OUT

A ̸=0
Special analog signal that must be configured by RCC peripheral. This is a datasheet issue
on some STM32F2/F4 devices and a STM32CubeMX database issue on STM32L1 family.

296
105
93
69

UCPDx_FRSTX

6̸=A
4̸=A
0̸=A
1̸=A

Digital signal that is wrong in the STM32CubeMX database for the entire STM32G0 family.

258
256
128
128
128
108
91

TIMx_BKIN

1̸=3
13̸=3
1̸=12
12̸=2
12̸=3
1̸=14
2̸=3

Digital signal collide on alternate function index, as the STM32CubeMX database for
the STM32L4 and STM32L5 family contains two functions TIMx_BKIN and TIMx_BKIN2
that seem to have gotten confused.

Appendix Table 12: A selection of the most interesting and common patterns of pin function conflicts. All of these should
have been easy to catch, even without a comparison with other sources, by simply validating how digital vs. analog signals are
multiplexed.
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Family Share of Conflicts Top 5 Peripherals with Register Conflicts

STM32F0 0.2% 100% DBGMCU
STM32F1 0.5% 62% FSMC 12% ADC 12% USB 6% SDIO 3% CEC
STM32F2 1.7% 42% ETH 32% USB 14% FSMC 11% ADC
STM32F3 1.1% 41% ADC 32% HRTIM 20% EXTI 4% CEC 4% I2C
STM32F4 5.4% 20% USB 18% I2C 15% FSMC 14% DFSDM 10% QSPI
STM32F7 12.6% 48% DFSDM 19% USB 12% FSMC 8% DSI 3% ADC
STM32G0 2.0% 56% DMA 11% SYSCFG 12% EXTI 8% UCPD 6% COMP
STM32G4 3.8% 40% DMA 24% HRTIM 10% ADC 9% FSMC 7% UCPD
STM32H7 60.2% 23% DMA 17% DFSDM 16% RAMECC 10% ETH 9% HRTIM
STM32L0 0.8% 61% FLASH 26% COMP 13% SYSCFG
STM32L1 1.2% 59% RI 26% FSMC 8% RTC 7% OPAMP
STM32L4 3.9% 63% DFSDM 18% RTC 10% FSMC 6% USB 4% DAC
STM32L4+ 6.6% 36% DFSDM 30% DSI 11% FSMC 8% DMA 5% USB

Total 100% 22% DFSDM 17% DMA 11% USB 9% RAMECC 7% HRTIM

Appendix Table 13: The STM32H7 family is responsible for the majority of register conflicts. The peripherals with the most
conflicts are all very complex, which probably contributes to the issue in general.
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