
Instant Messaging Meets Video Conferencing:
Studying the Performance of IM Video Calls

Laurenz Grote∗, Ike Kunze∗, Constantin Sander∗, Klaus Wehrle
Communication and Distributed Systems

RWTH Aachen University
Aachen, Germany

{grote, kunze, sander, wehrle}@comsys.rwth-aachen.de

Abstract—Video conferencing applications typically use UDP
and often implement their own congestion control. Research
studying these custom algorithms generally finds that they do
react to congestion and can hold their own against compet-
ing TCP flows. However, these works focus on applications
specializing in video conferencing, neglecting those that only
offer video conferencing as one of many features, such as
many instant messengers. While these instant messaging-based
video call applications (IMVCAs) may opt to use standardized
frameworks, such as WebRTC, their actual implementations and
behaviors are wildly unknown. In this paper, we thus set out to
study the behavior of three popular IMVCAs, analyzing their
interplay with TCP and the impact on QoE.

We find that the surveyed IMVCAs (Signal, Telegram, Whats-
App) are TCP-friendly, i.e., they do not choke TCP. However,
their per-app behavior differs significantly and no app equals the
other: Signal and Telegram, e.g., take TCP-friendliness too far,
yielding up to 90% of their bandwidth. This results in severe QoE
detriments in the form of drastically reduced sending rates and
visual quality. As Signal is known to use WebRTC, this finding
suggests that the current variant might be too conservative for
coexisting with TCP. In contrast, WhatsApp counters congestion
by filling queues to avoid losing bandwidth. Overall, IMVCAs do
not keep up with the performance of specialized applications.

© IFIP, 2023. This is the author’s version of the work. It is posted here by permission of IFIP for your personal use. Not for redistribution. The definitive
version was published in Network Traffic Measurement and Analysis Conference (TMA), 2023.

I. INTRODUCTION

Video conferencing is an established way of telecommu-
nication. Due to inherent real-time requirements, applications
providing video conferencing services generally use UDP and
opt to implement their own congestion control (CC). As the
characteristics of these implementations are often unknown
and as these applications see a growing traffic share [1], there
is general interest in better understanding the exact behavior
of such video conferencing applications.

Research has thus studied the CC performance of prominent
applications [2]–[4], such as Google Meet, Microsoft Teams,
Webex, and Zoom, finding that they do indeed react to conges-
tion. Yet, researchers have also noted significant differences
in behavior as, e.g., Zoom was quick to capture an unfair
share of the overall bandwidth [2], [3]. Going beyond CC,
researchers have also studied the video conference quality [5],
[6] as well as the behavior of users [5] to judge the interplay
of bandwidth use and quality of experience (QoE). While

*Equal Contribution

these studies provide a multi-dimensional view on current
video conferencing practices, they focus on applications that
specialize in video conferencing. However, many casual inter-
actions are facilitated by instant messaging applications which
increasingly provide quick video calls as an add-on.

Owing to their multi-purpose nature, several instant
messaging-based video call applications (IMVCAs) use (stan-
dardized) open-source algorithms and libraries, such as Google
Congestion Control and WebRTC, for providing the video call
functionality [7]. The performance of these frameworks has
already been studied by related works [8], [9], but critically
depends on the specific parameterization. In contrast, other
applications use custom implementations similar to those seen
for specialized video conferencing applications. Consequently,
as IMVCAs have not yet been in the focus of research,
the actual behavior in this realm is largely unknown. For
instance, it is unknown how IMVCAs react on congestion and
bandwidth competition and whether they starve or take away
over-proportional amounts of bandwidth. Additionally, it is
unclear whether the network, e.g., in the form of active queue
management (AQM), can help to alleviate potential problems.

In this paper, we thus set out to study the performance
of IMVCAs in more detail. Focusing on Signal, Telegram,
and WhatsApp in a controlled testbed, we find that these
apps behave in stark contrast to previous findings on video
conferencing applications. In particular, Signal and Telegram
are overly TCP-friendly and yield vast amounts of bandwidth.
When interacting with either BBRv2 or Cubic as the TCP
CC, they give up their bandwidth to the point where they
severely disadvantage themselves. WhatsApp in contrast yields
less bandwidth. Overall, we contribute and find the following:

• We automate Signal, Telegram, and WhatsApp video calls
to study their behavior in a controlled testbed.

• Characterizing their standalone performance, we identify
significantly different transmission rates.

• Competing against TCP, Signal and Telegram yield band-
width, while WhatsApp protects itself by filling queues.

• Call QoE changes immensely during flow competition.
• AQM can help to improve QoE, but requires to be applied

together with fair-queuing.
• Our code and data is available under [10].

Structure Sec. II gives a short overview on video conferenc-
ing, CC, and previous work comparing both w.r.t. bandwidth978-3-903176-58-4 ©2023 IFIP



and QoE performance. Sec. III describes our methodology
and testbed setup to allow for a controlled analysis of the
selected IMVCAs. Sec. IV then presents the CC behavior of
the apps, focusing on baseline numbers and reactions during
different scenarios. Sec. V uses these CC findings to drill down
into QoE impacts and performance. Finally, we discuss the
implications of our findings for work on video conferencing
in general in Sec. VI before Sec. VII concludes our paper.

II. BACKGROUND AND RELATED WORK

Due to inherent real-time requirements, applications provid-
ing video conferencing services typically rely on UDP to avoid
waiting for retransmissions or using kernel-defined congestion
control (CC). Instead, they deploy their own CC algorithms
(CCAs), striving for reduced delays while maintaining high
throughput to optimize the quality of experience (QoE) of their
users. In this context, the IETF RMCAT working group [11]
works on fair and standardized multi-media CC for real-time
applications. For example, RFC 8836 [12] specifies guidelines
and requirements for CC of interactive real-time media.
Video conferencing best practices. Today, there are several
standardized protocols that are used throughout the industry.
Google Congestion Control (GCC) [8], e.g., is a congestion
controller that is specifically designed for multi-media appli-
cations, using both delay and loss as rate adjustment signals.
While analyses find an aggressive behavior in certain cases, the
algorithm is generally considered to be TCP-friendly [8], [9].
Furthermore, it is part of the Web Real Time Communications
(WebRTC) framework which provides a standardized interface
for video conferencing via a browser API and a portable C++
implementation which may be compiled to Desktop, Android,
and iOS platforms. Despite these efforts toward a standardized
use of video conferencing, applications often use their own
CC implementations. As these algorithms are mostly closed-
source, their behavior is a frequent focus of research.
Related work on video conferencing. Driven by potential
risks for the Internet’s stability, researchers frequently analyze
and assess the CC behavior of video conferencing applications.
While studies generally find that common applications, such as
Google Meet, Microsoft Teams, Skype, and Zoom, do indeed
adapt their bandwidth to congestion [2], [3], [13], researchers
note that they do not achieve consistent performance across
the board. Zoom, e.g., uses bandwidth shares far off 50% [2],
[3], which is often considered an unfair behavior. Besides the
congestion responsiveness, the perceived performance of the
applications, i.e., the QoE for their users, is also a subject of
research and has been studied for Meet, Teams, Webex, and
Zoom [2]–[4], [6]. The researchers find nuanced differences
between the applications, e.g., that they provide different
video qualities at the same bandwidth, and that the QoE
depends on many more factors than CC alone. Hence, for these
applications specializing in video conferencing, there does not
seem to be a one-size-fits-all rule.
Instant messaging-based video call applications (IMVCAs).
In recent years, a growing number of instant messengers
has started to provide video conferencing as an add-on. In

contrast to the special-purpose video conferencing applica-
tions, these video calls are typically embedded into existing
chat applications and designed for a drastically different use
case, e.g., likely optimizing for minimal cost to the app
provider as these apps are mostly operated in a free-to-the-
user model. Some of these applications are known to use the
mentioned standardized methods and protocols as, e.g., Signal
has publicly stated to use WebRTC and an implementation
of GCC [7]. Analyzing the Telegram codebase [14] further
reveals that after considering the use of SCReAM [15], [16],
Telegram seems to have opted for WebRTC and GCC, too.
However, the actual performance critically depends on the
parameterization of these frameworks. Additionally, for other
applications, such as WhatsApp, the concrete algorithms in
use are unknown. Given that IMVCAs have not been studied
in recent years with the most recent work dating back to
2014 [17], the actual behavior of today’s IMVCAs is thus
largely unknown.
Takeaway. Research has provided a good overview on the
current state of video conferencing. However, the detailed
recent works focus on applications that specialize in providing
video conferencing services. In contrast, the state of today’s
IMVCAs, such as Signal, Telegram, and WhatsApp, is largely
unknown. Hence, we focus on these applications and study
their CC behavior as well as the QoE provided to their users.

III. METHODOLOGY

There is a large collection of IMVCAs and a number of
different scenarios that can be used for studying them. For
our work, we select three popular IMVCAs and opt to study
them in a controlled testbed setup.
IMVCAs. In our study, we focus on Signal, Telegram, and
WhatsApp. These apps show high popularity [18] on the one
hand, but also vary in what is known about their video call
implementations: Signal has announced [7] its use of WebRTC
and GCC and Telegram’s official clients [14] seemingly also
use WebRTC and GCC, while there are no statements or hints
on the CC used in WhatsApp. The selected IMVCAs thus
allow us to study the performance of standardized protocols
and their real-world parameterization while also discovering
the behavior of unknown algorithms.
General approach. We install the official IMVCA clients on
virtualized Android smartphones, let them start video calls
while enforcing competition against TCP flows governed by
different CCAs. We then derive network and QoE metrics to
provide a multi-view assessment of their behavior.

A. Testbed setup

Research on CC is typically conducted in isolated and con-
trolled testbeds. This methodology is also generally applicable
for our work as the IMVCA clients use peer-to-peer connec-
tions for their video calls. However, they need to connect
to their vendor backends for signaling, authentication, and
the actual call establishment. We thus devise a testbed which
permits Internet connectivity for signaling, while still allowing
for shaping and parameterizing local video call traffic.



Fig. 1: Testbed representing a classic dumbbell topology con-
nected to the Internet for backend communication/signaling.

Topology. We setup our testbed in a dumbbell topology as
shown in Fig. 1. We place one emulated phone and one TCP
endpoint on each side of a dedicated bottleneck machine,
posing as an L2 switch and emulating the desired network
conditions. The phones create the actual video call while
the co-located TCP instances create cross-traffic. We further
connect the bottleneck to the Internet so that the phones can
signal/establish the video calls via their vendor backends.
Phone virtualization. For our study, we require replayable
video sources and a reliable network connection. While wired
connections to smartphones are possible via USB, multiplex-
ing a video source together with a connection for charging and
automation is prone to errors. Thus, similar to related work [3],
we instead use virtualized phones leveraging Google’s Android
Emulator 30.9.5 running an x86 build of Android 12. We
configure them to use TAP interfaces which directly map to
dedicated Ethernet NICs of our testbed. We further install the
official client software for each of our IMVCAs1 and automate
call establishment and the actual video call via Android’s
Monkeyrunner control framework [19]. Moreover, we map
a virtual v4l2 loopback camera to the emulator to inject a
looped, uncompressed test video2 as well as test audio3 into
the emulated Android phone. With these features in place, we
can automatically establish emulated video calls.
Crosstraffic and network characteristics. For crosstraffic,
we deploy the TCP senders on dedicated Linux machines
running an out-of-tree Linux 5.13.12 kernel [20] which pro-
vides the latest version of BBRv2. This crosstraffic then
competes at our bottleneck which we configure using Linux’s
TC with its Token Bucket Filter (TBF) and netem module to
shape different network characteristics. The TBF is configured
to allow burst sizes of only one MTU (1500Byte) on the
egress queues of the bottleneck to allow for near-isochronous
traffic shaping and its queue is sized via a bfifo queue. We
shape round-trip times (RTTs) on the ingress queues using
the netem module via intermediate functional blocks to avoid
interference with the TBF. For detailed queuing and packet-
based statistics, we deploy a custom eBPF probe which keeps
track of the packets and their queuing through the bottleneck.

1Signal: v. 6.11.7, Telegram: v. 9.4.8, WhatsApp: v. 2.23.4.77
2https://media.xiph.org/video/derf/y4m/KristenAndSara 1280x720 60.y4m
3https://www2.cs.uic.edu/∼i101/SoundFiles/preamble.wav

B. Study Targets and Parameterization

We design our study to investigate two distinct aspects of
IMVCAs: their CC behavior and the resulting QoE provided to
their users. For both aspects, we draw inspiration from related
works discussed in Sec. II to define investigation scenarios
which we outline in more detail in the following.
Target 1 - CC behavior. To assess the CC behavior of the
IMVCAs, we let them compete against known TCP traffic,
characterizing the performance based on the achieved through-
put. We present the results of this part of our study in Sec. IV.
Target 2 - Impact on QoE. For video conferencing, the
throughput might not always be the most critical metric. We
argue that perceived quality is as important as the achievable
bandwidth. We thus also study the resulting QoE as provided
by the different IMVCAs. We present these results in Sec. V.
Parameterization 1 - Studied CCAs. For both study targets,
we investigate the impact of several configuration parameters.
For the CC assessment, we choose Cubic as it is the default
CCA for most operating systems. We also use BBRv2 as it
represents the newest class of CCAs which factor in delay
while not succumbing to loss-based CC.
Parameterization 2 - Impact of active queue management
(AQM). Previous studies [2] also investigate the effect of
AQM mechanisms as there is an increased push toward
deploying them. We thus also study the impact of AQM at
the example of Controlled Delay (CoDel) and its fair-queuing
variant (FQ CoDel). In these settings, we put the AQM in
front of the TBF, replacing the drop-tail queue.

IV. CC BEHAVIOR EVALUATION

We start our analysis by studying the CC behavior of the
three selected IMVCAs. For this, we first conduct baseline
experiments to find out (i) how much bandwidth the IMVCAs
claim when there is no competition, and (ii) how they react
when provided with less than these limits (Sec. IV-A). We then
study the interaction of the IMVCAs with TCP (Sec. IV-B).

Note that all surveyed apps use peer-to-peer communica-
tion on top of UDP for the actual call, while the backend
communication is used for signaling and as a fallback if the
peer-to-peer connection cannot be established. Hence, to allow
for a controlled evaluation, we ensure that the peer-to-peer
connections are established and omit any Internet-bound traffic
from analysis, solely targeting the peer-to-peer traffic as it is
contained in our testbed and, thus, fully controlled.

A. Baseline experiments

Our first series of baseline experiments studies two-party
video calls without any crosstraffic in order to characterize
basic properties of the IMVCAs. Furthermore, we validated
our testbed configuration by verifying that all TCP variants
can utilize the testbed to its capacity. In the following, we
first determine the bandwidth demand of every IMVCA to
then assess their behavior when falling below these limits.

https://media.xiph.org/video/derf/y4m/KristenAndSara_1280x720_60.y4m
https://www2.cs.uic.edu/~i101/SoundFiles/preamble.wav


10 50 2000.0

0.5

1.0

1.5

2.0
Th

ro
ug

hp
ut

[M
bp

s]
Signal Telegram WhatsApp

0.0 0.2 0.4 0.6 0.8 1.0
RTT [ms]

0.00

0.25

0.50

0.75

1.00

Fig. 2: Median bandwidth demand of the IMVCAs with
lower/upper quartiles at different RTTs on a 5Mbps link with
a 2×BDP queue. Telegram did not establish calls at 200ms.

1) Determining Bandwidth Demand: To first get a rough
overview of the tested apps in isolation, we start by determin-
ing their bandwidth demands. For this, we set the bottleneck
bandwidth to 5Mbps, and configure RTTs of 10, 50, and
200ms and a queue size of 2 × BDP . While the actually
selected bandwidth is irrelevant, as it is chosen high enough
to let all IMVCAs fully satisfy their needs, we found that
under- or oversizing queues can cause call establishments to
fail. In each scenario, we then run a video call for 2min and
measure the peer-to-peer throughput after a warmup phase of
1min. We average this throughput over the remaining 1min
and repeat each scenario 30 times.
Results. Fig. 2 shows the median bandwidth demands of the
three IMVCAs across the 30 iterations together with the lower
and upper quartiles. All demands are relatively independent
of the RTT. We only note that Telegram fails to establish the
video calls at 200ms RTT and WhatsApp’s throughput varies
slightly between the evaluated RTTs. For simplicity, we will
focus on 50ms in the following. Our results show that each
IMVCA has distinct bandwidth requirements: Whatsapp uses
∼0.45Mbps, Telegram ∼0.75Mbps, and Signal ∼1.9Mbps
in the median case. Given these demands, the CC of the
IMVCAs will only have to react in scenarios with a bottleneck
bandwidth below their demands. We investigate the IMVCA
behavior in such settings next.

2) Reaction to Changing Bandwidths: To determine the
reaction of the apps to changing bandwidths, we start a video
call and change the available bandwidth in 1min intervals
from as high as 3Mbps to as low as 0.3Mbps. We fix the
RTT at 50ms and set the buffer size to 10 kB, i.e., 1

2 ×BDP
for the highest and 5 × BDP for the smallest bandwidth,
both being close to our prior 2 × BDP configuration. The
applications manage to attain their demand bandwidth with
this buffer configuration. Again, we repeat the experiments 30
times and determine the bandwidth profiles for the IMVCAs
by first temporally aligning the throughput measurements of
the individual iterations. We then separate the time curves into
1 s intervals for which we compute the median and quartiles
over all iterations.
Results. Fig. 3 shows the bandwidth profiles for the three
IMVCAs over the entire measurement duration, illustrating the

0 1 2 3 4 5 6 7 8 9
Time [min]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ba
nd

wi
dt
h
[M

bp
s]

Signal Telegram WhatsApp

Fig. 3: Median bandwidth profiles of the IMVCAs for an RTT
of 50ms and a queue size of 10 kB with upper/lower quartiles
as error bands.

median by the solid lines while we indicate the lower/upper
quartiles using the lighter error bands. The throughput in the
initial phase with a bandwidth of 3Mbps visually confirms
the demands observed in Sec. IV-A1: Signal has the highest
demand while WhatsApp has the lowest. At the same time,
WhatsApp offers the most stable behavior while Signal tends
to fluctuate more than the other two IMVCAs.

When slowly decreasing the available bandwidth, we can
observe corresponding reactions by the apps as they adjust
their sending rates as soon as the bandwidth has fallen below
their individual demands. For Signal, although the average is
at about 1.9Mbps, we can already see a reaction at 2Mbps
due to smaller variations and peaks in between on which
Signal reacts directly. It seems to integrate a small buffer
margin. However, it seeks a slightly higher bandwidth than
Telegram for a bottleneck bandwidth of 0.75Mbps (3min to
4min) while WhatsApp achieves a higher throughput than the
other two applications at the lowest bandwidth of 0.3Mbps
(4min to 5min). We also notice that 25% of WhatsApp calls
experience more than 1% packet loss at 0.3Mbps (not shown).
The other apps manage to maintain any rate without incurring
any persistent loss.

Upon abruptly increasing the available bandwidth back to
the initial value of 3Mbps, Signal and Telegram quickly
reclaim their demands. Interestingly, their ramp-up phases are
nearly equal, hinting at the joint usage of GCC. In contrast,
WhatsApp is very careful and only slowly increases its rate,
failing to reach its demand in the allotted time frame of 3min.
WhatsApp recovers faster (within one minute) if the buffer is
sized at 10×BDP for the highest bandwidth (not shown).

In a final step, we drastically decrease the bandwidth to
the minimum value of 0.3Mbps. WhatsApp shows a rather
smooth transition while Signal significantly undershoots the
target rate, although it recovers in a time similar to the
previously seen ramp-up phase.

Takeaway. All studied IMVCAs have distinct median band-
widths and unique reactions to bandwidth changes although
some should use the same CC. Overall, however, all IMVCAs
show suitable reactions to changing bandwidths.



B: S B: T B: W B: S B: T B: W−0.25

0.00

0.25

0.50

0.75

1.00
h

ar
m

ca
ll

A: Cubic A: BBRv2
Flow A first Flow B first

Fig. 4: Bandwidth harm for IMVCA flows competing at a
2×BDP queue against TCP for an RTT of 50ms. Bandwidth
limited to 5Mbps

B. IMVCA vs. TCP

The previous Sec. IV-A has shown (i) that and (ii) how the
studied IMVCAs adjust their sending rates solely based on the
available bandwidth. However, these observations are made in
isolated settings. To study the IMVCAs in a more realistic
environment, we next assess their interaction with a TCP flow
across different scenarios. In the following, we first describe
our assessment metrics. We then start with testing the reactions
of the IMVCAs to a TCP flow added to a link with sufficient
bandwidth for both streams to coexist. Thereafter, we switch
to a scenario with strong competition for which we configure
the link to barely support the demand of the IMVCAs alone.
Assessing interaction. Assessing the CC interaction of multi-
ple flows is often done using the notion of flow-rate fairness,
i.e., two flows behave fairly if they share the bandwidth
equally. Yet, whether such a metric is sensible is a frequent
focus of discussions and research, as it ignores the actual char-
acteristics of novel services. As a solution, Ware et al. [21]
propose to focus on harm instead of the pure bandwidth share,
taking the actual demands of the apps into account, e.g.,
w.r.t. bandwidth or delay. We follow this proposal and apply
harm for assessing the interaction, leveraging the identified
standalone rates of our IMVCAs (cf. Sec. IV-A1) and the fact
that TCP generally strives for a maximum rate.
Harm. Harm [21] denotes the applied changes for bandwidth,
delay, or jitter w.r.t. the demands of an application. For
example, gaining bandwidth beyond equal shares is acceptable
if the demands of other flows are retained. Harm inflicted on
a flow b by a flow a is defined as

harmb =


demandb−performanceb(a)

demandb
higher perf. better

performanceb(a)−demandb

performanceb(a)
lower perf. better

where demandb reflects the demand of flow b and
performanceb(a) yields the performance metric of flow b
subject to interaction with flow b. Note that harmb lies in the
interval [0, 1] where 0 indicates no harm and 1 represents that
the entire demand of flow b is suppressed.

1) Coexistence Scenario: In a first setting, we investigate
the interaction between the IMVCAs and the two TCP CCAs
Cubic and BBRv2 on a 50ms RTT, 5Mbps link, i.e., a link

B: S B: T B: W B: S B: T B: W0

20

40

60

80

100

Q
ue
ui
ng

D
ela

y
[m

s] A: Cubic A: BBRv2
Flow A first Flow B first

Fig. 5: Queuing Delay for IMVCA flows competing at a 2BDP
queue against TCP for an RTT of 50ms. Bandwidth limited
to 5Mbps

exceeding the IMVCA demands by more than 100% such that
both streams could easily coexist. We compare the behavior
using the harm metric for the calls for which we set the
demand to the previously investigated median demands. As
such, the values are in relation to the previous demands.
Impacted coexistence at a drop-tail queue. Fig. 4 shows the
bandwidth harm inflicted by the TCP CCAs on our apps (S:
Signal, T: Telegram, W: WhatsApp) when sharing a 2×BDP
drop-tail queue. For each scenario, we further study two
versions: one, where the TCP flow (flow A) starts first, and
one, where the IMVCA flow (flow B) starts first. We can see
that although the 5Mbps link allows for more than 3Mbps
to be used by TCP, still the flow-rates of Signal and Telegram
are impacted. Signal yields ∼75% of its 1.9Mbps bandwidth
demand to Cubic and ∼85% to BBRv2 if TCP started first.
If Signal started first competing against BBRv2 it is able to
sometimes achieve a harm of ∼65%. Telegram, starting with
a lower median flow-rate of 0.75Mbps, sometimes achieves
harm values near 25%, but mostly yields 55% to 70% of its
bandwidth. We attribute this effect to loss and rising queuing
delays, which cause Signal and Telegram to throttle their
rates. Both apps fall on a sustained flow-rate below that of
WhatsApp’s demand. In contrast, WhatsApp does not yield
bandwidth although it also has a much lower demand to
defend. It even reaches a negative harm value, as its median
bandwidth can be exceeded.

With regards to delay, Fig. 5 shows the queuing delays seen
at the queues during our test. Interestingly, Signal and Tele-
gram manage to keep the queuing delay low when coexisting
with BBRv2. This suggests that the delay-based CC compo-
nents in BBRv2 and the IMVCAs play together particularly
well. In contrast, for WhatsApp, we can see extensive delay
in coexistence with BBRv2. For Cubic, the well-known filled
queue behavior is noticeable for all three IMVCAs although
the queuing delay seems to be slightly smaller for WhatsApp.
Coexistence with AQM. Given the detrimental impact of
TCP on the IMVCAs, which we partly attribute to the rising
queuing delays, we next experiment with ways to counteract
these problems. AQM is one commonly used mechanism to
reduce the observed queuing delays which is why we apply
the CoDel [22] AQM to investigate its effect on the IMVCAs.



B: S B: T B: W B: S B: T B: W−0.25

0.00

0.25

0.50

0.75

1.00
h

ar
m

ca
ll

A: Cubic A: BBRv2
Flow A first Flow B first

Fig. 6: Bandwidth harm for IMVCA flows competing at a
CoDel-enabled queue against TCP for an RTT of 50ms.
Bandwidth limited to 5Mbps

B: S B: T B: W B: S B: T B: W−0.25

0.00

0.25

0.50

0.75

1.00

h
ar

m
ca

ll

A: Cubic A: BBRv2
Flow A first Flow B first

Fig. 7: Bandwidth harm for IMVCA flows competing at a
FQ CoDel-enabled queue against TCP for an RTT of 50ms.
Bandwidth limited to 5Mbps

As expected, CoDel reduces the delay to less than 20ms
throughout all cases (thus not shown). However, as shown in
Fig. 6, it cannot fully even out the bandwidth harm imposed
by TCP upon the IMVCAs. For Signal and Telegram, we
can see that they yield much less bandwidth to Cubic and
BBRv2 compared to the drop-tail queue setting: instead of
75% and 85% harm for Signal, we can now observe around
62% independent of the flow order and Telegram’s harm is
reduced to around 20%-25%. Looking at WhatsApp, the harm
values now spread around 0%, hinting at WhatsApp relaxing
its bandwidth defense.
Coexistence with fair-queuing AQM. While CoDel improves
the queuing delays as expected, it does not fully relieve the
bandwidth harm for all IMVCAs. Hence, we also study the
impact of the fair-queuing variant of CoDel. As can be seen in
Fig. 7, FQ CoDel helps Signal and Telegram to achieve their
demands with harm values very close to 0. For WhatsApp,
there is still a spread around 0% as for pure CoDel. Yet, the
spread is bimodal with both distributions being very sharp.
In total, we can see that fair-queuing clearly enforces equal
bandwidths and allows the apps to reachieve their demands.
Takeaway. TCP inflicts serious bandwidth harm on the
IMVCAs, even when the link leaves enough headroom for
equal bandwidth sharing. In particular, Signal and Telegram
yield bandwidth very quickly while WhatsApp is able to retain
its lower bandwidth demand. Only using fair-queuing helps

B: S B: T B: W B: S B: T B: W0.00

0.25

0.50

0.75

1.00

h
ar

m
ca

ll

A: Cubic A: BBRv2
Flow A first Flow B first

Fig. 8: Bandwidth harm for IMVCA flows competing at a
2×BDP queue against TCP for an RTT of 50ms. Bandwidth
per setting configured to the respective demand of the IMVCA.

the IMVCAs in protecting their demands against TCP.
2) Enforced Competition Scenario: The previous scenario

was designed to provide sufficient bandwidth headroom for all
IMVCAs so that they could, theoretically, coexist with TCP.
Yet, there were very different reactions by the applications and
WhatsApp showed a particularly interesting behavior as it did
not yield bandwidth to TCP. However, WhatsApp also has the
lowest demand, one possible reason for the observed behavior.
Hence, to even the playing field and enforce competition, even
for WhatsApp, we next scale the bottleneck bandwidth to the
demands of the IMVCAs. This allows us to study the behavior
and reactions of the apps under extreme conditions.
Drop-tail queue. We first study the behavior at a drop-tail
queue with a queue size of 2 × BDP and set the bottleneck
bandwidth to the IMVCA demands, i.e., 1.9Mbps for Signal,
0.75Mbps for Telegram, and 0.45Mbps for WhatsApp.

Fig. 8 shows the observed harm values. 0.5 denotes flow-
rate equality, i.e., that TCP and IMVCA share the bandwidth
equally. As such, values of 0.5 could be seen as desirable,
although clearly the apps would benefit from higher band-
widths. We manually verified that each app is able to reduce its
sending rate to half its demand, i.e., achieve flow-rate-equality.

A first observation is that the reactions of Signal and
Telegram now only barely differ between Cubic and BBRv2
as TCP dominates the link in both cases. In particular, Cubic
causes harm of 80% and above, compared to 55-75% in
Fig. 4, while BBRv2 reaches similar levels, described by a
partly bimodal distribution.

For WhatsApp, the reaction again looks different. Instead of
harm values above 80%, it reaches around flow-rate equality
for Cubic. However, the variance of the results is significantly
higher than for Signal or Telegram, beyond the difference in
demands which of course also impacts scaling. For BBRv2, the
harm is higher at about 60% for WhatsApp being incumbent
and at about 65% with TCP being incumbent. For both
scenarios, we see high loss rates of the WhatsApp call at about
9-12% (not shown).
Takeaway. Signal and Telegram back off further when re-
ducing the link’s headroom. WhatsApp, on the other hand,
presents a much more diverse behavior defending its share.
Impact of fair-queuing AQM. Given the dramatic reduction



B: S B: T B: W B: S B: T B: W0.00

0.25

0.50

0.75

1.00
h

ar
m

ca
ll

A: Cubic A: BBRv2
Flow A first Flow B first

Fig. 9: Bandwidth harm for IMVCA flows competing at a
FQ CoDel-enabled queue against TCP for an RTT of 50ms.
Bandwidth per setting configured to the respective demand of
the IMVCA.

in sending rate for Signal and Telegram, and the unstable
behavior of WhatsApp, we again study the effect of AQM.
However, as seen in Sec. IV-B1, a pure CoDel only has minor
effects on the bandwidth harm. We have confirmed these
observations also for the enforced competition scenario. In the
following, we thus directly focus on FQ CoDel.

As can be seen in Fig. 9, using FQ CoDel strongly improves
harm as all harm values are now close to 0.5. Interestingly, all
IMVCAs center slightly above the flow-rate equality mark.
Also, WhatsApp still achieves a very scattered distribution
of harm values. Even with fair-queuing AQM, its results are
relatively indeterministic, often achieving harm values above
those of Signal and Telegram, but also values below.
Takeaway. In general, we can see that AQM is able to
improve flow-rate stability also for links with no headroom.
Yet, fair-queuing is required to significantly improve bandwidth
equality for Signal and Telegram, while WhatsApp’s results are
very scattered. The impact on QoE is unclear.

V. QOE EVALUATION

The first part of our analysis focuses on the CC behavior of
the IMVCAs and the corresponding impact of AQM. While we
could discover significantly different bandwidth management
behavior of the apps, the effects of these differences on the
user’s perception are still unclear. Thus, we next focus on
shedding light on the QoE impact of our previous findings.
For this, we repeat our measurements, this time also recording
the screen of the virtual phone receiving the video stream to
then assess the visual quality of the call.

A. QoE Assessment Methodology

In order to objectively gauge the QoE, we use an image
quality assessment (IQA) model that exclusively focuses on
the video quality. Prior works in video conferencing QoE either
exploited debug outputs of the surveyed applications [3] or
employed frame-by-frame analysis of screen-grabbed calls [4].

We assess the video QoE by losslessly screen-grabbing
our virtual phones and extracting the last 10 frames of each
video call. We then apply the no-reference (NR) IQA model

0.3 1.0 2.0
Bottleneck Bandwidth [Mbps]

0

25

50

75

100

BR
IS
Q
UE

Sc
or
e

H264 Encoded Video BRISQUE Score

Reference Video BRISQUE Score
lower is better

Signal Telegram WhatsApp

Fig. 10: BRISQUE scores of the investigated IMVCAs at
different bottleneck bandwidths with a 2 × BDP queue and
50ms RTT. For reference, the input video’s score and its score
when encoded at the bottleneck bandwidth are added.

BRISQUE [23], and calculate the mean of the resulting quality
scores to obtain one value for each call.

As the screen capturing is resource-intensive, we separate
these measurements from our prior measurements to rule
out interference. However, we do not find any significant
differences in the bandwidth sharing behavior compared to our
previous results, indicating that the additional screen capture
has a negligible effect.
Using an NR QoE model. We decide against a full-reference
(FR) model, such as the structural similarity index measure
(SSIM), as there are inherent spatial and temporal distortions
between the webcam input and the output on the receiv-
ing phone. These distortions strongly affect FR models but
are barely noticeable in subjective QoE. For example, the
IMVCAs might re-encode the video at a different frame
rate (25fps vs 30fps) than the reference. Furthermore, our
setup of an emulated phone, emulated camera, and screen-
grabber is not synchronized, which creates additional temporal
misalignments. Capturing the exact reference frames subject
to the video call encoding is thus infeasible. Yet, FR models
expect to compare the very same frame such that rating the
quality via such models would be biased in our setup.

Hence, we rely on an NR model: BRISQUE
(Blind/Referenceless Image Spatial Quality Evaluator) [23].
BRISQUE measures the distortion of a digital image by
comparing the distribution of luminance between natural
images / images taken by a camera and its input image. These
distributions are then fed into a machine learning model
trained on human ratings to yield quality scores between 0
(best) and 100 (worst). Analyses showed that the scores are
correlated with the human perception of image distortion and
as statistically significant as the FR model SSIM [23]. Thus,
our analyses only require the IMVCA output to rate and
assess the influence of bandwidth and congestion on QoE.

B. Results

We begin by first measuring the baseline performance of
the IMVCAs without any competition. When then add a



competing TCP flow and finally compare the performance
when enabling CoDel and FQ CoDel.

1) Baseline Results: Fig. 10 shows the BRISQUE scores of
the IMVCAs for different bottleneck bandwidths (0.3Mbps,
1Mbps, and 2Mbps) and a 2 × BDP queue. CoDel,
FQ CoDel and a 10 × BDP drop-tail queue yield similar
scores (not shown). The plot further shows the BRISQUE
scores of our reference input video (purple line) and those that
can be achieved by OpenH264 using the bottleneck bandwidth
as encoding rate (brown line). Note that lower BRISQUE
scores are better.

Throughout all measurements, we can see that the theo-
retical BRISQUE minimum of the reference video is never
achieved. This is expected as the video bandwidth is too high
for the investigated bottleneck bandwidths and the video, thus,
has to be encoded. However, the theoretical H264 BRISQUE
scores are not achieved either. We attribute this observation
to margins and FEC overheads that have to be taken into
account, too. Yet, Signal and Telegram are surprisingly close,
both achieving BRISQUE scores of around 50 for 1Mbps
and 2Mbps, even though Signal uses more than twice the
bandwidth of Telegram.

In contrast, the BRISQUE scores of WhatsApp are worse at
around 68 as it uses a much smaller bandwidth. However, also
for 0.3Mbps, WhatsApp is not close to the H264 reference
line. We conclude that WhatsApp encodes the video at a
much lower rate internally and employs several overhead-
adding measures, such as FEC. This can also be seen in
the fact that, even at 0.3Mbps, WhatsApp often achieves the
same BRISQUE scores as before. In certain cases, however,
it cannot keep up and reduces the quality, leading to a
bimodal distribution of the BRISQUE scores. Interestingly,
Signal, which previously achieved BRISQUE scores on-par
with Telegram, now also reduces its quality significantly.
Previously, we always saw a very similar reaction between
Signal and Telegram but seemingly, at this point Signal, uses
a different parameterization or implementation.
Takeaway. WhatsApp seemingly uses lower video encoding
rates than Signal and Telegram. Signal and Telegram further
show a different behavior in the very low bandwidth region,
a surprising finding given both rely on WebRTC and GCC.

2) QoE when competing against TCP: The different IMV-
CAs use different baseline demands which equally reflect in
their delivered video quality. However, we have previously
seen that the IMVCAs also have a different behavior when
competing with TCP. Hence, we next investigate the impact
of this competition on the IMVCA video quality. For this,
we reuse the configurations of Sec. IV-B2, i.e., we configure
bottleneck bandwidths equal to the IMVCA demands and
add Cubic and BBRv2 TCP flows to not only investigate the
bandwidth harm, but now also the video quality interference.
Drop-tail queue. Fig. 11 shows the BRISQUE scores for a
2×BDP queue and a 50ms RTT. Across the board, we can
see a severe detriment in video quality. While our baseline
scenario showed BRISQUE scores from 50 to 75 and slightly
above, now the majority of measurements show values above

B: S B: T B: W B: S B: T B: W0

25

50

75

100

BR
IS
Q
UE

Sc
or
e

A: Cubic A: BBRv2
lower is better

Flow A first Flow B first

Fig. 11: Brisque score for IMVCA flows competing at a 2×
BDP queue against TCP for an RTT of 50ms. Bottleneck
bandwidth per setting configured to the respective demand of
the IMVCA.

B: S B: T B: W B: S B: T B: W0

25

50

75

100

BR
IS
Q
UE

Sc
or
e

A: Cubic A: BBRv2
lower is better

Flow A first Flow B first

Fig. 12: Brisque score for IMVCA flows competing at a
CoDel-enabled queue against TCP for an RTT of 50ms.
Bottleneck bandwidth per setting configured to the respective
demand of the IMVCA.

75. The bimodal behavior of WhatsApp can again be seen
when competing against Cubic, allowing it to yield a better
BRISQUE score than the other apps in some cases. Comparing
the observations for harm (cf. Sec. IV-B) to the BRISQUE
values, we can see that WhatsApp’s more aggressive defense
seems to help. However, when a BBRv2 flow joins Signal
and Telegram flows, we can also see the bimodal distribution
and improvements which were also visible in harm. Overall,
harm and video quality seem to correlate. With respect to
the bimodality we notice a correlation to the bimodality in
harm. A higher bandwidth attained is correlated with a better
BRISQUE, even though there is a transient area in which both
modes of BRISQUE are observed at the same throughput.
Impact of CoDel. The BRISQUE results for enabling CoDel
can be seen in Fig. 12. The bimodal improvements for harm
with BBRv2 now also reflect in the BRISQUE values, Tele-
gram and Signal achieve better BRISQUE values more often.
Yet, for Cubic, all apps barely benefit. As such, we also test
the outcomes on QoE when enabling fair-queuing.
Impact of FQ CoDel. Fig. 13 shows the BRISQUE scores
when deploying FQ CoDel. Only when adding fair-queuing
we saw positive effects on harm and we now also see this effect
for BRISQUE. Signal and Telegram now achieve BRISQUE
scores of ∼60, improving the video quality significantly. How-



B: S B: T B: W B: S B: T B: W0

25

50

75

100

BR
IS
Q
UE

Sc
or
e

A: Cubic A: BBRv2
lower is better

Flow A first Flow B first

Fig. 13: Brisque score for IMVCA flows competing at a
FQ CoDel-enabled queue against TCP for an RTT of 50ms.
Bottleneck bandwidth per setting configured to the respective
demand of the IMVCA.

ever, Signal does not achieve its theoretical baseline BRISQUE
score of 50 for half of its demand. WhatsApp, in contrast,
cannot improve.
Takeaway. The QoE of the IMVCAs is severely impacted by
up to more than 25%-points when competing against TCP.
While CoDel reduced delay before, a visual improvement
clearly requires FQ CoDel.

VI. IMPLICATIONS FOR VIDEO CONFERENCING

Our findings in Sec. IV and Sec. V provide a first overview
on the current state of instant messaging-based video confer-
encing. In the following, we discuss our main findings as well
as areas and limitations which we identify as most relevant
for extending the overview.
Harm and QoE correlate. Our two-fold assessment of the
IMVCA behavior reveals that there is a correlation between
harm inflicted by TCP and the corresponding QoE provided
to the user. In particular, the decreased bandwidths directly
translate to decreased QoE, with plots of the bandwidth harm
and the BRISQUE scores showing very similar behavior. Thus,
while related works point to a multi-dimensional dependency
of video conferencing quality, our findings reinforce that
bandwidth plays a major role in the achievable QoE.
WebRTC and GCC. Signal and Telegram both use the
WebRTC framework. Consequently, they share many traits and
show a similar behavior. However, we also note significant
differences, especially in low bandwidth regions. Additionally,
both IMVCAs excessively yield their bandwidth when com-
peting against TCP. Hence, we identify the need for better
understanding the behavior of WebRTC in low bandwidth
scenarios and for improving its performance against TCP.
Robustness vs. performance. WhatsApp seemingly uses a
robust encoding that ensures a consistent QoE, even for low
bottleneck bandwidths. Additionally, it is quick to react to
decreased bandwidths while it is slow to probe for new
bandwidth. As such, WhatsApp stands in contrast to Signal
and Telegram which seem to be better equipped for higher
bandwidths at the cost of excessively yielding bandwidth.
Consequently, WhatsApp might be better suited for harsher
network conditions accepting loss and delay while the other

IMVCAs could rather target modern networks. Thinking cur-
rent standardization efforts further, deciding on how to weigh
the trade-off of robustness and performance will be crucial.

A. Limitations and Possible Extensions

Extending our overview is possible into several dimensions
due to inherent limits of our method.
Testbed setup. We use an Ethernet-based, fully controlled
testbed to facilitate comparisons with related works, emulating
the wireless access using the Android emulator. In reality,
however, we expect different access topologies, such as 802.11
or 4G/5G, to influence the behavior of the IMVCAs, especially
under congestion. Similarly, broadening the investigated net-
work settings could provide additional input for the aforemen-
tioned trade-off considerations.
QoE assessment. Using BRISQUE allows for an effective, yet
limited assessment of the call QoE. In particular, we focus on
a sample of the individual frames making up the video call,
but do not analyze the call audio nor the temporal aspects
of video. Taking these into account might further widen the
trade-off considerations.
Multi-party calls. Similar to related works, our investigation
focuses on two-party calls. However, we expect group calls
to show further competition issues. For example, group calls
typically use a selective forwarding unit deployed at a central
location as a video stream broker. This additional indirection
could cause longer paths and might introduce additional bot-
tlenecks, effects that we do not consider in our assessment.

VII. CONCLUSION

Research on video conferencing has mostly focused on
applications that specialize in providing video conferencing
services, painting a detailed picture of their congestion control
behavior. However, these works neglect that many instant
messengers now also provide video call functionality as an
add-on. In this paper, we thus study the congestion control
traits of and QoE provided by three popular instant messaging-
based video call applications (IMVCAs): Signal, Telegram,
and WhatsApp. Using a controlled testbed with emulated
Android phones, we evaluate these applications in isolation
and when competing with TCP in different network setups.

Our results indicate that the studied IMVCAs do adjust their
bandwidth in times of congestion, i.e., they do not pose a
threat to Internet stability. However, the IMVCAs are severely
disadvantaged when competing against TCP, giving up more
than half or even three quarters of their bandwidth in the case
of Signal and Telegram. In contrast, WhatsApp maintains a
lower baseline than the other IMVCAs and defends it more
decidedly, although it also suffers against TCP. The bandwidth
disadvantages further translate to decreased visual call quality.
In particular, we find that the QoE, assessed using the visual
quality indicator BRISQUE, correlates with the bandwidth
harm inflicted by the TCP flows. Overall, we believe that
the TCP-friendliness of the studied IMVCAs should not be
reversed but tuned further to allow high-quality video calls
even when competing against TCP.



ACKNOWLEDGMENTS

This work has been funded by the German Research Foun-
dation DFG under Grant No. WE 2935/20-1 (LEGATO). We
thank the anonymous reviewers for their valuable comments.

REFERENCES

[1] A. Feldmann, O. Gasser, F. Lichtblau, E. Pujol, I. Poese, C. Dietzel,
D. Wagner, M. Wichtlhuber, J. Tapiador, N. Vallina-Rodriguez,
O. Hohlfeld, and G. Smaragdakis, “The Lockdown Effect: Implications
of the COVID-19 Pandemic on Internet Traffic,” in Proceedings of the
2020 ACM Internet Measurement Conference (IMC), 2020. [Online].
Available: https://doi.org/10.1145/3419394.3423658

[2] C. Sander, I. Kunze, K. Wehrle, and J. Rüth, “Video Conferencing
and Flow-Rate Fairness: A First Look at Zoom and the Impact
of Flow-Queuing AQM,” in Proceedings of the 2021 International
Conference on Passive and Active Network Measurement (PAM), 2021.
[Online]. Available: https://doi.org/10.1007/978-3-030-72582-2 1

[3] K. MacMillan, T. Mangla, J. Saxon, and N. Feamster, “Measuring the
Performance and Network Utilization of Popular Video Conferencing
Applications,” in Proceedings of the 2021 ACM Internet Measurement
Conference (IMC), 2021. [Online]. Available: https://doi.org/10.1145/
3487552.3487842

[4] H. Chang, M. Varvello, F. Hao, and S. Mukherjee, “Can You See
Me Now? A Measurement Study of Zoom, Webex, and Meet,” in
Proceedings of the 2021 ACM Internet Measurement Conference (IMC),
2021. [Online]. Available: https://doi.org/10.1145/3487552.3487847

[5] A. Choi, M. Karamollahi, C. Williamson, and M. Arlitt, “Zoom
Session Quality: A Network-Level View,” in Proceedings of the 2022
International Conference on Passive and Active Network Measurement
(PAM), 2022. [Online]. Available: https://doi.org/10.1007/978-3-030-
98785-5 25

[6] M. Varvello, H. Chang, and Y. Zaki, “Performance Characterization
of Videoconferencing in the Wild,” in Proceedings of the 2022 ACM
Internet Measurement Conference (IMC), 2022. [Online]. Available:
https://doi.org/10.1145/3517745.3561442

[7] P. Thatcher, “How to build large-scale end-to-end encrypted group
video calls,” 2021. [Online]. Available: https://signal.org/blog/how-to-b
uild-encrypted-group-calls/

[8] G. Carlucci, L. De Cicco, S. Holmer, and S. Mascolo, “Analysis
and Design of the Google Congestion Control for Web Real-time
Communication (WebRTC),” in Proceedings of the 2016 ACM
International Conference on Multimedia Systems (MMSys), 2016.
[Online]. Available: https://doi.org/10.1145/2910017.2910605

[9] B. Jansen, T. Goodwin, V. Gupta, F. Kuipers, and G. Zussman,
“Performance Evaluation of WebRTC-based Video Conferencing,” ACM
SIGMETRICS Performance Evaluation Review, vol. 45, no. 3, pp. 56–
68, 2018. [Online]. Available: https://doi.org/10.1145/3199524.3199534

[10] L. Grote, C. Sander, I. Kunze, and K. Wehrle, “Instant Messaging Meets
Video Conferencing: Studying the Performance of IM Video Calls,”
2023. [Online]. Available: https://doi.org/10.5281/zenodo.8006901

[11] “RTP Media Congestion Avoidance Techniques, IETF Working Group,”
2023. [Online]. Available: https://datatracker.ietf.org/wg/rmcat/

[12] R. Jesup and Z. Sarker, “Congestion Control Requirements for
Interactive Real-Time Media,” IETF, RFC 8836, 2021. [Online].
Available: https://doi.org/10.17487/RFC8836

[13] L. De Cicco, S. Mascolo, and V. Palmisano, “An Experimental
Investigation of the Congestion Control Used by Skype VoIP,” in
Proceedings of the 2007 International Conference on Wired/Wireless
Internet Communications (WWIC), 2007. [Online]. Available: https:
//doi.org/10.1007/978-3-540-72697-5 13

[14] TelegramMessenger, “Telegram Codebase,” 2023. [Online]. Available:
https://github.com/TelegramMessenger/tgcalls/blob/d20de8e8bb2d6059
18e26ef697d4b8af1d6ea3ff/tgcalls/MediaManager.cpp#L813

[15] A. S. Jagmagji, H. D. Zubaydi, and S. Molnar, “Exploration and
Evaluation of Self-Clocked Rate Adaptation for Multimedia (SCReAM)
Congestion Control Algorithm in 5G Networks,” in Proceedings of
the 2022 International Conference on Telecommunications and Signal
Processing (TSP), 2022. [Online]. Available: https://doi.org/10.1109/TS
P55681.2022.9851382

[16] I. Johansson and Z. Sarker, “Self-Clocked Rate Adaptation for
Multimedia,” IETF, RFC 8298, 2017. [Online]. Available: https:
//doi.org/10.17487/RFC8298

[17] C. Yu, Y. Xu, B. Liu, and Y. Liu, ““Can you SEE me now?” A
Measurement Study of Mobile Video Calls,” in Proceedings of the 2014
IEEE Conference on Computer Communications (INFOCOM), 2014.
[Online]. Available: https://doi.org/10.1109/INFOCOM.2014.6848080

[18] Statista, “Most popular social networks worldwide as of January
2023,” 2023, accessed: 2023-03-28. [Online]. Available: https:
//www.statista.com/statistics/272014/global-social-networks-ranked-by-
number-of-users/

[19] Android Open Source project, “Monkeyrunner,” 2023. [Online].
Available: https://developer.android.com/studio/test/monkeyrunner

[20] Google, “TCP BBR v2 Alpha/Preview Release,” 2023. [Online].
Available: https://github.com/google/bbr/tree/v2alpha

[21] R. Ware, M. K. Mukerjee, S. Seshan, and J. Sherry, “Beyond Jain’s
Fairness Index: Setting the Bar For The Deployment of Congestion
Control Algorithms,” in Proceedings of the 2019 ACM Workshop
on Hot Topics in Networks (HotNets), 2019. [Online]. Available:
https://doi.org/10.1145/3365609.3365855

[22] K. Nichols, V. Jacobson, A. McGregor, and J. Iyengar, “Controlled
Delay Active Queue Management,” IETF, RFC 8289, 2018. [Online].
Available: https://doi.org/10.17487/RFC8289

[23] A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-Reference Image
Quality Assessment in the Spatial Domain,” IEEE Transactions on
Image Processing, vol. 21, no. 12, pp. 4695–4708, 2012. [Online].
Available: https://doi.org/10.1109/TIP.2012.2214050

https://doi.org/10.1145/3419394.3423658
https://doi.org/10.1007/978-3-030-72582-2_1
https://doi.org/10.1145/3487552.3487842
https://doi.org/10.1145/3487552.3487842
https://doi.org/10.1145/3487552.3487847
https://doi.org/10.1007/978-3-030-98785-5_25
https://doi.org/10.1007/978-3-030-98785-5_25
https://doi.org/10.1145/3517745.3561442
https://signal.org/blog/how-to-build-encrypted-group-calls/
https://signal.org/blog/how-to-build-encrypted-group-calls/
https://doi.org/10.1145/2910017.2910605
https://doi.org/10.1145/3199524.3199534
https://doi.org/10.5281/zenodo.8006901
https://datatracker.ietf.org/wg/rmcat/
https://doi.org/10.17487/RFC8836
https://doi.org/10.1007/978-3-540-72697-5_13
https://doi.org/10.1007/978-3-540-72697-5_13
https://github.com/TelegramMessenger/tgcalls/blob/d20de8e8bb2d605918e26ef697d4b8af1d6ea3ff/tgcalls/MediaManager.cpp#L813
https://github.com/TelegramMessenger/tgcalls/blob/d20de8e8bb2d605918e26ef697d4b8af1d6ea3ff/tgcalls/MediaManager.cpp#L813
https://doi.org/10.1109/TSP55681.2022.9851382
https://doi.org/10.1109/TSP55681.2022.9851382
https://doi.org/10.17487/RFC8298
https://doi.org/10.17487/RFC8298
https://doi.org/10.1109/INFOCOM.2014.6848080
https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
https://developer.android.com/studio/test/monkeyrunner
https://github.com/google/bbr/tree/v2alpha
https://doi.org/10.1145/3365609.3365855
https://doi.org/10.17487/RFC8289
https://doi.org/10.1109/TIP.2012.2214050

	Introduction
	Background and Related Work
	Methodology
	Testbed setup
	Study Targets and Parameterization

	CC Behavior Evaluation
	Baseline experiments
	Determining Bandwidth Demand
	Reaction to Changing Bandwidths

	IMVCA vs. TCP
	Coexistence Scenario
	Enforced Competition Scenario


	QoE Evaluation
	QoE Assessment Methodology
	Results
	Baseline Results
	QoE when competing against TCP


	Implications for Video Conferencing
	Limitations and Possible Extensions

	Conclusion
	References

