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Abstract

Computing in the Network (COIN) comes with the prospect of deploying

processing functionality on networking devices, such as switches and

network interface cards. While such functionality can be beneficial

in several contexts, it has to be carefully placed into the context

of the general Internet communication.

This document discusses some use cases to demonstrate how real

applications can benefit from COIN and to showcase essential

requirements that have to be fulfilled by COIN applications.
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1. Introduction 

The Internet was designed as a best-effort packet network that

offers limited guarantees regarding the timely and successful

transmission of packets. Data manipulation, computation, and more

complex protocol functionality is generally provided by the end-

hosts while network nodes are kept simple and only offer a "store

and forward" packet facility. This design choice has shown suitable

for a wide variety of applications and has helped in the rapid

growth of the Internet.¶



However, with the expansion of the Internet, there are more and more

fields that require more than best-effort forwarding including

strict performance guarantees or closed-loop integration to manage

data flows. In this context, allowing for a tighter integration of

computing and networking resources, enabling a more flexible

distribution of computation tasks across the network, e.g., beyond

'just' endpoints, may help to achieve the desired guarantees and

behaviors as well as increase overall performance. The vision of

'in-network computing' and the provisioning of such capabilities

that capitalize on joint computation and communication resource

usage throughout the network is core to the efforts in the COIN RG;

we refer to those capabilities as 'COIN capabilities' in the

remainder of the document.

We believe that such vision of 'in-network computing' can be best

outlined along four dimensions of use cases, namely those that (i)

provide new user experiences through the utilization of COIN

capabilities (referred to as 'COIN experiences'), (ii) enable new

COIN systems, e.g., through new interactions between communication

and compute providers, (iii) improve on already existing COIN

capabilities and (iv) enable new COIN capabilities. Sections 3

through 6 capture those categories of use cases and provide the main

structure of this document. The goal is to present how the presence

of computing resources inside the network impacts existing services

and applications or allows for innovation in emerging fields.

Through delving into some individual examples within each of the

above categories, we aim to outline opportunities and propose

possible research questions for consideration by the wider community

when pushing forward the 'in-network computing' vision. Furthermore,

insights into possible requirements for an evolving solution space

of collected COIN capabilities is another objective of the

individual use case descriptions. This results in the following

taxonomy used to describe each of the use cases:

Description: Purpose of the use case and explanation of the use

case behavior 

Characterization: Explanation of the services that are being

utilized and realized as well as the semantics of interactions

in the use case. 

Existing solutions: Describe, if existing, current methods that

may realize the use case. 

Opportunities: Outline how COIN capabilities may support or

improve on the use case in terms of performance and other

metrics. 

Research questions: State essential questions that are suitable

for guiding research to achieve the outlined opportunities 

Requirements: Describe the requirements for any solutions for

COIN capabilities that may need development along the

opportunities outlined in item 4; here, we limit requirements

to those COIN capabilities, recognizing that any use case will

realistically hold many additional requirements for its

realization. 
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In Section 7, we will summarize the key research questions across

all use cases and identify key requirements across all use cases.

This will provide a useful input into future roadmapping on what

COIN capabilities may emerge and how solutions of such capabilities

may look like. It will also identify what open questions remain for

these use cases to materialize as well as define requirements to

steer future (COIN) research work.

2. Terminology 

The following terminology has been partly aligned with [I-D.draft-

kutscher-coinrg-dir]:

(COIN) Program: a set of computations requested by a user

(COIN) Program Instance: one currently executing instance of a

program

(COIN) Function: a specific computation that can be invoked as part

of a program

COIN Capability: a feature enabled through the joint processing of

computation and communication resources in the network

COIN Experience: a new user experience brought about through the

utilization of COIN capabilities

Programmable Network Devices (PNDs): network devices, such as

network interface cards and switches, which are programmable, e.g.,

using P4 or other languages.

(COIN) Execution Environment: a class of target environments for

function execution, for example, a JVM-based execution environment

that can run functions represented in JVM byte code

COIN System: the PNDs (and end systems) and their execution

environments, together with the communication resources

interconnecting them, operated by a single provider or through

interactions between multiple providers that jointly offer COIN

capabilities

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

3. Providing New COIN Experiences 

3.1. Mobile Application Offloading 

3.1.1. Description 

The scenario can be exemplified in an immersive gaming application,

where a single user plays a game using a VR headset. The headset

hosts functions that "display" frames to the user, as well as the

functions for VR content processing and frame rendering combining

with input data received from sensors in the VR headset.
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Once this application is partitioned into constituent (COIN)

programs and deployed throughout a COIN system, utilizing the COIN

execution environment, only the "display" (COIN) programs may be

left in the headset, while the compute intensive real-time VR

content processing (COIN) programs can be offloaded to a nearby

resource rich home PC or a PND in the operator's access network, for

a better execution (faster and possibly higher resolution

generation).

3.1.2. Characterization 

Partitioning a mobile application into several constituent (COIN)

programs allows for denoting the application as a collection of

(COIN) functions for a flexible composition and a distributed

execution. In our example above, most functions of a mobile

application can be categorized into any of three, "receiving",

"processing" and "displaying" function groups.

Any device may realize one or more of the (COIN) programs of a

mobile application and expose them to the (COIN) system and its

constituent (COIN) execution environments. When the (COIN) program

sequence is executed on a single device, the outcome is what you see

today as applications running on mobile devices.

However, the execution of (COIN) functions may be moved to other

(e.g., more suitable) devices, including PNDs, which have exposed

the corresponding (COIN) programs as individual (COIN) program

instances to the (COIN) system by means of a 'service identifier'.

The result of the latter is the equivalent to 'mobile function

offloading', for possible reduction of power consumption (e.g.,

offloading CPU intensive process functions to a remote server) or

for improved end user experience (e.g., moving display functions to

a nearby smart TV) by selecting more suitable placed (COIN) program

instances in the overall (COIN) system.

Figure 1 shows one realization of the above scenario, where a 'DPR

app' is running on a mobile device (containing the partitioned

Display(D), Process(P) and Receive(R) COIN programs) over an SDN

network. The packaged applications are made available through a

localized 'playstore server'. The mobile application installation is

realized as a 'service deployment' process, combining the local app

installation with a distributed (COIN) program deployment (and

orchestration) on most suitable end systems or PNDs ('processing

server').
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Figure 1: Application Function Offloading Example. 

Such localized deployment could, for instance, be provided by a

visiting site, such as a hotel or a theme park. Once the

'processing' (COIN) program is terminated on the mobile device, the

'service routing' (SR) elements in the network route (service)

requests instead to the (previously deployed) 'processing' (COIN)

program running on the processing server over an existing SDN

network. Here, capabilities and other constraints for selecting the

appropriate (COIN) program, in case of having deployed more than

one, may be provided both in the advertisement of the (COIN) program

and the service request itself.

As an extension to the above scenarios, we can also envision that

content from one processing (COIN) program may be distributed to

more than one display (COIN) program, e.g., for multi/many-viewing

scenarios, thereby realizing a service-level multicast capability

towards more than one (COIN) program.

3.1.3. Existing Solutions 

NOTE: material on solutions like ETSI MEC will be added here later

3.1.4. Opportunities 

The packaging of (COIN) programs into existing mobile application

packaging may enable the migration from current (mobile) device-

centric execution of those mobile application towards a possible

distributed execution of the constituent (COIN) programs that are

part of the overall mobile application. 

                              +----------+ Processing Server

            Mobile            | +------+ |

        +---------+          | |  P   | |

        |   App   |          | +------+ |

        | +-----+ |          | +------+ |

        | |D|P|R| |          | |  SR  | |

        | +-----+ |          | +------+ |         Internet

        | +-----+ |          +----------+            /

        | |  SR | |              |                  /

        | +-----+ |            +----------+     +------+

        +---------+           /|SDN Switch|_____|Border|

                  +-------+ / +----------+     |  SR  |

                  | 5GAN  |/       |           +------+

                    +-------+        |

      +---------+                   |

      |+-------+|               +----------+

      ||Display||              /|SDN Switch|

      |+-------+|   +-------+ / +----------+

      |+-------+|  /|WIFI AP|/

      ||   D   || / +-------+     +--+

      |+-------+|/                |SR|

      |+-------+|                /+--+

      ||  SR   ||            +---------+

      |+-------+|            |Playstore|

      +---------+            | Server  |

            TV                +---------+
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The orchestration for deploying (COIN) program instances in

specific end systems and PNDs alike may open up the possibility

for localized infrastructure owners, such as hotels or venue

owners, to offer their compute capabilities to their visitors for

improved or even site-specific experiences. 

The execution of (current mobile) app-level (COIN) programs may

speed up the execution of said (COIN) program by relocating the

execution to more suitable devices, including PNDs. 

The support for service-level routing of requests (service

routing in [APPCENTRES] may support higher flexibility when

switching from one (COIN) program instance to another, e.g., due

to changing constraints for selecting the new (COIN) program

instance. 

The ability to identifying service-level in-network computing

elements will allow for routing service requests to those COIN

elements, including PNDs, therefore possibly allowing for new in-

network functionality to be included in the mobile application. 

The support for constraint-based selection of a specific (COIN)

program instance over others (constraint-based routing in 

[APPCENTRES]) may allow for a more flexible and app-specific

selection of (COIN) program instances, thereby allowing for

better meeting the app-specific and end user requirements. 

3.1.5. Research Questions 

RQ 3.1.1: How to combine service-level orchestration frameworks

with app-level packaging methods? 

RQ 3.1.2: How to reduce latencies involved in (COIN) program

interactions where (COIN) program instance locations may change

quickly? 

RQ 3.1.3: How to signal constraints used for routing requests

towards (COIN) program instances in a scalable manner? 

RQ 3.1.4: How to identify (COIN) programs and program instances? 

RQ 3.1.5: How to identify specific choice of (COIN) program

instances over others? 

RQ 3.1.6: How to provide affinity of service requests towards

(COIN) program instances, i.e., longer-term transactions with

ephemeral state established at a specific (COIN) program

instance? 

RQ 3.1.7: How to provide constraint-based routing decisions at

packet forwarding speed? 

RQ 3.1.8: What in-network capabilities may support the execution

of (COIN) programs and their instances? 
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3.1.6. Requirements 

Req 3.1.1: Any COIN system MUST provide means for routing of

service requests between resources in the distributed

environment. 

Req 3.1.2: Any COIN system MUST provide means for identifying

services exposed by (COIN) programs for directing service

requests 

(Req 3.1.3: Any COIN system MUST provide means for identifying

(COIN) program instances for directing (affinity) requests to a

specific (COIN) program instance 

Req 3.1.4: Any COIN system MUST provide means for dynamically

choosing the best possible service sequence of one or more (COIN)

programs for a given application experience, i.e., support for

chaining (COIN) program executions. 

Req 3.1.5: Means for discovering suitable (COIN) programs SHOULD

be provided. 

Req 3.1.6: Any COIN system MUST provide means for pinning the

execution of a service of a specific (COIN) program to a specific

resource, i.e., (COIN) program instance in the distributed

environment. 

Req 3.1.7: Any COIN system SHOULD provide means for packaging

micro-services for deployments in distributed networked computing

environments. 

Req 3.1.8: The packaging MAY include any constraints regarding

the deployment of (COIN) program instances in specific network

locations or compute resources, including PNDs. 

Req 3.1.9: Such packaging SHOULD conform to existing application

deployment models, such as mobile application packaging, TOSCA

orchestration templates or tar balls or combinations thereof. 

Req 3.1.10: Any COIN system MUST provide means for real-time

synchronization and consistency of distributed application

states. 

3.2. Extended Reality and Immersive Media 

3.2.1. Description 

Virtual Reality (VR), Augmented Reality (AR) and immersive media

(the metaverse) taken together as Extended Reality (XR) are the

drivers of a number of advances in interactive technologies. XR is

one example of the Multisource-Multidestination Problem that

combines video, haptics, and tactile experiences in interactive or

networked multi-party and social interactions. While initially

associated with gaming and entertainment, XR applications now

include remote diagnosis, maintenance, telemedicine, manufacturing

and assembly, autonomous systems, smart cities, and immersive

classrooms.
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Because XR requirements include the need to provide real-time

interactivity for immersive and increasingly mobile immersive

applications with tactile and time-sensitive data and high bandwidth

for high resolution images and local rendering for 3D images and

holograms, they are difficult to run over traditional networks; in

consequence innovation is needed to deply the full potential of the

applications.

3.2.2. Characterization 

Collaborative XR experiences are difficult to deliver with a client-

server cloud-based solution as they require a combination of: stream

synchronization, low delays and delay variations, means to recover

from losses and optimized caching and rendering as close as possible

to the user at the network edge. XR deals with personal information

and potentially protected content this an XR application must also

provide a secure environment and ensure user privacy. Additionally,

the sheer amount of data needed for and generated by the XR

applications can use recent trend analysis and mechanisms, including

machine learning to find these trends and reduce the size of the

data sets. Video holography and haptics require very low delay or

generate large amounts of data, both requiring a careful look at

data filtering and reduction, functional distribution and

partitioning.

The operation of XR over networks requires some computing in the

nodes from content source to destination. But a lot of these remain

in the realm of research to resolve the resource allocation problem

and provide adequate quality of experience. These include multi-

variate and heterogeneous goal optimization problems at merging

nodes requiring advanced analysis. Image rendering and video

processing in XR leverages different HW capabilities combinations of

CPU and GPU at the edge (even at the mobile edge) and in the fog

network where the content is consumed. It is important to note that

the use of in-network computing for XR does not imply a specific

protocol but targets an architecture enabling the deployment of the

services.

3.2.3. Existing Solutions 

In-network computing for XR profits from the heritage of extensive

research in the past years on Information Centric Networking,

Machine Learning, network telemetry, imaging and IoT as well as

distributed security and in-network coding.

Enabling Scalable Edge Video Analytics with Computing-In-Network

(Jun Chen Jiang of the University of Chicago): this work brings a

periodical re-profiling to adapt the video pipeline to the

dynamic video content that is a characteristic of XR. The

implication is that we "need tight network-app coupling" for real

time video analytics. 

VR journalism, interactive VR movies and meetings in cyberspace

(many projects PBS, MIT interactive documentary lab, Huawei

research - references to be provided): typical VR is not made for

multiparty and these applications require a tight coupling of the

local and remote rendering and data capture and combinations of
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cloud (for more static information) and edge (for dynamic

content). 

Local rendering of holographic content using near field

computation (heritage from advances cockpit interactions -

looking for non military papers): a lot has been said recently of

the large amounts of data necessary to transmit and use

holographic imagery in communications. Transmitting the near

field information and rendering the image locally allows to

reduce the data rates by 1 or 2. 

ICE-AR [ICE] project at UCLA (Jeff Burke): while this project is

a showcase of the NDN network artchitecture it also uses a lof of

edge-cloud capabilities for example for inter-server games and

advanced video applications. 

3.2.4. Opportunities 

Reduced latency: the physical distance between the content cloud

and the users must be short enough to limit the propagation delay

to the 20 ms usually cited for XR applications; the use of local

CPU and IoT devices for range of interest (RoI) detection and

fynamic rendering may enable this. 

Video transmission: better transcoding and use of advanced

context-based compression algorithms, pre-fetching and pre-

caching and movement prediction not only in the cloud. 

Monitoring: telemetry is a major research topic for COIN and it

enables to monitor and distribute the XR services. 

Network access: push some networking functions in the kernel

space into the user space to enable the deployment of stream

specific algorithms for congestion control and application-based

load balancing based on machine learning and user data patterns. 

Functional decomposition: functional decomposition, localization

and discovery of computing and storage resources in the network.

But it is not only finding the best resources but qualifying

those resources in terms of reliability especially for mission

critical services in XR (medicine for example). This could

include intelligence services. 

3.2.5. Research Questions 

RQ 3.2.1: Can current programmable network entities be sufficient

to provide the speed required to provide and execute complex

filtering operations that includes metadata analysis for complex

and dynamic scene rendering? 

RQ 3.2.2: How can the interoperability of CPU/GPU be optimized to

combine low level packet filtering with the higher layer

processors needed for image processing and haptics? 

RQ 3.2.3: Can the use of joint learning algorithms across both

data center and edge computers be used to create optimal

functionality allocation and the creation of semi-permanent
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datasets and analytics for usage trending resulting in better

localization of XR functions? 

RQ 3.2.4: Can COIN improve the dynamic distribution of control,

forwarding and storage resources and related usage models in XR? 

3.2.6. Requirements 

Req 3.2.1: Allow joint collaboration. 

Req 3.2.2: Provide multi-views. 

Req 3.2.3: Include extra streams dynamically for data intensive

services, manufacturing and industrial processes. 

Req 3.2.4: Enable multistream, multidevice, multidestination

applications. 

Req 3.2.5: Use new Internet Architectures at the edge for

improved performance and performance management. 

Req 3.2.6: Integrate with holography, 3D displays and image

rendering processors. 

Req 3.2.7: All the use of multicast distribution and processing

as well as peer to peer distribution in bandwidth and capacity

constrained environments. 

Req 3.2.8: Evaluate the integration local and fog caching with

cloud-based pre-rendering. 

Req 3.2.9: Evaluate ML-based congestion control to manage XR

sessions quality of service and to determine how to priortize

data. 

Req 3.2.10: Consider higher layer protocols optimization to

reduce latency especially in data intensive applications at the

edge. 

Req 3.2.11: Provide trust, including blockchains and smart-

contracts to enable secure community building across domains. 

Req 3.2.12: Support nomadicity and mobility (link to mobile

edge). 

Req 3.2.13: Use 5G slicing to create independent session-driven

processing/rendering. 

Req 3.2.14: Provide performance optimization by data reduction,

tunneling, session virtualization and loss protection. 

Req 3.2.15: Use AI/ML for trend analysis and data reduction when

appropriate. 
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3.3. Personalised and interactive performing arts 

3.3.1. Description 

This use case covers live productions of the performing arts where

the performers and audience are in different physical locations. The

performance is conveyed to the audience through multiple networked

streams which may be tailored to the requirements of individual

audience members; and the performers receive live feedback from the

audience.

There are two main aspects: i) to emulate as closely as possible the

experience of live performances where the performers and audience

are co-located in the same physical space, such as a theatre; and

ii) to enhance traditional physical performances with features such

as personalisation of the experience according to the preferences or

needs of the audience members.

Examples of personalisation include:

Viewpoint selection such as choosing a specific seat in the

theatre or for more advanced positioning of the audience member's

viewpoint outside of the traditional seating - amongst, above or

behind the performers (but within some limits which may be

imposed by the performers or the director for artistic reasons); 

Augmentation of the performance with subtitles, audio-

description, actor-tagging, language translation, advertisements/

product-placement, other enhancements/filters to make the

performance accessible to disabled audience members (removal of

flashing images for epileptics, alternative colour schemes for

colour-blind audience members, etc.). 

3.3.2. Characterization 

There are several chained functional entities which are candidates

for being deployed as (COIN) Programs.

Performer aggregation and editing functions 

Distribution and encoding functions 

Personalisation functions

to select which of the existing streams should be forwarded to

the audience member 

to augment streams with additional metadata such as subtitles 

to create new streams after processing existing ones: to

interpolate between camera angles to create a new viewpoint or

to render point clouds from the audience member's chosen

perspective 

to undertake remote rendering according to viewer position,

e.g. creation of VR headset display streams according to

audience head position - when this processing has been

offloaded from the viewer's end-system to the in-network
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function due to limited processing power in the end-system, or

to limited network bandwidth to receive all of the individual

streams to be processed. 

Audience feedback sensor processing functions 

Audience feedback aggregation functions 

These are candidates for deployment as (COIN) Programs in PNDs

rather than being located in end-systems (at the performers' site,

the audience members' premises or in a central cloud location) for

several reasons:

Personalisation of the performance according to audience

preferences and requirements makes it unfeasible to be done in a

centralised manner at the performer premises: the computational

resources and network bandwidth would need to scale with the

number of audience members' personalised streams. 

Rendering of VR headset content to follow viewer head movements

has an upper bound on lag to maintain viewer QoE, which requires

the processing to be undertaken sufficiently close to the viewer

to avoid large network latencies. 

Viewer devices may not have the processing-power to undertake the

personalisation or the viewers' network may not have the capacity

to receive all of the constituent streams to undertake the

personalisation functions. 

There are strict latency requirements for live and interactive

aspects that require the deviation from the direct network path

from performers to audience to be minimised, which reduces the

opportunity to route streams via large-scale processing

capabilities at centralised data-centres. 

3.3.3. Existing solutions 

Note: Existing solutions for some aspects of this use case are

covered in the Mobile Application Offloading, Extended Reality, and

Content Delivery Networks use cases.

3.3.4. Opportunities 

Executing media processing and personalisation functions on-path

as (COIN) Programs in PNDs will avoid detour/stretch to central

servers which increases latency as well as the consumption of

bandwidth on more network resources (links and routers). For

example, in this use case the chain of (COIN) Programs and

propagation over the interconnecting network segments for

performance capture, aggregation, distribution, personalisation,

consumption, capture of audience response, feedback processing,

aggregation, rendering should be achieved within an upper bound

of latency (the tolerable amount is to be defined, but in the

order of 100s of ms to mimic performers perceiving audience

feedback, such as laugher or other emotional responses in a

theatre setting). 
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Processing of media streams allows (COIN) Programs, PNDs and the

wider (COIN) System/Environment to be contextual aware of flows

and their requirements which can be used for determining network

treatment of the flows, e.g. path selection, prioritisation,

multi-flow coordination, synchronisation & resilience. 

3.3.5. Research Questions: 

RQ 3.3.1: In which PNDs should (COIN) Programs for aggregation,

encoding and personalisation functions be located? Close to the

performers or close to the audience members? 

RQ 3.3.2: How far from the direct network path from performer to

audience should (COIN) programs be located, considering the

latency implications of path-stretch and the availability of

processing capacity at PNDs? How should tolerances be defined by

users? 

RQ 3.3.3: Should users decide which PNDs should be used for

executing (COIN) Programs for their flows or should they express

requirements and constraints that will direct decisions by the

orchestrator/manager of the COIN System? 

RQ 3.3.4: How to achieve network synchronisation across multiple

streams to allow for merging, audio-video interpolation and other

cross-stream processing functions that require time

synchronisation for the integrity of the output? How can this be

achieved considering that synchronisation may be required between

flows that are: i) on the same data pathway through a PND/router,

ii) arriving/leaving through different ingress/egress interfaces

of the same PND/router, iii) routed through disjoint paths

through different PNDs/routers? 

RQ 3.3.5: Where will COIN Programs will be executed? In the data-

plane of PNDs, in other on-router computational capabilities

within PNDs, or in adjacent computational nodes? 

RQ 3.3.6: Are computationally-intensive tasks - such as video

stitching or media recognition and annotation - considered as

suitable candidate (COIN) Programs or should they be implemented

in end-systems? 

RQ 3.3.7: If the execution of COIN Programs is offloaded to

computational nodes outside of PNDs, e.g. for processing by GPUs,

should this still be considered as in-network processing? Where

is the boundary between in-network processing capabilities and

explicit routing of flows to endsystems? 

3.3.6. Requirements 

Req 3.3.1: Users should be able to specify requirements on

network and processing metrics (such as latency and throughput

bounds) and the COIN System should be able to respect those

requirements and constraints when routing flows and selecting

PNDs for executing (COIN) Programs. 
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Req 3.3.2: A COIN System should be able to synchronise flow

treatment and processing across multiple related flows which may

be on disjoint paths. 

4. Supporting new COIN Systems 

While the best-effort nature of the Internet enables a wide variety

of applications, there are several domains whose requirements are

hard to satisfy over regular best-effort networks.

Consequently, there is a large number of specialized appliances and

protocols designed to provide the required strict performance

guarantees, e.g., regarding real-time capabilities.

Time-Sensitive-Networking [TSN] as an enhancement to the standard

Ethernet, e.g., tries to achieve these requirements on the link

layer by statically reserving shares of the bandwidth. However,

solutions on the link layer alone are not always sufficient.

The industrial domain, e.g., currently evolves towards increasingly

interconnected systems in turn increasing the complexity of the

underlying networks, making them more dynamic, and creating more

diverse sets of requirements. Concepts satisfying the dynamic

performance requirements of modern industrial applications thus

become harder to develop. In this context, COIN offers new

possibilities as it allows to flexibly distribute computation tasks

across the network and enables novel forms of interaction between

communication and computation providers.

This document illustrates the potential for new COIN systems using

the example of the industrial domain by characterizing and analyzing

specific scenarios to showcase potential requirements, as specifying

general requirements is difficult due to the domain's mentioned

diversity.

4.1. Industrial Network Scenario 

Common components of industrial networks can be divided into three

categories as illustrated in Figure 2. Following [I-D.mcbride-edge-

data-discovery-overview], EDGE DEVICES, such as sensors and

actuators, constitute the boundary between the physical and digital

world. They communicate the current state of the physical world to

the digital world by transmitting sensor data or let the digital

world interact with the physical world by executing actions after

receiving (simple) control information. The processing of the sensor

data and the creation of the control information is done on

COMPUTING DEVICES. They range from small-powered controllers close

to the EDGE DEVICES, to more powerful edge or remote clouds in

larger distances. The connection between the EDGE and COMPUTING

DEVICES is established by NETWORKING DEVICES. In the industrial

domain, they range from standard devices, e.g., typical Ethernet

switches, which can interconnect all Ethernet-capable hosts, to

proprietary equipment with proprietary protocols only supporting

hosts of specific vendors.
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Figure 2: Industrial networks show a high level of heterogeneity. 

4.2. In-Network Control / Time-sensitive applications 

4.2.1. Description 

The control of physical processes and components of a production

line is essential for the growing automation of production and

ideally allows for a consistent quality level. Traditionally, the

control has been exercised by control software running on

programmable logic controllers (PLCs) located directly next to the

controlled process or component. This approach is best-suited for

settings with a simple model that is focused on a single or few

controlled components.

Modern production lines and shop floors are characterized by an

increasing amount of involved devices and sensors, a growing level

of dependency between the different components, and more complex

control models. A centralized control is desirable to manage the

large amount of available information which often has to be pre-

processed or aggregated with other information before it can be

used. PLCs are not designed for this array of tasks and computations

could theoretically be moved to more powerful devices. These devices

are no longer close to the controlled objects and induce additional

latency. Moving compute functionality onto COIN execution

environments inside the network offers a new solution space to these

challenges.

4.2.2. Characterization 

A control process consists of two main components as illustrated in 

Figure 3: a system under control and a controller.

In feedback control, the current state of the system is monitored,

e.g., using sensors and the controller influences the system based

on the difference between the current and the reference state to

keep it close to this reference state.

 --------

 |Sensor| ------------|              ~~~~~~~~~~~~      ------------

 --------       -------------        { Internet } --- |Remote Cloud|

    .           |Access Point|---    ~~~~~~~~~~~~      ------------

 --------       -------------   |          |

 |Sensor| ----|        |        |          |

 --------     |        |       --------    |

    .         |        |       |Switch| ----------------------

    .         |        |       --------                       |

    .         |        |                   ------------       |

 ----------   |        |----------------- | Controller |      |

 |Actuator| ------------                   ------------       |

 ----------   |    --------                            ------------

    .         |----|Switch|---------------------------| Edge Cloud |

 ----------        --------                            ------------

 |Actuator|  ---------|

 ----------

|-----------|       |------------------|     |-------------------|

 EDGE DEVICES        NETWORKING DEVICES        COMPUTING DEVICES
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Figure 3: Simple feedback control model. 

Apart from the control model, the quality of the control primarily

depends on the timely reception of the sensor feedback which can be

subject to tight latency constraints, often in the single-digit

millisecond range. While low latencies are essential, there is an

even greater need for stable and deterministic levels of latency,

because controllers can generally cope with different levels of

latency, if they are designed for them, but they are significantly

challenged by dynamically changing or unstable latencies. The

unpredictable latency of the Internet exemplifies this problem if,

e.g., off-premise cloud platforms are included.

4.2.3. Existing Solutions 

Control functionality is traditionally executed on PLCs close to the

machinery. These PLCs typically require vendor-specific

implementations and are often hard to upgrade and update which makes

such control processes inflexible and difficult to manage. Moving

computations to more freely programmable devices thus has the

potential of significantly improving the flexibility. In this

context, directly moving control functionality to (central) cloud

environments is generally possible, yet only feasible if latency

constraints are lenient.

4.2.4. Opportunities 

COIN offers the possibility of bringing the system and the

controller closer together, thus possibly satisfying the latency

requirements, by performing simple control logic on PNDs and/or in

COIN execution environments.

While control models, in general, can become involved, there is a

variety of control algorithms that are composed of simple

computations such as matrix multiplication. These are supported by

some PNDs and it is thus possible to compose simplified

approximations of the more complex algorithms and deploy them in the

network. While the simplified versions induce a more inaccurate

control, they allow for a quicker response and might be sufficient

to operate a basic tight control loop while the overall control can

still be exercised from the cloud.

Opportunities:

Execute simple (end-host) COIN functions on PNDs to satisfy tight

latency constraints of control processes 

 reference

   state      ------------        --------    Output

---------->  | Controller | ---> | System | ---------->

           ^  ------------        --------       |

           |                                     |

           |   observed state                    |

           |                    ---------        |

            -------------------| Sensors | <-----

                                ---------
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4.2.5. Research Questions 

Bringing the required computations to PNDs is challenging as these

devices typically only allow for integer precision computation while

floating-point precision is needed by most control algorithms.

Additionally, computational capabilities vary for different

available PNDs [KUNZE]. Yet, early approaches like [RUETH] and 

[VESTIN] have already shown the general applicability of such ideas,

but there are still a lot of open research questions not limited to

the following:

Research Questions:

RQ 4.2.1: How to derive simplified versions of the global

(control) function?

How to account for the limited computational precision of

PNDs? 

How to find suitable tradeoffs regarding simplicity of the

control function ("accuracy of the control") and

implementation complexity ("implementability")? 

RQ 4.2.2: How to distribute the simplified versions in the

network?

Can there be different control levels, e.g., "quite inaccurate

& very low latency" (PNDs, deep in the network), "more

accurate & higher latency" (more powerful COIN execution

environments, farer away), "very accurate & very high latency"

(cloud environments, far away)? 

Who decides which control instance is executed and how? 

How do the different control instances interact? 

4.2.6. Requirements 

Req 4.2.1: The interaction between the COIN execution

environments and the global controller SHOULD be explicit. 

Req 4.2.2: The interaction between the COIN execution

environments and the global controller MUST NOT negatively impact

the control quality. 

Req 4.2.3: Actions of the COIN execution environments MUST be

overridable by the global controller. 

Req 4.2.4: Functions in COIN execution environments SHOULD be

executed with predictable delay. 

Req 4.2.5: Functions in COIN execution environments MUST be

executed with predictable accuracy. 
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4.3. Large Volume Applications - Filtering 

4.3.1. Description 

In modern industrial networks, processes and machines can be

monitored closely resulting in large volumes of available

information. This data can be used to find previously unknown

correlations between different parts of the value chain, e.g., by

deploying machine learning (ML) techniques, which in turn helps to

improve the overall production system. Newly gained knowledge can be

shared between different sites of the same company or even between

different companies [PENNEKAMP].

Traditional company infrastructure is neither equipped for the

management and storage of such large amounts of data nor for the

computationally expensive training of ML approaches. Off-premise

cloud platforms offer cost-effective solutions with a high degree of

flexibility and scalability, however, moving all data to off-premise

locations poses infrastructural challenges. Pre-processing or

filtering the data already in COIN execution environments can be a

new solution to this challenge.

4.3.2. Characterization 

4.3.2.1. General Characterization of Large Volume Applications 

Processes in the industrial domain are monitored by distributed

sensors which range from simple binary (e.g., light barriers) to

sophisticated sensors measuring the system with varying degrees of

resolution. Sensors can further serve different purposes, as some

might be used for time-critical process control while others are

only used as redundant fallback platforms. Overall, there is a high

level of heterogeneity which makes managing the sensor output a

challenging task.

Depending on the deployed sensors and the complexity of the observed

system, the resulting overall data volume can easily be in the range

of several Gbit/s [GLEBKE]. Using off-premise clouds for managing

the data requires uploading or streaming the growing volume of

sensor data using the companies' Internet access which is typically

limited to a few hundred of Mbit/s. While large networking companies

can simply upgrade their infrastructure, most industrial companies

rely on traditional ISPs for their Internet access. Higher access

speeds are hence tied to higher costs and, above all, subject to the

supply of the ISPs and consequently not always available. A major

challenge is thus to devise a methodology that is able to handle

such amounts of data over limited access links.

Another aspect is that business data leaving the premise and control

of the company further comes with security concerns, as sensitive

information or valuable business secrets might be contained in it.

Typical security measures such as encrypting the data make COIN

techniques hardly applicable as they typically work on unencrypted

data. Adding security to COIN approaches, either by adding

functionality for handling encrypted data or devising general

security measures, is thus an auspicious field for research which we

describe in more detail in Section 8.
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4.3.2.2. Specific Characterization for Filtering Solutions 

Sensors are often set up redundantly, i.e., part of the collected

data might also be redundant. Moreover, they are often hard to

configure or not configurable at all which is why their resolution

or sampling frequency is often larger than required. Consequently,

it is likely that more data is transmitted than is needed or

desired.

4.3.3. Existing Solutions 

Current approaches for handling such large amounts of information

typically build upon stream processing frameworks such as Apache

Flink. While they allow for handling large volume applications, they

are tied to performant server machines and upscaling the information

density also requires a corresponding upscaling of the compute

infrastructure.

4.3.4. Opportunities 

PNDs and COIN execution environments are in a unique position to

reduce the data rates due to their line-rate packet processing

capabilities. Using these capabilities, it is possible to filter out

redundant or undesired data before it leaves the premise using

simple traffic filters that are deployed in the on-premise network.

There are different approaches to how this topic can be tackled.

A first step could be to scale down the available sensor data to the

data rate that is needed. For example, if a sensor transmits with a

frequency of 5 kHz, but the control entity only needs 1 kHz, only

every fifth packet containing sensor data is let through.

Alternatively, sensor data could be filtered down to a lower

frequency while the sensor value is in an uninteresting range, but

let through with higher resolution once the sensor value range

becomes interesting.

While the former variant is oblivious to the semantics of the sensor

data, the latter variant requires an understanding of the current

sensor levels. In any case, it is important that end-hosts are

informed about the filtering so that they can distinguish between

data loss and data filtered out on purpose.

Opportunities:

(Semantic) packet filtering based on packet header and payload,

as well as multi-packet information 

4.3.5. Research Questions 

RQ 4.3.1: How to design COIN programs for (semantic) packet

filtering?

Which criteria for filtering make sense? 

RQ 4.3.2: How to distribute and coordinate COIN programs? 

RQ 4.3.3: How to dynamically change COIN programs? 
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RQ 4.3.4: How to signal traffic filtering by COIN programs to

end-hosts? 

4.3.6. Requirements 

Req 4.3.1: Filters MUST conform to application-level syntax and

semantics. 

Req 4.3.2: Filters MAY leverage packet header and payload

information. 

Req 4.3.3: Filters SHOULD be reconfigurable at run-time. 

4.4. Large Volume Applications - (Pre-)Preprocessing 

4.4.1. Description 

See Section 4.3.1.

4.4.2. Characterization 

4.4.2.1. General Characterization of Large Volume Applications 

See Section 4.3.2.1.

4.4.2.2. Specific Characterization for Preprocessing Solutions 

There are manifold computations that can be performed on the sensor

data in the cloud. Some of them are very complex or need the

complete sensor data during the computation, but there are also

simpler operations which can be done on subsets of the overall

dataset or earlier on the communication path as soon as all data is

available. One example is finding the maximum of all sensor values

which can either be done iteratively at each intermediate hop or at

the first hop, where all data is available.

4.4.3. Existing Solutions 

See Section 4.3.3.

4.4.4. Opportunities 

Using expert knowledge about the exact computation steps and the

concrete transmission path of the sensor data, simple computation

steps can be deployed in the on-premise network to reduce the

overall data volume and potentially speed up the processing time in

the cloud.

Related work has already shown that in-network aggregation can help

to improve the performance of distributed ML applications [SAPIO].

Investigating the applicability of stream data processing techniques

to PNDs is also interesting, because sensor data is usually

streamed.
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Opportunities:

(Semantic) data (pre-)processing, e.g., in the form of

computations across multiple packets and potentially leveraging

packet payload 

4.4.5. Research Questions 

RQ 4.4.1: Which kinds of COIN programs can be leveraged for

(pre-)processing steps?

How complex can they become? 

RQ 4.4.2: How to distribute and coordinate COIN programs? 

RQ 4.4.3: How to dynamically change COIN programs? 

RQ 4.4.4: How to incorporate the (pre-)processing steps into the

overall system? 

4.4.6. Requirements 

Req 4.4.1: Preprocessors MUST conform to application-level syntax

and semantics. 

Req 4.4.2: Preprocessors MAY leverage packet header and payload

information. 

Req 4.4.3: Preprocessors SHOULD be reconfigurable at run-time. 

4.5. Industrial Safety 

4.5.1. Description 

Despite an increasing automation in production processes, human

workers are still often necessary. Consequently, safety measures

have a high priority to ensure that no human life is endangered. In

traditional factories, the regions of contact between humans and

machines are well-defined and interactions are simple. Simple safety

measures like emergency switches at the working positions are enough

to provide a decent level of safety.

Modern factories are characterized by increasingly dynamic and

complex environments with new interaction scenarios between humans

and robots. Robots can either directly assist humans or perform

tasks autonomously. The intersect between the human working area and

the robots grows and it is harder for human workers to fully observe

the complete environment. Additional safety measures are essential

to prevent accidents and support humans in observing the

environment.

4.5.2. Characterization 

Industrial safety measures are typically hardware solutions because

they have to pass rigorous testing before they are certified and

deployment-ready. Standard measures include safety switches and

light barriers. Additionally, the working area can be explicitly
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divided into 'contact' and 'safe' areas, indicating when workers

have to watch out for interactions with machinery.

These measures are static solutions, potentially relying on

specialized hardware, and are challenged by the increased dynamics

of modern factories where the factory configuration can be changed

on demand. Software solutions offer higher flexibility as they can

dynamically respect new information gathered by the sensor systems,

but in most cases they cannot give guaranteed safety.

4.5.3. Existing Solutions 

Due to the importance of safety, there is a wide range of software-

based approaches aiming at enhancing security. One example are tag-

based systems, e.g., using RFID, where drivers of forklifts can be

warned if pedestrian workers carrying tags are nearby. Such

solutions, however, require setting up an additional system and do

not leverage existing sensor data.

4.5.4. Opportunities 

COIN systems could leverage the increased availability of sensor

data and the detailed monitoring of the factories to enable

additional safety measures. Different safety indicators within the

production hall can be combined within the network so that PNDs can

give early responses if a potential safety breach is detected.

One possibility could be to track the positions of human workers and

robots. Whenever a robot gets too close to a human in a non-working

area or if a human enters a defined safety zone, robots are stopped

to prevent injuries. More advanced concepts could also include image

data or combine arbitrary sensor data.

Opportunities:

Execute simple (end-host) COIN functions on PNDs to create early

emergency reactions based on diverse sensor feedback 

4.5.5. Research Questions 

RQ 4.5.1: Which additional safety measures can be provided?

Do these measures actually improve safety? 

RQ 4.5.2: Which sensor information can be combined and how? 

4.5.6. Requirements 

Req 4.5.1: COIN-based safety measures MUST NOT degrade existing

safety measures. 

Req 4.5.2: COIN-based safety measures MAY enhance existing safety

measures. 
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5. Improving existing COIN capabilities 

5.1. Content Delivery Networks 

5.1.1. Description 

Delivery of content to end users often relies on Content Delivery

Networks (CDNs) storing said content closer to end users for latency

reduced delivery with DNS-based indirection being utilized to serve

the request on behalf of the origin server.

5.1.2. Characterization 

From the perspective of this draft, a CDN can be interpreted as a

(network service level) set of (COIN) programs, implementing a

distributed logic for distributing content from the origin server to

the CDN ingress and further to the CDN replication points which

ultimately serve the user-facing content requests.

5.1.3. Existing Solutions 

NOTE: material on solutions will be added here later

Studies such as those in [FCDN] have shown that content distribution

at the level of named content, utilizing efficient (e.g., Layer 2)

multicast for replication towards edge CDN nodes, can significantly

increase the overall network and server efficiency. It also reduces

indirection latency for content retrieval as well as reduces

required edge storage capacity by benefiting from the increased

network efficiency to renew edge content more quickly against

changing demand.

5.1.4. Opportunities 

Supporting service-level routing of requests (service routing in 

[APPCENTRES]) to specific (COIN) program instances may improve on

end user experience in faster retrieving (possibly also more,

e.g., better quality) content. 

Supporting the constraint-based selection of a specific (COIN)

program instance over others (constraint-based routing in 

[APPCENTRES]) may improve the overall end user experience by

selecting a 'more suitable' (COIN) program instance over another,

e.g., avoiding/reducing overload situation in specific (COIN)

program instances. 

Supporting Layer 2 capabilities for multicast (compute

interconnection and collective communication in [APPCENTRES]) may

increase the network utilization and therefore increase the

overall system utilization. 

5.1.5. Research Questions 

In addition to those request question for Section 3.1:

RQ 5.1.1: How to utilize L2 multicast to improve on CDN designs?

How to utilize in-network capabilities in those designs? 
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RQ 5.1.2: What forwarding methods may support the required

multicast capabilities (see [FCDN]) 

RQ 5.1.3: What are the right routing constraints that reflect

both compute and network capabilities? 

RQ 5.1.4: Could traffic steering be performed at the data path

and per service request? If so, what would be performance

improvements? 

RQ 5.1.5: How could storage be traded off against frequent,

multicast-based, replication (see [FCDN])? 

RQ 5.1.6: What scalability limits exist for L2 multicast

capabilities? How to overcome them? 

5.1.6. Requirements 

Requirements 3.1.1 through 3.1.6 also apply for CDN service access.

In addition:

Req 5.1.1: Any solution SHOULD utilize Layer 2 multicast

transmission capabilities for responses to concurrent service

requests. 

5.2. Compute-Fabric-as-a-Service (CFaaS) 

5.2.1. Description 

Layer 2 connected compute resources, e.g., in regional or edge data

centres, base stations and even end-user devices, provide the

opportunity for infrastructure providers to offer CFaaS type of

offerings to application providers. App and service providers may

utilize the compute fabric exposed by this CFaaS offering for the

purposes defined through their applications and services. In other

words, the compute resources can be utilized to execute the desired

(COIN) programs of which the application is composed, while

utilizing the inter-connection between those compute resources to do

so in a distributed manner.

5.2.2. Characterization 

We foresee those CFaaS offerings to be tenant-specific, a tenant

here defined as the provider of at least one application. For this,

we foresee an interaction between CFaaS provider and tenant to

dynamically select the appropriate resources to define the demand

side of the fabric. Conversely, we also foresee the supply side of

the fabric to be highly dynamic with resources being offered to the

fabric through, e.g., user-provided resources (whose supply might

depend on highly context-specific supply policies) or infrastructure

resources of intermittent availability such as those provided

through road-side infrastructure in vehicular scenarios.

The resulting dynamic demand-supply matching establishes a dynamic

nature of the compute fabric that in turn requires trust

relationships to be built dynamically between the resource

provider(s) and the CFaaS provider. This also requires the

communication resources to be dynamically adjusted to interconnect
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all resources suitably into the (tenant-specific) fabric exposed as

CFaaS.

5.2.3. Existing Solutions 

NOTE: material on solutions will be added here later

5.2.4. Opportunities 

Supporting service-level routing of compute resource requests

(service routing in [APPCENTRES]) may allow for utilizing the

wealth of compute resources in the overall CFaaS fabric for

execution of distributed applications, where the distributed

constituents of those applications are realized as (COIN)

programs and executed within a COIN system as (COIN) program

instances. 

Supporting the constraint-based selection of a specific (COIN)

program instance over others (constraint-based routing in 

[APPCENTRES]) will allow for optimizing both the CFaaS provider

constraints as well as tenant-specific constraints. 

Supporting Layer 2 capabilities for multicast (compute

interconnection and collective communication in [APPCENTRES])

will allow for increasing both network utilization but also

possible compute utilization (due to avoiding unicast replication

at those compute endpoints), thereby decreasing total cost of

ownership for the CFaaS offering. 

5.2.5. Research Questions 

Similar to those for Section 3.1. In addition:

RQ 5.2.1: How to convey tenant-specific requirements for the

creation of the L2 fabric? 

RQ 5.2.2: How to dynamically integrate resources, particularly

when driven by tenant-level requirements and changing service-

specific constraints? 

RQ 5.2.3: How to utilize in-network capabilities to aid the

availability and accountability of resources, i.e., what may be

(COIN) programs for a CFaaS environment that in turn would

utilize the distributed execution capability of a COIN system? 

5.2.6. Requirements 

For the provisioning of services atop the CFaaS, requirements 3.1.1

through 3.1.6 should be addressed, too. In addition:

Req 5.2.1: Any solution SHOULD expose means to specify the

requirements for the tenant-specific compute fabric being

utilized for the service execution. 

Req 5.2.2: Any solution SHOULD allow for dynamic integration of

compute resources into the compute fabric being utilized for the

app execution; those resources include, but are not limited to,

end user provided resources. From a COIN system perspective, new
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resources must be possible to be exposed as possible (COIN)

execution environments. 

Req 5.2.3: Any solution MUST provide means to optimize the inter-

connection of compute resources, including those dynamically

added and removed during the provisioning of the tenant-specific

compute fabric. 

Req 5.2.4: Any solution MUST provide means for ensuring

availability and usage of resources is accounted for. 

5.3. Virtual Networks Programming 

5.3.1. Description 

The term "virtual network programming" is proposed to describe

mechanisms by which tenants deploy and operate COIN programs in

their virtual network. Such COIN programs can for example be P4

programs, OpenFlow rules, or higher layer programs. This feature can

enable other use cases described in this draft to be deployed using

virtual networks services, over underlying networks such as

datacenters, mobile networks, or other fixed or wireless networks.

For example COIN programs could perform the following on a tenant's

virtual network:

Allow or block flows, and request rules from an SDN controller

for each new flow, or for flows to or from specific hosts that

needs enhanced security 

Forward a copy of some flows towards a node for storage and

analysis 

Update counters based on specific sources/destinations or

protocols, for detailed analytics 

Associate traffic between specific endpoints, using specific

protocols, or originated from a given application, to a given

slice, while other traffic use a default slice 

Experiment with a new routing protocol (e.g., ICN), using a P4

implementation of a router for this protocol 

5.3.2. Characterization 

To provide a concrete example of virtual COIN programming, we

consider a use case using a 5G underlying network, the 5GLAN

virtualization technology, and the P4 programming language and

environment. Section 5.1 of [I-D.ravi-icnrg-5gc-icn] provides a

description of the 5G network functions and interfaces relevant to

5GLAN, which are otherwise specified in [TS23.501] and [TS23.502].

From the 5GLAN service customer/tenant standpoint, the 5G network

operates as a switch.

In the use case depicted in Figure 4, the tenant operates a network

including a 5GLAN network segment (seen as a single logical switch),

as well as fixed segments. This can be in a plant or enterprise

network, using for an example a 5G Non-Public Network (NPN). The
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tenant uses P4 programs to determine the operation of the fixed and

5GLAN switches. The tenant provisions a 5GLAN P4 program into the

mobile network, and can also operate a controller. The mobile

devices (or User Equipment nodes) UE1, UE2, UE3 and UE4 are in the

same 5GLAN, as well as Device1 and Device2 (through UE4).

Figure 4: 5G Virtual Network Programming Overview 

Looking in more details in Figure 5, the 5GLAN P4 program can be

split between multiple data plane nodes (PDU Session Anchor (PSA)

User Plane Functions (UPF), other UPFs, or even mobile devices),

although in some cases the P4 program may be hosted on a single

node. In the most general case, a distributed deployment is useful

to keep traffic on optimal paths, because, except in simple cases,

within a 5GLAN all traffic will not pass through a single node. In

this example, P4 programs could be deployed in UPF1, UPF2, UPF3, UE3

and UE4. UE1-UE2 traffic is using a local switch on PSA UPF1, UE1-

UE3 traffic is tunneled between PSA UPF1 and PSA UPF2 through the

N19 interface, and UE1-UE4 traffic is forwarded throughan external

Data Network (DN). Traffic between Device1 and Device2 is forwarded

through UE4.

¶

                                     ..... Tenant ........

                          P4 program :                   :

                          deployment :         Operation :

                                     V                   :

  +-----+  air interface +----------------+              :

  | UE1 +----------------+                |              :

  +-----+                |                |              :

                         |                |              :

  +-----+                |                |              V

  | UE2 +----------------+     5GLAN      |      +------------+

  +-----+                |    Logical     +------+ Controller |

                         |     Switch     |  P4  +-------+----+

  +-----+                |                |  runtime     |

  | UE3 +----------------+                |  API         |

  +-----+                |                |              |

                         |                |              |

  +-----+                |                |              |

+-+ UE4 +----------------+                |              |

| +-----+                +----------------+              |

|                                                        |

| Fixed or wireless connection                           |

|                                    P4 runtime API      |

|  +---------+           +-------------------------------+

+--+ Device1 |           |

|  +---------+           |

|                        |

|  +---------+    +------+-----+

`--+ Device2 +----+ P4 Switch  +--->(fixed network)

   +---------+    +------------+

¶



Figure 5: 5G Virtual Network Programming Details 

5.3.3. Existing Solutions 

Research has been conducted, for example by [Stoyanov], to enable P4

network programming of individual virtual switches. To our

knowledge, no complete solution has been developped for deploying

virtual COIN programs over mobile or datacenter networks.

5.3.4. Opportunities 

Virtual network programming by tenants could bring benefits such as:

A unified programming model, which can facilitate porting in-

network computing between data centers, 5G networks, and other

fixed and wireless networks, as well as sharing controller, code

and expertise. 

Increasing the level of customization available to customers/

tenants of mobile networks or datacenters, when compared with

typical configuration capabilities. For example, 5G network

evolution points to an ever increasing specialization and

customization of private mobile networks, which could be handled

by tenants using a programming model similar to P4. 

                         +-----+          +-----+      +------------+

                         | AMF |          | SMF |      | Controller |

                         +-+-+-+          +--+--+      +-----+------+

                          /  |               |             P4|

               +---------+   |             N4|        Runtime|

          N1  /              |N2             |               V

      +------+               |               |     (all P4 programs*)

     /                       |               |

  +--+--+  air interface +---+-----+ N3 +-+--+----------+  N6  +----+

  | UE1 +----------------+  (R)AN  +----+   PSA UPF1*   +----->+    |

  +-----+                +---------+    +-+-------+-----+      |    |

     |                       |            |  |    |            |    |

  +--+--+                +---+-----+      |  |    |            |    |

  | UE2 +----------------+  (R)AN  +------'  |    | N19        | DN |

  +-----+                +---------+         |    |            |    |

     |                       |               |    |            |    |

  +--+--+                +---+-----+    +----+----+-----+      |    |

  | UE3*+----------------+  (R)AN  +----+    PSA UPF2*  +      |    |

  +-----+                +---------+    +---------+-----+      |    |

     |                       |               |    | N19        |    |

  +--+--+                +---+-----+    +----+----+-----+  N6  |    |

+-+ UE4*+----------------+  (R)AN  +----+    PSA UPF3*  +----->+    |

| +-----+                +---------+    +---------------+      +----+

|

| Fixed or wireless connection

|

|  +---------+

+--+ Device1 |           (* indicates the presence of a P4 program)

|  +---------+

|

|  +---------+    +------------+

`--+ Device2 +----+ P4 Switch* +--->(fixed network)

   +---------+    +------------+
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Using network programs to influence underlying network service

(e.g., request specific QoS for some flows in 5G or datacenters),

to increases the level of in-depth customization available to

tenants. 

5.3.5. Research Questions 

RQ 5.3.1: Underlying Network Awareness: a virtual COIN program

can be able to influence, and be influenced by, the underling

network (e.g., the 5G network or data center). For example, a

virtual COIN program may be aware of the slice used by a flow,

and possibly influence slice selection. Since some information

and actions may be available on some nodes and not others,

underlying network awareness may impose additional constraints on

distributed network programs location. 

RQ 5.3.2: Splitting/Distribution: a virtual COIN program may need

to be deployed across multiple computing nodes, leading to

research questions around instance placement and distribution. As

a primary reason for this, program logic should be applied

exactly once or at least once per packet, while allowing optimal

forwarding path by the underlying network. For example, a 5GLAN

P4 program may need to run on multiple UPFs. Research challenges

include defining manual (by the programmer) or automatic methods

to distribute COIN programs that use a low or minimal amount of

resources. Distributed P4 programs are studied in [I-D.hsingh-

coinrg-reqs-p4comp] and [Sultana]. 

RQ 5.3.3: Multi-Tenancy Support: multiple virtual COIN program

instances can run on the same compute node. While mechanism were

proposed for P4 multi-tenancy in a switch [Stoyanov], research

questions remains, about isolation between tenants, fair

repartition of resources. 

RQ 5.3.4: Security: how can tenants and underlying networks be

protected against security risks, including overuse or misuse of

network resources, injection of traffic, access to unauthorized

traffic? 

RQ 5.3.5: Higher layer processing: can a virtual network model

facilitate the deployment of COIN programs acting on application

layer data? This is an open question since the present section

focused on packet/flow processing. 

5.3.6. Requirements 

Req 5.3.1: A COIN system supporting virtualization should enable

tenants to deploy COIN programs onto their virtual networks. 

Req 5.3.2: A virtual COIN program should process flows/packets

once and only once (or at least once for idempotent operations),

even if the program is distributed over multiple PNDs. 

Req 5.3.3: Multi-tenancy should be supported for virtual COIN

programs, i.e., instances of virtual COIN programs from different

tenants can share underlying PNDs. This includes requirements for

secure isolation between tenants, and fair (or policy-based)

sharing of computing resources. 
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Req 5.3.4: Virtual COIN programs should support mobility of

endpoints. 

6. Enabling new COIN capabilities 

6.1. Distributed AI 

6.1.1. Description 

There is a growing range of use cases demanding for the realization

of AI capabilities among distributed endpoints. Such demand may be

driven by the need to increase overall computational power for

large-scale problems. From a COIN perspective, those capabilities

may be realized as (COIN) programs and executed throughout the COIN

system, including in PNDs.

Some solutions may desire the localization of reasoning logic, e.g.,

for deriving attributes that better preserve privacy of the utilized

raw input data. Quickly establishing (COIN) program instances in

nearby compute resources, including PNDs, may even satisfy such

localization demands on-the-fly (e.g., when a particular use is

being realized, then terminated after a given time).

6.1.2. Characterization 

Examples for large-scale AI problems include biotechnology and

astronomy related reasoning over massive amounts of observational

input data. Examples for localizing input data for privacy reasons

include radar-like application for the development of topological

mapping data based on (distributed) radio measurements at base

stations (and possibly end devices), while the processing within

radio access networks (RAN) already constitute a distributed AI

problem to a certain extent albeit with little flexibility in

distributing the execution of the AI logic.

6.1.3. Existing Solutions 

Reasoning frameworks, such as TensorFlow, may be utilized for the

realization of the (distributed) AI logic, building on remote

service invocation through protocols such as gRPC [GRPC] or MPI 

[MPI] with the intention of providing an on-chip NPU (neural

processor unit) like abstraction to the AI framework.

NOTE: material on solutions like ETSI MEC and 3GPP work will be

added here later

6.1.4. Opportunities 

Supporting service-level routing of requests (service routing in 

[APPCENTRES]), with AI services being exposed to the network and

executed as part of (COIN) programs in selected (COIN) program

instances, may provide a highly distributed execution of the

overall AI logic, thereby addressing, e.g., localization but also

computational concerns (scale-in/out). 

The support for constraint-based selection of a specific (COIN)

program instance over others (constraint-based routing in 

[APPCENTRES]) may allow for utilizing the most suitable HW
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capabilities (e.g., support for specific AI HW assistance in the

COIN element, including a PND), while also allowing to select

resources, e.g., based on available compute ability such as

number of cores to be used. 

Supporting collective communication between multiple instances of

AI services, i.e., (COIN) program instances, may positively

impact network but also compute utilization by moving from

unicast replication to network-assisted multicast operation. 

6.1.5. Research Questions 

RQ 6.1.1: similar to use case in Section 3.1 

RQ 6.1.2: What are the communication patterns that may be

supported by collective communication solutions? 

RQ 6.1.3: How to achieve scalable multicast delivery with rapidly

changing receiver sets? 

RQ 6.1.4: What in-network capabilities may support the collective

communication patterns found in distributed AI problems? 

RQ 6.1.5: How to provide a service routing capability that

supports any invocation protocol (beyond HTTP)? 

6.1.6. Requirements 

Requirements 3.1.1 through 3.1.6 also apply for general distributed

AI capabilities. In addition:

Req 6.1.1: Any COIN system MUST provide means to specify the

constraints for placing (AI) execution logic in the form of

(COIN) programs in certain logical execution points (and their

associated physical locations), including PNDs. 

Req 6.1.2: Any COIN system MUST provide support for app/micro-

service specific invocation protocols for requesting (COIN)

program services exposed to the COIN system. 

7. Analysis 

The goal of this analysis is to identify aspects that are relevant

across all use cases to help in shaping the research agenda of

COINRG. For this purpose, this section will condense the

opportunities, research questions, as well as requirements of the

different presented use cases and analyze these for similarities

across the use cases.

Through this, we intend to identify cross-cutting opportunities,

research questions as well as requirements (for COIN system

solutions) that may aid the future work of COINRG as well as the

larger research community.

7.1. Opportunities 

To be added later.
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7.2. Research Questions 

After carefully considering the different use cases along with their

research questions, we propose the following layered categorization

to structure the content of the research questions which we

illustrate in Figure 6.

Figure 6: Research Questions Categorization 

7.2.1. Categorization 

Three categories deal with concretizing fundamental building blocks

of COIN and COIN itself.

VISION(S) for COIN: Questions that aim at defining and shaping

the exact scope of COIN. 

ENABLING TECHNOLOGIES for COIN: Questions that target the

capabilities of the technologies and devices intended to be used

in COIN. 

Distributed Computing FRAMEWORKS and LANGUAGES to COIN: Questions

that aim at concretizing how a framework or languages for

deploying and operating COIN systems might look like. 

Additionally, there are use-case near research questions that are

heavily influenced by the specific constraints and goals of the use

cases. We call this category "applicability areas" and refine it

into the following subgroups:

Transport: 

App Design: 

Data Processing: 

Routing & Forwarding: 

(Industrial) Control 

¶

   +--------------------------------------------------------------+

   +                       Applicability Areas                    +

   + .............................................................+

   + Transport |   App  |    Data    |  Routing &  | (Industrial) +

   +           | Design | Processing | Forwarding  |    Control   +

   +--------------------------------------------------------------+

   +--------------------------------------------------------------+

   +    Distributed Computing FRAMEWORKS and LANGUAGES to COIN    +

   +--------------------------------------------------------------+

   +--------------------------------------------------------------+

   +                ENABLING TECHNOLOGIES for COIN                +

   +--------------------------------------------------------------+

   +--------------------------------------------------------------+

   +                      VISION(S) for COIN                      +

   +--------------------------------------------------------------+
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7.2.2. Analysis 

7.2.2.1. VISION(S) for COIN 

The following research questions presented in the use cases belong

to this category:

3.1.8, 3.2.1, 3.3.5, 3.3.6, 3.3.7, 5.3.3, 6.1.2, 6.1.4

The research questions centering around the COIN VISION dig into

what is considered COIN and what scope COIN functionality should

have. In contrast to the ENABLING TECHNOLOGIES, this section looks

at the problem from a more philosophical perspective.

7.2.2.1.1. Where to perform computations 

The first aspect of this is where/on which devices COIN programs

will/should be executed (3.3.5). In particular, it is debatable

whether COIN programs will/should only be executed in PNDs or

whether other "adjacent" computational nodes are also in scope. In

case of the latter, an arising question is whether such computations

are still to be considered as "in-network processing" and where the

exact line is between "in-network processing" and "routing to end

systems" (3.3.7). In this context, it is also interesting to reason

about the desired feature sets of PNDs (and other COIN execution

environments) as these will shift the line between "in-network

processing" and "routing to end systems" (3.1.8).

7.2.2.1.2. Are tasks suitable for COIN 

Digging deeper into the desired feature sets, some research

questions address the question of which domains are to be considered

of interest/relevant to COIN. For example, whether computationally-

intensive tasks are suitable candidates for (COIN) Programs (3.3.6).

7.2.2.1.3. (Is COIN)/(What parts of COIN are) suitable for the tasks 

Turning the previous aspect around, some questions try to reason

whether COIN can be sensibly used for specific tasks. For example,

it is a question of whether current PNDs are fast and expressive

enough for complex filtering operations (3.2.1).

There are also more general notions of this question, e.g., what

"in-network capabilities" might be used to address certain problem

patterns (6.1.4) and what new patterns might be supported (6.1.2).

What is interesting about these different questions is that the

former raises the question of whether COIN can be used for specific

tasks while the latter asks which tasks in a larger domain COIN

might be suitable for.

7.2.2.1.4. What are desired forms for deploying COIN functionality 

The final topic addressed in this part deals with the deployment

vision for COIN programs (5.3.3).

In general, multiple programs can be deployed on a single PND/COIN

element. However, to date, multi-tenancy concepts are, above all,

available for "end-host-based" platforms, and, as such, there are
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manifold questions centering around (1) whether multi-tenancy is

desirable for PNDs/COIN elements and (2) how exactly such

functionality should be shaped out, e.g., which (new forms of)

hardware support needs to be provided by PNDs/COIN elements.

7.2.2.2. ENABLING TECHNOLOGIES for COIN 

The following research questions presented in the use cases belong

to this category:

3.1.7, 3.1.8, 3.2.2, 4.3.4, 4.4.4, 5.1.1, 5.1.2, 5.1.6, 5.3.1,

6.1.3, 6.1.4,

The research questions centering around the ENABLING TECHNOLOGIES

for COIN dig into what technologies are needed to enable COIN, which

of the existing technologies can be reused for COIN and what might

be needed to make the VISION(S) for COIN a reality. In contrast to

the VISION(S), this section looks at the problem from a practical

perspective.

7.2.2.2.1. COIN compute technologies 

Picking up on the topics discussed in Section 7.2.2.1.1 and Section

7.2.2.1.2, this category deals with how such technologies might be

realized in PNDs and with which functionality should even be

realized (3.1.8).

7.2.2.2.2. Forwarding technology 

Another group of research questions focuses on "traditional"

networking tasks, i.e., L2/L3 switching and routing decisions.

For example, how COIN-powered routing decisions can be provided at

line-rate (3.1.7). Similarly, how (L2) multicast can be used for

COIN (vice versa) (5.1.1), which (new) forwarding capabilities might

be required within PNDs to support the concepts (5.1.2), and how

scalability limits of existing multicast capabilities might be

overcome using COIN (5.1.6).

In this context, it is also interesting how these technologies can

be used to address quickly changing receiver sets (6.1.3),

especially in the context of collective communication (6.1.4).

7.2.2.2.3. Incorporating COIN in existing systems 

Some research questions deal with questions around how COIN

(functionality) can be included in existing systems.

For example, if COIN is used to perform traffic filtering, how end-

hosts can be made aware that data/information/traffic is

deliberately withheld (4.3.4). Similarly, if data is pre-processed

by COIN, how can end-hosts be signaled the new semantics of the

received data (4.4.4).

In particular, these are not only questions concerning the

functionality scope of PNDs or protocols but might also depend on

how programming frameworks for COIN are designed. Overall, this

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



category deals with how to handle knowledge and action imbalances

between different nodes within COIN networks (5.3.1).

7.2.2.2.4. Enhancing device interoperability 

Finally, the increasing diversity of devices within COIN raises

interesting questions of how the capabilities of the different

devices can be combined and optimized (3.2.2).

7.2.2.3. Distributed Computing FRAMEWORKS and LANGUAGES to COIN 

The following research questions presented in the use cases belong

to this category:

3.1.1, 3.2.3, 3.3.1, 3.3.2, 3.3.3, 3.3.5, 4.2.1, 4.2.2, 4.3.2/4.4.2,

4.3.3/4.4.3, 4.3.4, 4.4.4, 5.2.1, 5.2.2, 5.2.3, 5.3.1, 5.3.2, 5.3.3,

5.3.4, 5.3.5,

This category mostly deals with how COIN programs can be deployed

and orchestrated.

7.2.2.3.1. COIN program composition 

One aspect of this topic is how the exact functional scope of COIN

programs can/should be defined. For example, it might be an idea to

define an "overall" program that then needs to be deployed to

several devices (5.3.2). In that case, how should this composition

be done: manually or automatically? Further aspects to consider here

are how the different computational capabilities of the available

devices can be taken into account and how these can be leveraged to

obtain suitable distributed versions of the overall program (4.2.1).

In particular, it is an open question of how "service-level"

frameworks can be combined with "app-level" packaging methods

(3.1.1) or whether virtual network models can help facilitate the

composition of COIN programs (5.3.5). This topic also again includes

the considerations regarding multi-tenancy support (5.3.3, cf. 

Section 7.2.2.1.4) as such function distribution might necessitate

deploying functions of several entities on a single device.

7.2.2.3.2. COIN function placement 

In this context, another interesting aspect is where exactly

functions should be placed and who should influence these decisions.

Such function placement could, e.g., be guided by the available

devices (3.3.5, c.f. Section 7.2.2.1.1) and their position with

regards to the communicating entities (3.3.1), and it could also be

specified in terms of the "distance" from the "direct" network path

(3.3.2).

However, it might also be an option to leave the decision to users

or at least provide means to express requirements/constraints

(3.3.3). Here, the main question is how tenant-specific requirements

can actually be conveyed (5.2.1).
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7.2.2.3.3. COIN function deployment 

Once the position for deployment is fixed, a next problem that

arises is how the functions can actually be deployed (4.3.2,4.4.2).

Here, first relevant questions are how COIN programs/program

instances can be identified (3.1.4) and how preferences for specific

COIN program instances can be noted (3.1.5). It is then interesting

to define how different COIN program can be coordinated

(4.3.2,4.4.2), especially if there are program dependencies (4.2.2,

cf. Section 7.2.2.3.1).

7.2.2.3.4. COIN dynamic system operation 

In addition to static solutions to the described problems, the

increasing dynamics of today's networks will also require dynamic

solutions. For example, it might be necessary to dynamically change

COIN programs at run-time (4.3.3, 4.4.3) or to include new

resources, especially if service-specific constraints or tenant

requirements change (5.2.2). It will be interesting to see if COIN

frameworks can actually support the sometimes required dynamic

changes (3.2.4). In this context, providing availability and

accountability of resources can also be an important aspect.

7.2.2.3.5. COIN system integration 

COIN systems will potentially not only exist in isolation, but will

have to interact with existing systems. Thus, there are also several

questions addressing the integration of COIN systems into existing

ones. As already described in Section 7.2.2.2.3, the semantics of

changes made by COIN programs, e.g., filtering packets or changing

payload, will have to be communicated to end-hosts (4.3.4,4.4.4).

Overall, there has to be a common middleground so that COIN systems

can provide new functionality while not breaking "legacy" systems.

How to bridge different levels of "network awareness" (5.3.1) in an

explicit and general manner might be a crucial aspect to

investigate.

7.2.2.3.6. COIN system properties - optimality, security and more 

A final category deals with meta objectives that should be tackled

while thinking about how to realize the new concepts. In particular,

devising strategies for achieving an optimal function allocation/

placement are important to effectively the high heterogeneity of the

involved devices (3.2.3).

On another note, security in all its facets needs to be considered

as well, e.g., how to protect against misuse of the systems,

unauthorized traffic and more (5.3.4). We acknowledge that these

issues are not yet discussed in detail in this document.

7.2.2.4. Applicability Area - Transport 

The following research questions presented in the use cases belong

to this category:

3.1.2
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Further research questions concerning transport solutions are

discussed in more detail in [TRANSPORT].

Today's transport protocols are generally intended for end-to-end

communications. Thus, one important question is how COIN program

interactions should be handled, especially if the deployment

locations of the program instances change (quickly) (3.1.2).

7.2.2.5. Applicability Area - App Design 

The following research questions presented in the use cases belong

to this category:

4.3.1, 5.1.1, 5.1.3, 5.1.5

The possibility of incorporating COIN resources into application

programs increases the scope for how applications can be designed

and implemented. In this context, the general question of how the

applications can be designed and which (low-level) triggers could be

included in the program logic comes up (4.3.1). Similarly, providing

sensible constraints to route between compute and network

capabilities (when both kinds of capabilities are included) is also

important (5.1.3). Many of these considerations boil down to a

question of trade-off, e.g, between storage and frequent updates

(5.1.5), and how (new) COIN capabilities can be sensibly used for

novel application design (5.1.1).

7.2.2.6. Applicability Area - Data Processing 

The following research questions presented in the use cases belong

to this category:

3.2.3, 4.4.1, 4.5.2

Many of the use cases deal with novel ways of processing data using

COIN. Interesting questions in this context are which types of COIN

programs can be used to (pre-)process data (4.4.1) and which parts

of packet information can be used for these processing steps, e.g.,

payload vs. header information (4.5.2). Additionally, data

processing within COIN might even be used to support a better

localization of the COIN functionality (3.2.3).

7.2.2.7. Applicability Area - Routing & Forwarding 

The following research questions presented in the use cases belong

to this category:

3.1.2, 3.1.3, 3.1.4, 3.1.5, 3.1.6, 5.1.2, 5.1.3, 5.1.4, 6.1.5,

Being a central functionality of traditional networking devices,

routing and forwarding are also prime candidates to profit from

enhanced COIN capabilities. In this context, a central question,

also raised as part of the framework in Section 7.2.2.3.3, is how

different COIN entities can be identified (3.1.4) and how the choice

for a specific instance can be signalled (3.1.5). Building upon

this, next questions are which constraints could be used to make the

forwarding/routing decisions (5.1.3), how these constraints can be

signalled in a scalable manner (3.1.3), and how quickly changing
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COIN program locations can be included in these concepts, too

(3.1.2).

Once specific instances are chosen, higher-level questions revolve

around "affinity". In particular, how affinity on service-level can

be provided (3.1.6), whether traffic steering should actually be

performed on this level of granularity or rather on a lower level

(5.1.4) and how invocation for arbitrary application-level

protocols, e.g., beyond HTTP, can be supported (6.1.5). Overall, a

question is what specific forwarding methods should or can be

supported using COIN (5.1.2).

7.2.2.8. Applicability Area - (Industrial) Control 

The following research questions presented in the use cases belong

to this category:

3.2.4, 3.3.1, 3.3.4, 4.2.1, 4.4.1, 4.5.1

The final applicability area deals with use cases exercising some

kind of control functionality. These processes, above all, require

low latencies and might thus especially profit from COIN

functionality. Consequently, the aforementioned question of function

placement (cf. Section 7.2.2.3.2, e.g., close to one of the end-

points or deep in the network, is also a very relevant question for

this category of applications (3.3.1).

Focusing more explicitly on control processes, one idea is to deploy

different controllers with different control granularities within a

COIN system. On the one hand, it is an interesting question how

these controllers with different granularities can be derived based

on one original controller (4.2.1). On the other hand, how to

achieve synchronisation between these controllers or, more

generally, between different entities or flows/streams within the

COIN system is also a relevant problem (3.3.4). Finally, it is still

to be found out whether using COIN for such control processes indeed

improves the existing systems, e.g., in terms of safety (4.5.1) or

in terms of performance (3.2.4).

7.3. Requirements 

To be added later.

8. Security Considerations 

Note: This section will need consolidation once new use cases are

added to the draft. Current in-network computing approaches

typically work on unencrypted plain text data because today's

networking devices usually do not have crypto capabilities.

As is already mentioned in Section 4.3.2, this above all poses

problems when business data, potentially containing business

secrets, is streamed into remote computing facilities and

consequently leaves the control of the company. Insecure on-premise

communication within the company and on the shop-floor is also a

problem as machines could be intruded from the outside.
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It is thus crucial to deploy security and authentication

functionality on on-premise and outgoing communication although this

might interfere with in-network computing approaches. Ways to

implement and combine security measures with in-network computing

are described in more detail in [I-D.fink-coin-sec-priv].

9. IANA Considerations 

N/A

10. Conclusion 

This draft presented use cases gathererd from several fields that

can and could profit from capabilities that are provided by in-

network and, more generally, distributed compute capabilities. We

distinguished between use cases in which COIN may (i) enable new

experiences, (ii) expose new features or (iii) improve on existing

system capabilities, and (iv) other use cases where COIN

capabilities enable totally new applications, for example, in

industrial networking.

Beyond the mere description and characterization of those use cases,

we identified opportunities arising from utilizing COIN capabilities

as well as research questions that may need to be addressed to reap

those opportunities. We also outlined possible requirements for

realizing a COIN system addressing these use cases.

But of course this is only a snapshot of the potential COIN use

cases. In fact, the decomposition of many current client server

applications into node by node transit could identify other

opportunities for adding computing to forwarding notably in supply-

chain, health care, intelligent cities and transportation and even

financial services (amonsts others). As these become better defined

they will be added to the list presented here. We are, however,

confident that our analysis across all use cases in those dimensions

of opportunities, research questions, and requirements has

identified commonalities that will support future work in this

space. Hence, the use cases presented are directly positioned as

input into the milestones of the COIN RG in terms of required

functionalities.

11. List of Use Case Contributors 

Dirk Trossen has contributed the following use cases: Section

3.1, Section 5.1, Section 5.2, Section 6.1. 

Marie-Jose Montpetit has contributed the XR use case (Section

3.2). 

David Griffin and Miguel Rio have contributed the use case on

performing arts (Section 3.3). 

Ike Kunze and Klaus Wehrle have contributed the industrial use

cases (Section 4). 

Xavier De Foy has contributed the use case on virtual networks

programming (Section 5.3) 
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