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Abstract—The long-term utility and reusability of measure-
ment data from production processes depend on the appropriate
contextualization of the measured values. These requirements
further mandate that modifications to the context need to
be recorded. To be (re-)used at all, the data must be easily
findable in the first place, which requires arbitrary filtering
and searching routines. Following the FAIR guiding principles,
fostering findable, accessible, interoperable and reusable (FAIR)
data, in this paper, the FAIR Sensor Ecosystem is proposed,
which provides a contextualization middleware based on a unified
data metamodel. All information and relations which might
change over time are versioned and associated with temporal
validity intervals to enable full reconstruction of a system’s
state at any point in time. A technical validation demonstrates
the correctness of the FAIR Sensor Ecosystem, including its
contextualization model and filtering techniques. State-of-the-art
FAIRness assessment frameworks rate the proposed FAIR Sensor
Ecosystem with an average FAIRness of 71%. The obtained
rating can be considered remarkable, as deductions mainly result
from the lack of fully appropriate FAIRness metrics and the
absence of relevant community standards for the domain of the
manufacturing industry.

Index Terms—FAIR Data; Cyber-Physical Systems; Data Man-
agement; Data Contextualization; Internet of Production

I. INTRODUCTION AND MOTIVATION

The measurement data from manufacturing and production
processes bears the potential for manifold improvements of
these processes and product quality in the long run [1]–[3].
Examples of such reuse of usually large amounts of historical
process data, range from retrospective fault analysis, predic-
tive approaches [4] or process optimization in general [5].
However, this potential can only be fully released, if the data
is richly annotated with meta and context information. By
that, the data can be unambiguously interpreted and reused
later [6]. The contextualization of data becomes even more
vital when facing use cases and setups, which are subject to
frequent changes and modifications. This happens very often
in research and science when the setup of experiments is
altered to investigate the behavior of systems under different
conditions [7]. Similar trends are observable in production
systems, which need to be adapted constantly to improve the
quality or efficiency of the processes or meet the demands
of customers [8]. Specific examples of such changing setups
are large-scale metrology applications, like the tracking and
position estimation of mobile units. Even in large volumes

of several meters, these systems yield high accuracy. Thus,
they are often used to track and measure multiple different
objects [9]. These measurements can happen simultaneously
or successively. Moreover, depending on the measuring sys-
tem the device’s configuration or parametrization is regularly
modified, such as repositioning or calibration.
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Today, this time-sensitive contextualization of measured
data and the seamless description and collection of the context
is performed insufficiently in practice [10]. Thus, the reuse
of such data is almost impossible due to missing context
information and can be considered lost [11], [12]. To facilitate
the degree of documentation and hence reusability of such
data, this paper adopts the FAIR guiding principles [13] that
are well-known for data management. The FAIR principles
have already been adopted by other approaches [14], however,
related work usually insufficiently covers a subset of the FAIR
principles only or is not suited for industrial application.

Contributions. This paper addresses this research gap and
proposes the novel FAIR Sensor Ecosystem for contextualiza-
tion and persistent storage of measurement data. The FAIR
Sensor Ecosystem is a centrally hosted backend consuming
measurement data sent via a publish/subscribe protocol. A
FAIRification middleware unambiguously assigns each value
to a measured object and the device’s configuration at the
time of measurement, utilizing a data structure that persistently
links measured data to objects of interest, even if the setup
is subject to frequent changes. Due to the persistent data
linking, the proposed solution enables high findability, high
interoperability and long-term reusability of the stored data.

Organization. Section II introduces a specific scenario to
illustrate the research gap, reviews the FAIR guiding principles
and derives domain-specific prerequisites for FAIR measure-
ment data in the domain of manufacturing. Section III reviews
relevant scientific literature, succeeded by the description of
the architecture and data model of the FAIR Sensor Ecosystem
in Section IV. After that, in Section V, the prototypic imple-
mentation and validation are explained. The paper is concluded
in Section VI with a summary and outlook.

II. SCENARIO AND BACKGROUND

To ensure the suitability of the developed FAIR Sensor
Ecosystem, this section derives domain-specific prerequisites
for the envisaged system. For that, a specific, common use-
case scenario in industry and science is illustrated and ex-Author manuscript.
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plained. Additionally, the FAIR guiding principles are re-
viewed.

A. Industrial Metrology Applications

As motivated, contextualization is required to acquire
reusable measurement data from scientific experiments as
well as from industrial production processes. Whereas the
developed FAIR Sensor Ecosystem should be widely appli-
cable, a large-scale metrology (LSM) application is used as a
specific example to emphasize the needs for and benefits of the
ecosystem. In general, measuring devices for LSM track and
measure targets, which are attached to the object of interest.
Depending on the device and the desired accuracy these
targets are expensive and thus often used in different setups (a
detailed description of LSM applications have been described
by Montavon [9]). However, for applications demanding very
high accuracy, such as machine-tool calibration, the measure-
ment uncertainty induced by the specific target needs to be
considered. Thus, it must be unambiguously preserved, which
target was attached to which object of interest at which point
in time. In this paper, this need is further illustrated and
investigated using the exemplary setup explained and shown
in Figure 1.

B. FAIR Guiding Principles for Data

To facilitate the value of data Wilkinson et al. [13] pro-
posed the FAIR guiding principles for data. The objective
of the principles is to improve the findability, accessibility,
interoperability and reusability (FAIR) of scientific data. To
adhere to the four basic principles FAIR data must fulfill the
requirements shown in Table I according to Wilkinson et al.

These principles can be utilized to improve the value of
data in general and not of scientific data only. The described
challenges in the manufacturing industry can be addressed by
adopting the FAIR principles for this domain. However, to
build the FAIR Sensor Ecosystem upon the guiding principles,
it is required to derive domain-specific requirements the sys-
tem must fulfill to provide long-term reusable sensor data.

C. Prerequisites for Reusability of Sensor Data

Whereas some principles are more clear and specific, and
thus, comparably easy to realize (in particular F1, A1 and
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Fig. 1. Close to industry scenario of a LSM application using a laser tracker
for measuring the position of targets attached to different objects. The green
arrows indicate a temporary repositioning of the tracker and one of the targets.
To be able to reuse the data correctly, the change of the tracker’s position and
association of the target with the two different objects (turbine housing and
machine tool) must be preserved in the data. The figure is not drawn to scale.

R1.1), most are quite vague [16] and therefore, not suitable to
directly develop a technical solution. Depending on the per-
spective and the domain these principles might be differently
interpreted and thus realized and implemented differently.
Leading to the question of how the long-term reusability of
measurement data can be realized based on domain-specific
requirements derived from the FAIR guiding principles. Based
on the described scenario, the FAIR principles have been
adopted for the manufacturing domain by deriving specific
prerequisites that have to be fulfilled.

P1 Upon F1 and F3, in case the configuration, setup or
relations between objects change, the identifiers of data
must be persisted.

P2 To increase findability and reusability (F2 and R1),
objects and measurement values should be describable
by metadata of any type.

P3 To preserve interoperability (in particular I1), it must be
ensured that (meta) data of the same type always has the
same format.

P4 To fulfill principle A2 metadata must not be deletable.
Instead, a new revision of the metadata should be created
and linked to the older version.

P5 All data and metadata need to be enriched with semantic
annotations to fulfill principles I1, R1, i.e. the terms used
for description should be defined in available ontologies
or terminologies.

P6 To fulfill F4, it must be possible to filter the data by
any field of the data model. Thus, the search must also
include the metadata fields which can store any type as
per P2 and P3.

On top of these FAIR-derived functional prerequisites,
performance and scalability have been identified as crucial
non-functional requirements for any FAIR Sensor Ecosystem,
because such a system must be able to ingest and process

TABLE I
A SUMMARY OF THE FAIR DATA PRINCIPLES AS SPECIFIED IN [13]

(RECREATED WITH PERMISSION OF THE AUTHORS FROM [15]).

Findability
F1 (meta)data are assigned a glob-

ally unique and persistent iden-
tifier

F2 data are described with rich
metadata (defined by R1 below)

F3 metadata clearly and explicitly
include the identifier of the data
it describes

F4 (meta)data are registered or in-
dexed in a searchable resource

Accessibility
A1 (meta)data are retrievable by their iden-

tifier using a standardized communica-
tions protocol

A1.1 the protocol is open, free, and univer-
sally implementable

A1.2 the protocol allows for an authentication
and authorization procedure, where nec-
essary

A2 metadata are accessible, even when the
data are no longer available

Interoperability
I1 (meta)data use a formal, acces-

sible, shared, and broadly ap-
plicable language for knowledge
representation.

I2 (meta)data use vocabularies that
follow FAIR principles

I3 (meta)data include qualified ref-
erences to other (meta)data

Reusability
R1 meta(data) are richly described with a

plurality of accurate and relevant at-
tributes

R1.1 (meta)data are released with a clear and
accessible data usage license

R1.2 (meta)data are associated with detailed
provenance

R1.3 (meta)data meet domain-relevant com-
munity standards



continuously incoming measurement data and deal with high
data rates of more than 1k data points per second.

III. RELATED WORK

Based on these prerequisites, related work is studied which
aims to increase the FAIRness of (measurement) data. Some
focus on specific aspects of FAIR only. Among others, on-
tologies and terminologies for the interoperable description of
measurement data have been published, such as the Semantic
Sensor Network Ontology (SSN) [17], the OGC SensorThings
API [18], or the Web of Things (WoT) Things Description [19].

Semantic Sensor Network Ontology. Using SSN the
relations between measurements, the measuring device, the
observed property and the measurement procedure can be de-
scribed in detail. Defining a common vocabulary and structure
for modeling measurement data, interoperability of measuring
devices, sensors and measurements is facilitated. However,
SSN is not capable of tracking changes in the configuration
or specification of devices, as required by P1 and P4. So,
to persist and preserve relations between measurements, the
measuring devices and the configuration of the device at the
time of measuring, additional concepts must be introduced.

OGC SensorThings API. The OGC SensorThings API
provides a similar set of terms like SSN for the definition
of data structures for measurement data. Moreover, it offers a
REST API for accessing and manipulating data from devices
for which a data structure is defined according to the Sensor-
Things API’s data model. The API also supports the exchange
of sensor data in various formats, including JSON and XML.
Due to the API, it is possible to alter the data model and meta-
information of a measuring device after deployment and in use.
But, the OGC SensorThings API has the same drawback as
SSN. Moreover, the OGC SensorThings API does not provide
any functionality for data curation. So, P3 can only be ensured
using additional tools or frameworks.

Web of Things - Things Description. A more general
approach is the WoT Things Description, which does not only
target measurement data and devices. It provides a data model
for describing the characteristics, capabilities and behavior of
IoT devices. Based on the Resource Description Framework
and using JSON and JSON-LD as data formats it paves the
way for interoperable and compatible devices. On top of the
description, there exist drafts for WoT Profiles [20] and WoT
Discovery [21], which deal with the provision of a RESTful
HTTP API and the discovery and exploration of connected
devices, respectively, based on a Thing description, i.e., a
corresponding data model. Compared to the SSN and the
OGC SensorThings API, with the WoT Things Description
the setting of a device can be versioned, but relations between
different things and other elements must be qualified explicitly
by users. Moreover, all three approaches mainly address the
interoperability of data but do not explicitly consider the other
three aspects of FAIR.

FactDAG. Gleim et al. [15] proposed FactDAG, an ap-
proach fully dedicated to the FAIR guiding principles for
describing production data and its provenance. To persistently

identify data, keep track of changes and preserve provenance,
each data point is considered as an immutable Fact, which is
identified by a triple called FactID and stored in a directed
acyclic graph. Further, the authors did a reference implemen-
tation called FactStack [22] build upon standardized protocols
and data formats in accordance with the FAIR principles.
But, the approach is missing a dedicated way of filtering and
searching the data by custom keys and attributes, which is not
compliant to P6 and challenges the retrieval of data in practice.

MontiThings. Another approach for the development of
IoT applications for handling measurement data has been
published by Kirchoff et al. [23]. The MontiThings modeling
infrastructure enables the definition of IoT devices, the param-
eters and data they provide and how the data is processed. For
that, the authors apply model-driven software development and
generative software implementation. However, the approach
is more focused on the data flow between distributed data
processing entities. Suitability for long-term storage and data
management following FAIR principles is not considered.

No approach can provide a solution, which completely
fulfills the FAIR guiding principles and the defined prereq-
uisites, Thus, we stress the research gap of having a FAIR
contextualization model for measurement data, which

(i) facilitates long-term storage with persistent data identifi-
cation,

(ii) considers flexible filtering and retrieving of stored data,
(iii) and can deal with frequently changing measurement

setups and configurations.

IV. FAIR SENSOR ECOSYSTEM

To overcome the identified research gap, the authors propose
the FAIR Sensor Ecosystem that consumes measurement data
and stores it in a database having a schema reflecting the
prerequisites mentioned in Section II-C. Thereby, the data
structure is fully aligned with the FAIR guiding principles.
For that, the individual components are tailored to meet the
FAIR guiding principles and the defined prerequisites.

TABLE II
OVERVIEW OF THE INDIVIDUAL SOFTWARE COMPONENTS OF THE

PROPOSED FAIR Sensor Ecosystem AND THE REQUIREMENTS MET BY
EACH OF THE COMPONENTS.

Component FAIR Principles Prerequisites

Schema validation I1 P3
User API A1, I1, R1 P4, P5
Persistent database F4
Protocol and data format A1.1, I2
Ingestion Service

Persistent identifiers F1, F3 P1
Structured metadata model F1, R1 P2
Strong data typing I1 P3
Data versioning A2 P4
Metadata linking F3, I1, I3, R1 P5
Mandatory license R1.1

Filtering technique F4 P6
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Fig. 2. Architecture of the FAIR Sensor Ecosystem for processing and storing measurement data according to an object model defined by users via an API.

The next subsection describes the system architecture of
the FAIR Sensor Ecosystem (c.f. Figure 2), its software com-
ponents and the flow of measurement data from ingestion
to storage (or rejection). An overview of which software
component addresses which principle and prerequisite, is given
in Table II. After that, the contextualization model is presented,
which is used to structure and validate ingested measurement
data. The section closes with an explanation of how stored
data can be filtered and retrieved via a RESTful API.

A. Architecture of the Ecosystem
According to P3, ingested data must be validated against

defined schemata. Storage in the persistent database includes
updates of links and references between related resources.
For the creation and maintenance of the relationships between
modeled objects, data and metadata schemata, the ecosystem
must provide endpoints for that via an API.

As shown in Fig. 2 the architecture consists of four software
components. The API provides endpoints for creating virtual
objects, which represent real-life objects such as machines,
sensors or assets, relations between them and meta-information
about the objects according to the contextualization model
presented in Section IV-B. The relations and meta information
can further be updated via API according to P4 and P5.
Furthermore, schemata for data and metadata can be defined
as required by P3, which are used to validate incoming data
and metadata via the Schema Validation Service. To fulfill P4,
the API does not offer an endpoint to delete data.

Measurement data sent from external devices and services
via a publish/subscribe protocol is handled by the Ingestion
Service. According to the stored object model, specified topics
are subscribed by the Ingestion Service, which thereby receives
corresponding data. The data is checked for the validity of its
type against defined types via the Schema Validation Service
and rejected if the type is invalid. Otherwise, the data is stored
in the Database (following F4) and linked to the currently
valid meta information of the objects, which produced the data.

Non-functional, but essential features of the system regard-
ing the FAIR principle is the usage of standardized, open
communication protocols and data formats, as required by
principle A1.1. In addition, the meta-information must use
publicly defined terms following principle I2.

B. Contextualization Model

Contextualization requires preserving the relations between
the measurement data and objects of the physical world. Thus,
the corresponding data points need to be linked. Besides
temporal aspects, these relations are generally hard to qualify.
The kind of relation and thus requirements and aspects of
the relations differ between different scenarios and use cases.
Thus, in this work, the relations between objects have been
simplified to a generic composition scheme, where each rela-
tion is associated with an interval of temporal validity, as can
be seen in Figure 3. Each object is modeled as a component,
which can have arbitrarily many subcomponents, but only one
parent component. The resulting hierarchical tree-like structure
might not fully express the usually complex connections of
objects in production but gives a basic structure that allows to
flexibly relate measurement data to superordinate objects. The
assumption that the relationships between the objects change
frequently over time is reflected in the model by storing a
validity interval for all relations defined by timestamps of the
beginning and the end for each relation.

Although the configuration or parametrization of a single
device, i.e., component, might change frequently, it must be
ensured, that the node in the model graph representing the
component does not change to preserve correct linking. Thus,
in the model, the metadata on parametrization is decoupled
from the component itself. For that, a dedicated entity is
introduced, which is linked to the component it describes and
to its preceding and following versions of the metadata, by
using the PROV ontology [24] fulfilling P4. The structure
of the metadata itself is not further restricted except for
being representable as JSON object. Thus, users can store
theoretically arbitrary (semi) structured data conforming to P2

Ingested measurement data is always (indirectly) linked to
at least two components, which fulfills principle I3. First, mea-
surement data is linked to the component information of the
measuring device. Thus, the metadata includes a reference to
the data they describe, so that principle F3 is satisfied. Second,
measurement data is linked to the component representing
the object of interest of the measurement, i.e., the object of
which a property is measured. Both together fulfill P5. Taking
into account that the object of interest is not necessarily the
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Fig. 3. The contextualization model linking objects, their metadata and measurement data. All the data and metadata are always associated with a
TypeDefinition to ensure P3. Measurements, as the central element, are linked to the system they have been measured with, to the component of
interest, and to the configuration and setup of both at the time of measuring. For increased findability all relations are bidirectional.

parent component of the measuring device, measurements are
explicitly linked via a dedicated relation to the component of
interest.

All data points are identified by using an identifier according
to UUID4 to ensure uniqueness. Because the identifier will
never change, P1 is fulfilled. Lastly, to fulfill P3 all component
information and all measurements must conform to a specific
type definition, to which the data is linked. In general, all
relations are bidirectional for easy browsability and discover-
ability. By adding a mandatory license field to each entity of
the model principle R1.1 is achieved.

C. Filtering the Stored Data

According to P6 it must be possible to search and filter
the database by any field in the data model and the stored
metadata. This allows users to retrieve the data by setting
the context in which the data was created. This context can
primarily be described by specifying an interval in the past
during which the data was produced, the types of the data
itself and the related metadata and values of attributes of
related objects. So, the following filtering techniques capable
of utilizing a multitude of filter arguments are introduced:

Date Filtering To retrieve data and metadata of a certain
interval, two arguments can be supplied. If the argument
from is used, only data which is younger than the spec-
ified date is returned. If the argument to is given, only
data which is older than the specified date is returned.

Associated Type Filtering This technique allows filtering
data by a given metadata or value type. Furthermore, it
allows retrieving all measurement values, which are asso-
ciated with specific component information or produced
by a specific component.

Custom Filter Expressions The ecosystem has to support
filtering by any arbitrary attribute or field of the model
and of the stored metadata. Thus, it must enable users to
write custom filtering expressions, which address the a
priori unknown properties of the metadata stored. Other-
wise, these fields are neither filterable nor searchable.

Based on the concepts of architecture, model and search
routines, a prototypical ecosystem and middleware have been
implemented at the author’s institutes, which will be explained
in the next section.

V. IMPLEMENTATION AND VALIDATION

The architecture, model and filtering techniques have been
prototypically implemented to demonstrate and validate the
approach. The resulting software artifacts have been deployed
in a real-world test bed and tested with field data from
machines and sensors. Details of the specific implementation
and validation are described in the following.

A. Implementation

The authors’ implementation is completely based on open-
source technologies and libraries. The system is implemented
in TypeScript, which is translated into JavaScript so that
NodeJS libraries can be used without restrictions. The API
is realized via a REST API using the HTTP protocol, enriched
by the HTTP Memento protocol [25] to provide the time-
based filtering technique. Measurement data is exchanged in
JSON format and sent via the MQTT protocol. JSON is
fully compatible with JSON-LD used to define and describe
the context of the data and the type schemata. To achieve
scalability, the ingestion service has been split into three
subcomponents: ingress, buffering and ingestion. By that,
incoming measurement data can be validated, even if the



amount of data is very high. For that RabittMQ [26] has been
used, as the quality of service feature of RabbitMQ ensures,
that no data buffered is lost. This way, potential bottlenecks
in the validation of incoming data and writing accepted data
to the database can be mitigated.

The influence of the latter should have been further
reduced by using PostgreSQL with the TimescaleDB ex-
tension which splits the table into smaller chunks, so-
called hypertables. This strongly increases the insertion
rate on tables with huge amounts of data. However,
hypertables do not support foreign keys [27], which
conflicts with the contextualization models that require
a foreign key from Measurement to Component,
ComponentInformation and TypeDefinition. Thus,
the TimeScaleDB extension has not been used in the final
version of the prototype, which theoretically reduces the
insertion rate of the database if the table contains large
amounts of data [28]. The data model is implemented using
TypeORM [29], which integrates well with the other tools used
and reduces implementation and maintenance effort due to its
easy-to-use API. To deal with multiple unrelated object trees
in the database, a hidden root node is introduced, which can
not be queried but serves as the parent node for all objects
which do not have a parent.

All data in the database is stored in JSONB. Thus SQL
operators and functions, both defined in ISO/IEC 19075-
6:2021 [30], are utilized to implement the Associated Type
Filtering and Custom Filter Expressions.

B. Validation and Evaluation

While the fulfillment of the six prerequisites, defined in
Section II-C, has already been discussed in Section IV (c.f.
Table II), the validation and evaluation of the system have
been conducted in three ways:

1) An exemplary technical validation of the implemented
system has been conducted by modeling the varying real-
world test-bed shown in Figure 1. Based on that data of
that test bed has been collected and stored and queried
later.

2) A performance evaluation of the implemented system
regarding its ingestion capabilities and scalability.

3) Theoretic FAIRness assessment of the developed archi-
tecture and the contextualization model employing state-
of-the-art FAIR evaluation frameworks.

1) Technical Validation: For technical validation, the im-
plemented prototype has been integrated into the IoT infras-
tructure. The measurements produced by measuring devices
are represented and distributed according to the SOIL data
model [31]. For ingestion in the developed FAIR Sensor
Ecosystem the definitions of measurements according to the
SOIL model are mapped to TypeDefinitions of the FAIR
Sensor Ecosystem. The test setup consisted of a laser tracker
producing high-frequency position data and different targets
measured and attached to different machines or parts. By that,
the setup and configuration were modified between different
measurement runs. Additionally, environmental data collected

by multiple different sensors have been included in the test.
To approve the system design and implementation concerning
the requirements defined in Section II-C four steps have been
taken: (i) ingestion of valid real data, (ii) ingestion of real
data modified to be invalid, (iii) retrieval of data using the
custom filter functions, (iv) reconstruction of the setup and
configuration at a given point in time. The technical validation
was carried out successfully and showed that the concept and
the implementation worked as desired. The high-frequency
data could be ingested without loss of data, and invalid data
was rejected without exceptions. Moreover, all different setups
and configurations could be fully reconstructed.

2) Performance Analysis: For the performance evaluation,
the implementation has been deployed to a dedicated computer
(Windows 10, Version 21H2, OS build 19044.1706, AMD
FX-8350 8 Core CPU, 32 GB DDR3 RAM, Samsung MZ-
7TE120BW SSD connected via SATA). To ensure that the
evaluation of the performance of the implementation does
not interfere with the rest of the required tools, RabbitMQ,
MQTT, PostgreSQL and the performance evaluation script
have been set up on another computer (MacBook Pro 2021,
M1 Max, 32 GB RAM, macOS Monterey 12.4). Real-life data
has been mimicked using ESP32 microcontrollers, generating
a constant data stream of at least 3200 measurements each
second, which is comparable to the expected amount of data
in a real-life production environment [32]. First, the ingress
capability of the system has been investigated. The ingress
service was able to handle even more than 7k measurements
per second and the performance cap was still not reached.
Second, the performance of the ingestion service including
the schema validation was tested. To determine the overhead
of schema validation the tests have been executed with and
without schema validation. The result of the performance of
the ingestion service is shown in Figure 4 and demonstrates the
scalability of the system using parallelized ingestion workers.
Nevertheless, the type validation and processing of metadata
are a significant overhead compared to processing and storing
the values only.

While these two validations only proved the technical
applicability of the system and validated the specific imple-
mentation, the authors also assessed the FAIRness of the data
model and data stored according to the model using multiple
state-of-the-art FAIRness assessment tools and frameworks.

3) FAIRness Assessment: As there does not exist a standard
approach for the evaluation of the FAIRness of data, we use
three different approaches for assessing the FAIRness of the
data stored in the FAIR Sensor Ecosystem according to the
contextualization model and compare their scores. Namely,
the FAIR Metrics proposed by Wilkinson et al. [33], the RDA
FAIR Data Maturity Model [34] and the Data Stewardship
Wizard [35].

The FAIR Metrics framework allows for manual and auto-
matic evaluation, which both have been applied. All metrics
are evaluated on a binary scale. The automatic evaluation has
been done with the tool from Wilkinson et al. The automatic
evaluation yields a score of 12 out of 22, where deductions



are mainly due to the custom unrecognized data model, a
non-fitting identification scheme and missing specific attributes
(such as title). The manual assessment reveals a score of 12
out of 14, caused by the custom data model and missing links
to externally stored data. Similar results have been obtained
using the RDA FAIR Data Maturity Model and the Data
Stewardship Wizard. The assessment based on the latter can
be viewed at [36]. Low scores in interoperability are mainly
caused by the custom contextualization model, although all
the attributes’ keys are taken from available ontologies.

To evaluate the overall FAIRness, the individual results of
all considered frameworks have been mapped to a percentage
scale to be comparable. The outcome is shown in Table III.
The score of zero for reusability for the Maturity Model results
from the indicators which assess the use of a community
standard. The indicators are stated as essential, but the criteria
can not be fulfilled when no standard exists.Except for the
Maturity Model, which defines a formula for weighting the
indicators, the rating for each category is computed as the
mean of the individual metrics. The overall rating was also
calculated as the mean value of the four categories. The high
discrepancy between the evaluation of two different frame-
works for one category mainly results from differences in the
defined metrics and different weighting of these. Moreover, the
number of metrics differs significantly between categories and
frameworks. Summing up, the overall FAIRness of the stored
data can be considered high, especially for findability and
accessibility. The interoperability of the system and the data
could be improved by using terms of established ontologies
for the elements and relations of the contextualization model.

The satisfactory result of the FAIRness analysis shows, that
the adaption of the FAIR guiding principles in terms of the
prerequisites defined in Section II-C has been successful. This
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Fig. 4. Evaluation results of the performance analysis of the ingestion service.
The plot shows the averages of how many sensor values could be stored
per second, where the bars represent a 95% confidence interval. Tests have
been carried out with a different number of ingestion workers and with and
without additional metadata and type validation. The performance tests reveal
a significant overhead introduced by the validation of (meta-) data but also
prove the scalability of the system.

TABLE III
CONSOLIDATED ASSESSMENT OF THE FAIRNESS OF DATA STORED IN THE

PROPOSED FAIR Sensor Ecosystem GIVEN IN PERCENT. WHEREAS THE
OVERALL FAIRNESS RATINGS DIFFER SIGNIFICANTLY FROM FRAMEWORK

TO FRAMEWORK, THE AVERAGE RATINGS FOR THE FOUR BASE
PRINCIPLES ARE COMPARABLE.

Framework F A I R Average

FAIR Metrics (manual) [33] 100 100 60 100 90
FAIR Metrics (automatic) [33] 25 20 71 100 54
Maturity Model [34] 100 100 20 0 55
Stewardship Wizard [35] 80 83 90 84 84

Average 76 76 60 71 71

is further underlined, by the evaluation of the design and
implementation of the FAIR Sensor Ecosystem demonstrating
the capabilities and applicability of the ecosystem, which is
built upon these prerequisites. It has been shown, that the
ecosystem covers all defined prerequisites and can process and
store large amounts of FAIR sensor data.

VI. CONCLUSION AND OUTLOOK

Adoption of the FAIR guiding principle is vital to establish
data management for the manufacturing industry which fully
enables data-driven applications. Although contextualization
is crucial to make sense of data and reuse it properly, previ-
ously published work does not address the contextualization
of sensor data sufficiently. Thus, the authors focus on this
research gap, by introducing the FAIR Sensor Ecosystem: a
middleware and storage application adhering to the FAIR
principles, which validates measurement data, links the data
with relevant meta information and stores it in the database
persistently. The system can store arbitrary but structured data.
To ensure interoperability all data stored must conform to
user-defined data schemas. Via a REST API, it is possible to
query and reconstruct the context of measured data, even if the
setup and configuration have been changed since the time of
data acquisition. The approach has been successfully validated
by the implementation of a prototype system. Moreover, the
FAIRness of data stored in the system has been evaluated
employing state-of-the-art FAIRness assessment frameworks,
and a positive FAIRness rating was obtained.

The presented work focused on relating measurements and
objects within a closed system so that all data is stored in
a single database. In the future, the authors plan to extend
the system so that a link to external data sources is possible.
The interoperability could be improved by extending the data
model so that ontologies, like SSN, can be incorporated, which
requires a more fine-grain representation of objects and the
possibility to qualify relations more freely. This flexibility
in the definition of the data model allows for representing
the real-world scenario even more precisely. Furthermore, the
actual FAIRness of the stored data still depends heavily on
the users’ diligence in defining and maintaining the object
model. This could be improved by including automated tests
that assess the FAIRness of the stored data and report the
FAIRness score to the user.



Concluding, the presented work shows, that the conceptual
adoption and technical realization of the FAIR guiding prin-
ciples for the domains of production and manufacturing can
advance the utility and long-term (re-)usability of sensor data.
By using the presented FAIR Sensor Ecosystem for persistent
storage of measurement data and its context information, long-
term utilization of measurement data could be facilitated.
Nevertheless, the FAIRness assessment reveals that state-of-
the-art FAIRness assessment frameworks are mainly tailored to
scientific data. To fully leverage stakeholders to make optimal
reuse of stored measurement data, the data must further
be compliant with community-specific standards, which are
currently not sufficiently defined for the domains of production
and manufacturing. Thus, as an orthogonal research direction,
the establishment of these community-specific standards is
fundamental for obtaining FAIR production data.
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