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Abstract. Cyberattacks against industrial control systems pose a seri-
ous risk to the safety of humans and the environment. Industrial intrusion
detection systems oppose this threat by continuously monitoring indus-
trial processes and alerting any deviations from learned normal behavior.
To this end, various streams of research rely on advanced and complex
approaches, i.e., artificial neural networks, thus achieving allegedly high
detection rates. However, as we show in an analysis of 70 approaches from
related work, their inherent complexity comes with undesired properties.
For example, they exhibit incomprehensible alarms and models only spe-
cialized personnel can understand, thus limiting their broad applicability
in a heterogeneous industrial domain. Consequentially, we ask whether
industrial intrusion detection indeed has to be complex or can be SIM-
PLE instead, i.e., Sufficient to detect most attacks, Independent of hyper-
parameters to dial-in, Meaningful in model and alerts, Portable to other
industrial domains, Local to a part of the physical process, and computa-
tionally Efficient. To answer this question, we propose our design of four
SIMPLE industrial intrusion detection systems, such as simple tests for
the minima and maxima of process values or the rate at which process
values change. Our evaluation of these SIMPLE approaches on four state-
of-the-art industrial security datasets reveals that SIMPLE approaches
can perform on par with existing complex approaches from related work
while simultaneously being comprehensible and easily portable to other
scenarios. Thus, it is indeed justified to raise the question of whether
industrial intrusion detection needs to be inherently complex.

1 Introduction

Cyberattacks against Industrial Control Systems (ICSs) with the goal of finan-
cial gains, damaging equipment, or even risking human lives by blocking normal
operations or injecting false data are becoming more prevalent [7]. Recent exam-
ples of such attacks include the attempted poising of a Florida city’s water supply
by increasing its sodium hydroxide concentration [59]. Increased connectivity to
the Internet is one driver behind this development, but practice shows that even
air-gapped systems are not secure against sophisticated attacks anymore [7].
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Besides preventive security mechanisms, e.g., integrity protection, recent re-
search has seen a rising interest in detecting intrusions into industrial networks.
Such Intrusion Detection Systems (IDSs) passively monitor processes to alert
about anomalous behavior before any real damage can occur and promise to
provide a non-intrusive, retrofittable, and easily deployable security solution. In
contrast to traditional IDSs known from office or data center environments, In-
dustrial Intrusion Detection Systems (IIDSs) have the unique advantage that
they can leverage the predictability and repetitiveness of ICSs to identify even
advanced and stealthy attacks [11]. Auspicious results are reported by process-
aware IIDSs, which incorporate the physical state of the monitored ICS into their
decision-making. Consequently, they received tremendous interest from the re-
search community, with state-of-the-art IIDSs based mainly on machine learning,
e.g., artificial neural networks [50], graph theory [57], or linear algebra [11].

The powerful underlying IIDS methodologies yield promising detection per-
formances, however, at the cost of complexity, requiring resource-intensive oper-
ations and hindering generalizability [51, 76]. Furthermore, the alarms raised by,
e.g., artificial neural networks, are often not explainable, making it challenging
to derive concrete actions for mitigating attacks [28]. Meanwhile, we observe that
attacks, like the one on Florida’s water supply [59], lead to apparent deviations
from normal operations. Therefore, in this paper, we pose the question: Do IIDSs
indeed have to be complex to reliably detect attacks on industrial systems?

To answer this question, we study to what extent IIDSs can be simple, e.g.,
merely keeping track of the minimum and maximum of observed process values,
and whether they perform on par with complex related work. Surprisingly, such
approaches have obtained no attention so far, likely as they have never been con-
sidered suitable in traditional networks, e.g., data centers. However, as we show
in this paper, this conclusion is not necessarily true for industrial networks due
to the repetitive and predictable nature of their underlying physical processes.
SIMPLE IIDSs avoid many of the drawbacks of complex solutions as they are
Sufficient to detect most attacks, operate Independently of parameters, provide
Meaningful alerts, are Portable to other industrial scenarios, require only Local
process knowledge, and can be realized using Efficient computational operations.

Contributions. More precisely, we present the following contributions to
determine whether the complexity of state-of-the-art IIDSs is indeed needed:

• We analyze the current state of IIDS research. Our study of 70 approaches un-
veils limitations w.r.t. deployability, computational complexity, generalizabil-
ity, focus on non-stealthy attacks, and incomprehensibility of alarms (Sec. 3).

• To assess whether industrial intrusion detection needs to be inherently com-
plex, we design four intentionally SIMPLE IIDSs1 characterized by straight-
forward, relatable, and easy-to-compute concepts (Sec. 4).

• We then compare the performance of our SIMPLE IIDSs against state-of-the-
art complex related work alongside four industrial datasets. Our results show
that SIMPLE IIDSs detect more attacks than complex related work detects
on average and can be ported effortlessly across industrial domains (Sec. 5).

1 Implementation available at: https://github.com/fkie-cad/ipal_ids_framework
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2 Intrusion Detection in Industrial Control Systems

Industrial networks are responsible for operating today’s manufacturing plants
and critical infrastructure. Due to their high degree of automation, industrial
communication almost exclusively relies on machine-to-machine communication
between sensors measuring the current physical environment and actuators in-
teracting with the external world. In contrast to the unpredictable behavior of
traditional networks induced by spontaneous human interactions, industrial net-
works exhibit regularly repeating and predictable behavior [76]. These patterns
only change due to failures or after seldom structural changes to the physical
processes, e.g., a manufacturing plant being configured for a new product.

In the past, industrial networks were isolated from the Internet and there-
fore assumed secure; Hence no protection mechanisms, like authentication or
encryption, were integrated. Nowadays, as more connectivity is demanded, e.g.,
for remote monitoring or cross-production plant optimization, these networks
can no longer be considered secure [7]. While retrofitting preventive security
mechanisms requires expensive downtime and is often inapplicable due to legacy
hardware and resource constraints, IIDSs offer a unique alternative opportunity.

IDSs for traditional office and server networks, e.g., Zeek and Snort, usually
define rules for typical malware and attack patterns that trigger an alarm in-
dicating known suspicious activities. However, due to the industry’s diversity,
attacks are usually unique and targeted, significantly reducing their efficiency.

Contrary, IIDSs can take advantage of the abundance of sensor and actuator
data exchanged over the network. The fact that processes behave predictably
according to physical constraints enables a great potential for anomaly detec-
tion training on benign data and alerting deviations. Specifically, process-aware
IIDSs report excellent detection capabilities, as recent surveys emphasize [23, 37].
However, their effectiveness is still questionable, as many detection methodolo-
gies are over-engineered to detect specific attacks in specific systems and are thus
not suitable to detect new and tailored attacks as often observed in industrial
networks [51, 76]. Still, process-aware anomaly detection offers the opportunity
to passively and retroactively protect manufacturing plants and critical infras-
tructure against powerful attacks.

3 The State of Industrial Intrusion Detection Research

Given the promise of IIDSs to offer an easily retrofittable solution to secure
industrial networks, the research landscape around industrial intrusion detec-
tion has experienced huge attention across all industrial domains. Different sur-
veys put significant effort into providing a holistic overview of this scattered
research field [23, 37]. Surprisingly and contradicting the initial promise of an
easily retrofittable solution, the current state-of-the-art, governed by all kinds
of machine learning, comes at the cost of a complexity overhead, e.g., in terms
of demanded computational resources, limited generalizability across industrial
domains, or incomprehensiveness of the detection models and emitted alerts. In
the end, this hinders the widespread deployment of security mechanisms.
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Table 1. Complex approaches govern the current state of industrial anomaly detection
research, and only a few evaluation datasets, like SWaT, are being dominantly used.

Detection Method SWaT WADI HAI
(unique publications) (63) (24) (6)

A
rt
ifi
ci
a
l
N
N
s

(4
4
)

Autoencoder (15) [12, 16, 26, 36, 40, 41, 47, 52, 58,
62, 68, 75, 77, 83] [12, 62] [45]

Other NN (12) [1, 20, 22, 29, 34, 49, 50, 65, 70,
71, 73, 78]

[1, 22, 29, 34,
50, 70, 73] –

RNN (9) [6, 30, 39, 53–56] [30, 56] [13, 42]
GAN (5) [5, 14, 44, 60, 64] [14, 60] –
DNN (3) [43, 46, 66] – –

G
ra
p
h
s

(6
)

Automata (3) [15, 57, 79] [79] –

Other (3) [17, 35] [17, 35, 69] –

M
is
ce
ll
a
n
e
o
u
s

(2
0
)

Invariants (3) [33, 74, 82] [33, 82] –
Linear algebra (3) [11, 24, 63] – –

Classifier (2) [9, 25] [25] –
Fingerprinting (2) [2, 4] [2] –
Matrix Profiles (2) [8, 10] – –

Other (8) [18, 32, 48, 80, 81] [67, 80, 81] [21, 48, 61]

To shine light on this issue and precisely understand the degree of complexity
in related work, we systematically analyze the IIDS research landscape. We set
out to assess IIDSs that implement anomaly detection, i.e., train models on
benign data, as they are especially suited for industries (cf. Sec. 2). To this end,
we systematically review all papers citing one of the three datasets commonly
used in research [19] (SWaT [38], WADI [3], and HAI [72]) according to Scopus
and Semantic Scholar as of April 20, 2022, resulting in 215 publications for
SWaT, 92 for WADI, and 18 for HAI. We then manually filter for anomaly
detection IIDSs, thus especially excluding supervised machine learning, position
papers, and surveys. As summarized in Tab. 1, 70 unique publications fulfill
these requirements (some papers use more than one dataset).

We structure found approaches alongside their underlying detection method-
ologies into three broader classes (cf. Tab. 1). Artificial neural networks (63%
of publications) are usually trained to predict the physical state based on re-
cent historical samples. They then define a difference measure, e.g., between
predicted and observed state, and raise an alarm if a threshold is surpassed.
In contrast, graph-based IIDSs (9%) aggregate similar expected behavior into
(physical) states of the system with transitions between these states. Unknown
states, transitions, or irregularities in their occurrence indicate an anomaly. A
large class of miscellaneous approaches (28%) shows that the research commu-
nity has not settled on a preferred direction even in this confined domain.

Interestingly, we found that all approaches from Tab. 1 rely on complex meth-
ods: While we occasionally observed related work supplemented with straightfor-
ward methods, e.g., out-of-bound checks [57], to the best of our knowledge, such
simple approaches have not yet been evaluated in isolation. In the following, we
detail our survey’s findings by focusing on issues resulting from their complexity.
Computational Complexity. The implementation of any detection method-
ology should be quick enough to be deployable in real-time environments, i.e.,
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detection should not be significantly delayed by processing overhead. E.g., even
if adequate hardware is available, requirements such as GPUs in 23% of the pub-
lications drastically limit deployability. Although artificial neural network model
sizes of about 1.5MB are claimed to be lightweight enough to be processed by
industrial hardware [30] for other deployments, e.g., on programmable network
switches (as commonly done for traditional IDSs), this is still infeasible.
Hindered Generalizability. IIDS research is characterized by an inherent het-
erogeneity across deployment domains, although underlying fundamental prin-
ciples remain similar (cf. Sec. 2). While it would make sense to transfer the
achievements of IIDS research conducted for one domain to another, it is known
that most published approaches (75% [76]) evaluate a single use-case. Also, in
our survey, we find that IIDSs are evaluated only on a median of 1.5 (2 on av-
erage) different datasets, and since complex IIDSs are fine-tuned to one specific
scenario, they are rarely applied elsewhere [27, 76]. Even though some papers
claim generalizability to other domains [46], this claim is not proven.
Incomprehensible Alarms. After an IIDS has indicated a potential threat
by emitting an alarm, further (manual) investigation is necessary to find and
ultimately mitigate its cause. This could include determining the affected part
of the process and isolating it from the rest of the network. While a few IIDSs’
alarms are reasonably descriptive [33, 42, 57] and would ease in-depth investiga-
tion, such works are rare in our survey. In most cases, the decisions of machine
learning classifies are often incomprehensible or only accessible to highly-trained
specialists. For instance, feeding a vector of process values into an artificial neu-
ral network [46], it is not clear why the vector would be classified as benign or
malicious, preventing timely tracing of an alarm back to its source.
Difficult Deployment. Training an IIDS to a process usually requires config-
uring plenty of hyperparameters, especially for machine learning, which relies on
experts knowing the details of a model. As scientific reproduction studies indi-
cate [27], even IDS experts fail when trying to configure an already published
approach (with source code available) to match the original publication’s re-
sults. While setting up an IIDS is usually done once and, therefore, the training
overhead might be justifiable, industrial processes are subject to change if the
process is adapted or optimized from time to time. In the worst case, this makes
the trained model obsolete and requires redoing the entire process. Also, verifying
a retrained model is difficult if the model is not humanly comprehensible [28].
Non-Stealthy Attacks. One common argument to justify complexity is the
goal to unveil stealthy attacks. While approaches evaluated on specifically crafted
datasets exist [11], a closer inspection of the commonly used datasets reveals
that many attacks are not difficult to detect. As shown in Fig. 1 for SWaT,
overshooting or undershooting regular process values, remaining for too long in
a single state (flat line), or unusual steep inclines or declines do not necessarily
require complex detection mechanisms. Still, this is not a flaw of the datasets,
as recent real-world incidents prove. E.g., the sodium hydroxide concentration of
an insecure water treatment plant in Florida was set to hazardous levels (about
100 times increased) [59], constituting a potentially easily detectable real attack.
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Fig. 1. Manual investigation of the SWaT dataset reveals that attacks (red) commonly
used for evaluating IIDSs in research are often not stealthy and thus easy to detect.

In conclusion, current research on industrial intrusion detection is primarily
driven by complex approaches, while attacks in evaluation datasets and exam-
ples from real-world incidents seem to be detectable relatively straightforward.
Given further drawbacks, i.e., incomprehensible alarms, computational complex-
ity, hindered generalizability, and difficult deployment, it is unknown whether
this complexity is necessary or whether IIDSs could not be (more) simple instead.

4 SIMPLE Industrial Intrusion Detection

To study the question of whether IIDSs indeed have to be complex, we first define
properties that characterize a SIMPLE IIDS (Sec. 4.1). We then present our four
IIDSs (Sec. 4.2) derived from typical attack patterns and natural ICS behaviors,
e.g., that physical and operational limits constrain possible value ranges.

4.1 Sufficient, Independent, Meaningful, Portable, Local & Efficient

The focus of research on complex IIDSs leads to inherent drawbacks as laid out
in Sec. 3, and to address these issues, we propose six properties for Sufficient,
Independent, Meaningful, Portable, Local, and Efficient (SIMPLE) IIDSs:
Sufficient. Although simpler in design, an IIDS should be sufficient to detect
most attacks while emitting few false alarms (compared to complex approaches).
Independent. Since training an IIDS to specific scenarios is currently compli-
cated due to plenty of hyperparameters influencing the training process, SIMPLE
models should be independent of parameters and specialized personnel required
to find parameters or re-evaluate a trained model after any modification.
Meaningful. As IIDSs protect physical processes, providing operators with
meaningful alerts is essential. They allow determining which sensors/actuators
behave anomalously and thus take appropriate measures in a timely manner.
Portable. Since the industrial domain is inherently heterogeneous, an IIDS
should be portable to various industrial scenarios. I.e., it needs to be adaptable
to different ICS processes and kinds of sensors/actuators types.
Local. Detection methodologies should be local to individual sensors/actuators
so that they can be adjusted to their particular distinct behavior. Furthermore,
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locality enables partially adjusting an IIDS when the ICS is modified, and sen-
sors/actuators are added or removed without obsoleting other models.
Efficient. The detection methodology should be computationally efficient during
training and live detection. Since an ICS’s process may change, quick retraining
avoids extensive periods in which an obsolete model is used. Efficiency during live
detection enlarges hardware and deployment choices and eases timely responses.

Besides SIMPLE, related work already postulated a similar set of require-
ments [28]. Overall, our six properties address the challenges of complex detection
approaches widely found in literature and thus provide the foundation for easily
understandable, lightweight, generalizable, and effective intrusion detection.

4.2 Designing SIMPLE IIDSs

To turn the postulated properties into reality and thus lay the foundation for
answering whether industrial intrusion detection indeed has to be inherently
complex, we design four SIMPLE IIDSs. Our approaches are inspired by typical
attack patterns found in scientific datasets (cf. Fig. 1), natural ICS behaviors,
and share a set of common characteristics as explained in the following.

At the core, a SIMPLE IIDS learns a single model per sensor/actuator of the
ICS and is trained in a single pass. Not only do separate models fulfill locality, but
they are even necessary as process variables exhibit different value ranges, i.e.,
sensors (float) and actuators (discrete), obviating the need for additional nor-
malization known from complex related work (e.g., [1, 6, 43]). Simultaneously, we
avoid introducing process dependencies into the model, which would inherently
increase complexity. By iterating over the data only once, we significantly reduce
the computational complexity of the training process.

All our detection models train a lower (min) and an upper (max) threshold of
a certain, easily computable property and emit an alarm if one of these thresholds
is exceeded. To account for variability in physical values and between process
cycles due to noise or the fact that training data might not cover all expected
data ranges, we introduce an error margin to the learned thresholds as follows:

minerr := min− max−min

2
maxerr := max+

max−min

2

The resulting thresholds minerr and maxerr, which are then used for emitting
alarms, effectively double the trained range. While this approach is highly op-
portunistic, it is universally applicable and could be theoretically adjusted easily,
yet we refrain from doing so in the spirit of simplicity.

In the following, we present the design of our four SIMPLE IIDSs (MinMax,
Gradient, Steadytime, and Histogram) based on these common characteristics.
As visualized in Fig. 2, each approach is inspired by natural ICS behaviors
or typical attack patterns. We do not claim that our set of SIMPLE IIDSs
is exhaustive; theoretically, many others exist. Nevertheless, the following four
approaches are adequate to study whether the inherent complexity of IIDSs
observed in related work is required. Still, it is essential to note that not every
approach is equally well suited for each type of sensor/actuator.
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Fig. 2. We introduce four SIMPLE IIDS ideas detecting over- or undershooting with a
MinMax approach, steep in- or declines with Gradient, flat lines with Steadytime, and
unnatural process fluctuations with a Histogram. Each IIDS trains an allowed range
(green area). If the threshold (green line) is surpassed, an alarm (red arrow) is emitted.

MinMax. The minimum and maximum (MinMax) approach (cf. Fig. 2a) de-
tects whether a sensor’s/actuator’s current value exceeds the range observed in
the training data and raises an alarm if any observation falls outside that range
(± error margin). This approach is motivated by the intuition that process values
of industrial systems relate to physical measurements or setpoints and thus usu-
ally obey certain limits. E.g., temperatures below the freezing point of a liquid
are not desirable for pumping it through pipes. Even if the physical setup does
not limit the value range, operational requirements may impose restrictions on
the allowed data range, e.g., the pH value of a liquid may not exceed a specific
range to be non-hazardous. Thus, we assume that an industrial system exhibits
a class of values inside well-defined minimum and maximum limits.
Gradient. Following a similar intuition, the Gradient approach (cf. Fig. 2b)
detects whether a sensor’s/actuator’s slope exceeds the minimum and maxi-
mum observed during training (± error margin). While MinMax observes global
changes, more subtle attacks occurring within these limits may remain unno-
ticed. E.g., as shown in Fig. 1c, the sensor is set to a high value within the
operational limits, yet far too abrupt, thus introducing a noticeable discontinu-
ity. Hence, the Gradient approach assumes that ICSs have continual character,
i.e., physical values such as temperatures cannot change at arbitrary speed.
Steadytime. Focusing on another temporal aspect, the Steadytime approach
(cf. Fig. 2c) detects whether a sensor/actuator remains static, i.e., does not
change its value, for a shorter or longer time than seen during training (± error
margin). This approach is motivated by the observation that an attack, e.g.,
freezing a sensor/actuator (cf. Fig. 1b) such as a pressure relief valve, cannot be
detected by checking whether a value or the velocity of a value change remains
within certain boundaries (MinMax/Gradient). Since a steady state is difficult
to define for noisy sensor data, Steadytime takes only process values into account
if the number of distinct values during training is sufficiently small (≤ 10).
Histogram. Specifically targeting the occurrence of values, the Histogram ap-
proach (cf. Fig. 2d) tracks their distribution within a fixed-sized window and
tests whether it is in line with a histogram seen during training (± error mar-
gin). The underlying intuition expects a similar distribution of reoccurring values
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between process cycles. This approach can detect the existence and absence of
frequent value changes, which the other three approaches cannot detect. The
histograms are created by counting the number of times each distinct value ap-
pears in a sliding window. We merge them into a single histogram that covers
each value’s minimum and maximum occurrences across all distinct fixed-sized
windows. The window size should match the duration of a process cycle, which
could be automatically determined in an additional run over the dataset prior
to training the histograms. Like Steadytime, Histogram only applies for process
values with a few distinct values (≤ 10), as comparing two histograms value-by-
value is unfeasible for noisy sensor data.

These four proposals stand in stark contrast to related work, which focuses
on inherently complex approaches such as leveraging multiple Autoencoders [14]
or fusing two IIDS directions into one solution [26]. While further refinements
to our IIDSs are possible, we explicitly focused on fundamental and minimal-
istic approaches to understand their effectiveness and assess whether industrial
intrusion detection really needs to be complex or can be more SIMPLE instead.

5 Industrial Intrusion Detection Can Indeed Be SIMPLE

Using our four SIMPLE IIDSs, we can now study the fundamental question of
whether industrial intrusion detection inherently needs to be complex or whether
and to which extent SIMPLE approaches provide a viable alternative. To an-
swer this question, we specifically study whether they are (i) sufficient to detect
most attacks, (ii) competitive to complex approaches from related work, and
(iii) portable across industrial scenarios. To this end, we first provide an overview
of our evaluation setup (Sec. 5.1) before we analyze how our approaches perform
on the widely-used reference dataset SWaT (Sec. 5.2), their portability to three
additional industrial datasets (Sec. 5.3), and ultimately discuss the prospects of
SIMPLE IIDSs for industrial intrusion detection (Sec. 5.4).

5.1 Evaluation Setup

We begin our analysis by describing the implementation, datasets, and evaluation
metrics underlying our evaluations.
Implementation. We implemented our four SIMPLE IIDSs (cf. Sec. 4.2) in
Python on top of the IPAL framework [76], which offers a holistic scientific
platform to implement, evaluate, and compare industrial intrusion detection ap-
proaches. Most importantly, IPAL introduces a unified representation for the
data input, which facilitates the seamless application of IIDSs to many datasets.
Furthermore, it provides (re-)implementations of state-of-the-art IIDSs from re-
lated work [76], which we use as a comparison benchmark. To facilitate further
research on industrial intrusion detection, we make the implementations of our
SIMPLE IIDSs publicly available2 within the IPAL framework.

2 Implementation available at: https://github.com/fkie-cad/ipal_ids_framework
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Fig. 3. When evaluating IIDSs, a true positive alarm (TPA) overlaps with the attack
label from the dataset (red), while a false positive alarm (FPA) does not overlap with
any attack. The penalty score (PS) measures the “overshooting” of all raised alarms.

Datasets. We evaluate our IIDSs on four state-of-the-art industrial datasets
based on physical testbeds and including attacks against the industrial process:
SWaT [38], the most widely-used dataset, represents a multi-staged water treat-
ment system. Similarly, WADI [3] serves as an example of portability to a wa-
ter distribution scenario. Additionally, we consider the novel WDT dataset [31]
since it includes network and physically induced attacks, and finish with HAI [72]
modeling power generation and storage – an entirely different industrial domain.
Evaluation Metrics. To objectively quantify the performance of both SIMPLE
and complex IIDSs, we refer to a set of performance metrics. As visualized in
Fig. 3, datasets contain labels (in red) indicating a time range when an attack
took place. An IIDS indicates these attacks by emitting alarms (in black). As
traditional metrics, we utilize accuracy, precision, recall, and F1-score – the de-
facto standard for evaluating classifiers. Yet, as they focus on the label coverage,
they do not express how many attacks are detected and are skewed if attacks
are of different lengths. Furthermore, effects unique to industrial settings, such
as the stabilization time required after an attack, are not considered. Thus, we
additionally calculate the percentage of detected attacks, the number of true pos-
itive alarms (TPA), i.e., alarms overlapping with an attack, false-positive alarms
(FPA), i.e., non-overlapping alarms, and the penalty score (PS) aggregating the
non-overlapping time span [57] to provide a more holistic perspective.

5.2 Sufficiency: SIMPLE IIDSs on Par With Complex Approaches

First, we study whether SIMPLE IIDSs are sufficient to detect most attacks
(cf. Sec. 4.1) and whether industrial intrusion detection must be inherently com-
plex. To this end, we compare our approaches’ detection performance to related
work in an in-depth evaluation based on SWaT [38], as it is the most widely-used
dataset in literature (90% of publications according to our analysis in Tab. 1).

SWaT consists of a training part of normal ICS behavior and a test part
containing 36 attacks. We trained our four IIDSs on the training data omitting
the first ∼22 hours during which the system stabilizes after activation. As seven
out of SWaT’s 51 sensors and actuators do not maintain the regular patterns
observed during training, we excluded those from further evaluation. Skipping
the stabilization phase [49, 55, 58, 63, 66, 75, 79] and omitting process values [50,
52, 62, 66, 75] in SWaT are common practices in related work. Notably, instead
of excluding the process values, a process expert could manually adapt a pre-
trained SIMPLE model, which is impossible for complex approaches (cf. Sec. 3).
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Table 2. Already a high-level analysis reveals that our SIMPLE IIDSs (green) in combi-
nation can detect 75% of attacks from the SWaT dataset, thus performing comparably
to complex approaches from related work (blue).

Attack 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Σ

MinMax 23
Gradient 25
SteadyTime 14
Histogram 13

SIMPLE 27

DIF [25] 19
1D-CNN [26] 26
SVM [43] 20
DNN [43] 13
Seq2SeqNN [46] 29
1D-CNN [49] 31
TABOR [57] 24
GAN [64] 32
MADICS [66] 23
NN [71] 25
Com-AE [75] 26
1D-CNN [78] 32

High-level Ability to Detect Attacks. We use SWaT to gain a first assess-
ment of the ability of our SIMPLE IIDSs to detect attacks and to compare them
to complex approaches from related work. To this end, we analyzed all 63 publi-
cations evaluating on SWaT (cf. Sec. 3) to obtain those that provide sufficiently
detailed information on which specific attacks they detect, resulting in eleven
publications covering twelve complex IIDSs. Tab. 2 visualizes which SIMPLE
(green) and complex (blue) IIDSs can detect which of the 36 attacks in SWaT.

Our four combined approaches (denoted with “SIMPLE”) detect a majority of
attacks (75%/27 attacks). Our arguably most simple approach (MinMax) alone
can detect 23 attacks, and Gradient performs best by detecting 25 attacks. For
comparison, the average number of detected attacks by related work is 25.0.
Aggregating related work’s capabilities, they detect all except a single scenario.
However, in the twelve scenarios that all SIMPLE approaches detect, seven of the
twelve complex IIDSs do not fully cover these seemingly easy-to-detect attacks.
Regarding the nine attacks that are not detected by any SIMPLE approach, four
(4, 10, 11, 14) have repeatedly been reported as not-detectable [46, 71, 78], and
we observe inefficiencies in complex approaches too. Notably, not a single attack
is detected by all complex approaches but not by our SIMPLE methods.

Thus, SIMPLE IIDSs seem on par with their complex counterparts, detecting
more attacks on average but less in total for the benefits of increased simplicity.
In-depth Comparison. Besides high detection rates, IIDSs should have a low
false-positive rate [28]. To study how SIMPLE IIDSs fare against selected com-
plex related work, we study their alert behavior in-depth visually (Fig. 4) and
alongside metrics (Tab. 3). We again provide combined results for “SIMPLE”,
where an alarm is emitted whenever any IIDS emits an alarm. Notably, this may
fuse alerts into larger ones, which can result in fewer overall TPAs and FPAs.

Since this evaluation requires access to complex IIDSs, we selected one rep-
resentative approach for each of the three classes (cf. Tab. 1) for which we have
implementations available (cf. Sec. 5.1): (i) Seq2SeqNN [46] (representing arti-
ficial neural networks) predicts the following expected output based on samples
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Short attacks and alarms are enlarged to a minimum width of 0.15% for visibility.

Fig. 4. A visual inspection of the alerts of SIMPLE IIDSs (green) shows thorough cover-
age w.r.t. the attacks for the SWaT dataset (red). The alerts of the three representative
complex approaches (blue) are less expressive and contain more false positives.

of recent process history, and alerts if the prediction deviates long enough from
the observed behavior, (ii) TABOR [57] (graph-based) combines an automaton,
Bayesian network, and out-of-bounds check into a single solution (while we could
only reproduce one of TABOR’s 16 models for SWaT, this model still suffices for
our analysis), and (iii) PASAD [11] (miscellaneous) leverages a singular spectrum
analysis to identify recurring process patterns on a per-sensor basis.

Upon visual inspection based on Fig. 4, the alerts emitted by the SIMPLE
IIDSs coincide with the attacks to be detected to a large extent. Furthermore,
during non-attack periods, they do not emit large amounts of false alarms. Over-
all, the three complex approaches contain more false alarms and detect fewer
attacks. Thus, while from a high-level view, the complex IIDSs under study ap-
peared to detect slightly more attack scenarios (cf. Tab. 2), they come at the
price of more false positives and consequently reduced utility.

Moreover, most related complex approaches’ alarms are incomprehensible as
they often exhibit multiple alarms around an attack (Seq2SeqNN) or alert over
a long time range covering many attacks (PASAD). Our IIDSs, on the other
hand, precisely overlap with the attacks and additionally allow to determine the
potential malicious sensors through their locality property (cf. Sec. 4.1). E.g., for
21 of the attacks detected by Gradient, the alerts stem from the process value
indicated as the attack point in the SWaT dataset, thus providing a reliable
starting point for subsequent incident response.

The individual metrics summarized in Tab. 3 confirm our previous observa-
tion that SIMPLE approaches detect large amounts of attacks (detected attacks
and TPA), emit few false alarms (FPA), and perform on par with related work.
Notably, while Steadytime and Histogram detect fewer attacks, they simultane-
ously have the lowest FPA score of all IIDSs under study. In terms of accuracy,
precision, recall, and F1 score, the MinMax, Steadytime, and Histogram IIDS
outperform Seq2SeqNN and PASAD and perform roughly equivalent to TABOR.
These metrics are surprisingly good, considering the simplicity of the detection
methods, which are not optimized to any metrics (a problem common for ma-
chine learning approaches [51]). While Gradient showed auspicious detection
performance in the visual comparison, it fares poorly for the individual metrics.
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Table 3. Across all relevant quantifiable evaluation metrics, SIMPLE IIDSs (especially
in combination) are competitive to the studied complex approaches from related work.

IIDS Detected TPA FPA PS Acc. Prec. Rec. F1Attacks [%]

MinMax 63.89 22 9 14647 0.94 0.75 0.81 0.78
Gradient 69.44 47 64 352 0.88 0.3 0.00 0.01
Steadytime 38.89 16 4 5033 0.96 0.89 0.75 0.81
Histogram 36.11 12 0 6794 0.95 0.85 0.72 0.78

SIMPLE 75.0 26 23 19621 0.94 0.71 0.87 0.78

Seq2SeqNN 72.22 30 37 7559 0.88 0.44 0.11 0.17
TABOR∗ 66.67 – – – – 0.86 0.79 0.82
PASAD 44.44 10 14 81604 0.78 0.32 0.72 0.45

∗ Results taken from the publication [57] as not all model parameters were reproducible.

The main reason for this phenomenon is that these metrics favor long attack
coverage, a phenomenon we study in more detail in the appendix.

Takeaway: All four SIMPLE IIDSs detect a sufficient number of attacks in
the SWaT dataset. Combining the SIMPLE approaches allows detecting 75% of
all attacks while visually emitting only a few false alerts. Moreover, raised (false)
alarms are meaningful due to their local design and comprehensible models.
Compared to related work, SIMPLE IIDSs can keep up with complex approaches
in terms of the number of detected alarms, and especially false positives.

5.3 Portability: SIMPLE IIDSs Work Effortlessly in New Settings

To ensure that IIDSs are widely applicable, they must be portable to various
industrial scenarios and processes with a short training phase and without re-
quiring (re-)inventions (cf. Sec. 4.1). Consequently, we show the portability of
our IIDSs by applying them to three additional industrial datasets (WADI [3],
WDT [31], and HAI [72], cf. Sec. 5.1). We again compare our IIDSs to the three
complex representatives from related work (Seq2SeqNN, TABOR, and PASAD,
cf. Sec. 5.2). Unlike ours, porting the complex IIDSs to the new datasets required
extensive manual work to find suitable models and parameters. Once more, we
analyze the results both visually (Fig. 5) and for various metrics (Tab. 4).
WADI. At first glance, with 64% of detected attacks overall, the SIMPLE
IIDSs do not perform as strongly on WADI as on SWaT. However, even our
worst-performing IIDS, Steadytime (43%), still outperforms PASAD (14%) and
TABOR (29%). More importantly, we visually observe only two false alarms not
closely related to an attack (at around 18h and 42h). While the complex IIDSs
exhibit similarly few false alarms, their penalty score (PS) is exceptionally high,
indicating that their alarms are too imprecise to match a single attack.
WDT. The WDT dataset proves challenging for all IIDS types, with SIMPLE
approaches detecting up to 22% of the attacks, compared to 4% (Seq2SeqNN)
up to 18% (TABOR) for the complex approaches. Upon closer inspection, we
identified one cause to be attacks not targeting the industrial processes, e.g.,
network scanning. Since complex approaches are likewise incapable of finding
these attack types, SIMPLE IIDSs provide an equally performing alternative.
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Short attacks and alarms are enlarged to a minimum width of 0.15% for visibility.

Fig. 5. Porting SIMPLE IIDSs (green) to three additional datasets shows their gener-
alizability to various industrial scenarios, while complex IIDSs (blue) perform worse.
Note that the results on the SWaT dataset have previously been discussed in Fig. 4.

HAI. The SIMPLE IIDSs perform well for the HAI dataset with 86% of detected
attacks, a low PS of only 531, and nearly no FPA for MinMax, Steadytime, and
Histogram. Notably, MinMax and Gradient perform especially well on HAI, thus
showing that attacks can be detected reliably even with the simplest approaches.
Complex related work, in contrast, falls far behind, and TABOR is even largely
inapplicable, likely due to HAI’s less pronounced regular patterns.
Takeaway: SIMPLE IIDSs, unlike their complex counterparts, can be ported
to new datasets without manual effort. Furthermore, considering that our ap-
proaches, in contrast to complex approaches, performed best on HAI (represent-
ing an entirely new industrial domain), this perfectly proves their portability.

5.4 Discussion: Industrial Intrusion Detection Can Be SIMPLE

Wrapping up our evaluation, we recapitulate the promised properties of SIMPLE
IIDSs (sufficient, independent, meaningful, portable, local, and efficient) and
discuss to which extent our proposed IIDSs capitalize on them.

Although we relied on straightforward detection methods and chose an op-
portunistic error threshold, our approaches proved to be on par with significantly
more complex detection methods. Most attacks are detected for the SWaT and
HAI datasets, and across all four examined datasets, our IIDSs are Sufficient
compared to related work (cf. Sec. 5.2 and 5.3).
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Table 4. For all relevant metrics, e.g., detected attacks, our SIMPLE IIDSs generalize
better to new industrial settings than complex related work (an in-depth analysis, e.g.,
regarding FPA of the Gradient IIDS, is provided in the appendix). Note that the results
on the SWaT dataset have previously been discussed in Tab. 3.

IIDS Detected TPA FPA PS Acc. Prec. Rec. F1Attacks [%]

W
A

D
I

MinMax 50.0 6 4 1751 0.96 0.7 0.41 0.52
Gradient 50.0 44 12 12 0.94 0.79 0.0 0.01
Steadytime 42.86 7 2 413 0.96 0.88 0.3 0.44
Histogram 50.0 6 6 1775 0.95 0.64 0.32 0.42

SIMPLE 64.29 6 9 3120 0.95 0.58 0.44 0.5

Seq2SeqNN 57.14 8 6 1293 0.94 0.52 0.14 0.22
TABOR 28.57 5 0 5792 0.92 0.3 0.25 0.27
PASAD 14.29 2 3 23197 0.82 0.05 0.13 0.07

W
D

T

MinMax 7.84 4 0 268 0.72 0.3 0.08 0.13
Gradient 5.88 8 3 3 0.75 0.73 0.01 0.01
Steadytime 17.65 9 0 411 0.74 0.45 0.23 0.31
Histogram 1.96 1 0 0 0.76 1.0 0.04 0.09

SIMPLE 21.57 16 3 639 0.71 0.38 0.27 0.32

Seq2SeqNN 3.92 2 3 58 0.74 0.19 0.01 0.02
TABOR 17.65 7 0 762 0.67 0.3 0.22 0.26
PASAD 11.76 4 2 639 0.68 0.27 0.16 0.2

H
A

I

MinMax 86.0 73 7 496 0.98 0.87 0.38 0.53
Gradient 78.0 209 48 96 0.98 0.89 0.09 0.16
Steadytime 28.0 15 0 161 0.98 0.86 0.11 0.19
Histogram 28.0 15 0 161 0.98 0.86 0.11 0.19

SIMPLE 86.0 145 26 531 0.99 0.87 0.4 0.55

Seq2SeqNN 4.0 2 5 936 0.98 0.29 0.04 0.07
TABOR 70.0 22 7 271159 0.32 0.02 0.6 0.04
PASAD 4.0 2 11 29839 0.9 0.01 0.04 0.02

Contrary to related work, which, e.g., requires up to 16 models for a single
dataset [57] or unique parameterization for each process value [11], our SIMPLE
approaches are Independent of parameters. While theoretically, the margin of
error or the Histogram’s window size could be fine-tuned for better performance,
even their default values, as evaluated by us, yield a competitive performance.

The alerts emitted by our approaches largely coincide with the attacks (cf.
Fig. 4 and 5). Furthermore, these carryMeaningful insights for incident response,
e.g., to which extent the trained threshold is exceeded (MinMax and Gradient).

As our SIMPLE approaches generalize to four diverse datasets (cf. Sec. 5.3),
they have successfully proved to be Portable across various industrial settings.

Already by design (cf. Sec. 4.2), all our SIMPLE approaches are Local, i.e.,
operate on a per-sensor basis. As such, they are inherently able to identify the
triggering value directly. To illustrate the resulting advantages exemplary for the
SWaT dataset, which provides precise information on the attack location, Min-
Max and Gradient, e.g., could easily identify 18 respectively 21 attack locations
correctly, significantly easing attack identification and hence incident response.

Finally, the IIDSs are Efficient w.r.t. computing resources as they rely on
elementary computational operations both during model creation and detection.
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E.g., MinMax and Steadytime only perform an interval test, Gradient requires
an additional subtraction for the slope computation, and Histogram counts and
compares the last recently occurring process values. Besides computational ef-
ficiency, they are also optimized for a low memory footprint, thus easing their
applicability in resource-limited industrial settings: MinMax and Gradient only
store the minimal and maximal bounds on a per-sensor basis, while Steadytime
and Histogram only require the thresholds per occurring value for each sensor.
Takeaway: The four exemplary approaches presented in this paper satisfy the
properties of a sufficient, independent, meaningful, portable, local, and efficient
IIDS. Thus, we show that industrial intrusion detection can indeed be SIMPLE,
challenging the necessity of inherent complexity found across related work.

6 Conclusion

Industrial intrusion detection constitutes a retrofittable solution to counteract
harmful cyberattacks against increasingly threatened industrial control systems.
Striving to achieve (close to) optimal detection of attacks, the research commu-
nity proposed a wide variety of approaches to detect anomalies in the process
state across different industrial domains. However, as we identify based on a
systematic analysis of 70 proposals from related work, these approaches show an
inherent complexity where high detection performance is accompanied by dearly
bought consequences such as a lack of model and alert comprehensibility or a high
demand for computing resources. Considering that IIDSs leverage the repetitive
nature of physical processes, we wonder why simpler detection methods have not
been considered so far. To overcome this gap, we study whether IIDSs can be
SIMPLE (Sufficient, Independent, Meaningful, Portable, Local, and Efficient)
instead of having to rely on complex models with all their disadvantages. Thus,
we designed four exemplary minimalistic approaches, such as straightforward
range checks. Surprisingly, as we show across four distinct industrial datasets,
simplicity does not result in reduced detection capabilities, as simple methods
are on par with significantly more complex related work. Simultaneously, simple
approaches offer highly beneficial properties such as eased configuration, model
and alert comprehensibility, and reduced computational overhead. Thus, simple
IIDSs provide a viable alternative to complex approaches, raising the question
whether slight increases in detection capabilities justify computational overheads
and reduced utility. Still, it remains open whether our results are constrained
by the studied datasets (i.e., the included attacks that are too “easy” to detect)
or whether SIMPLE IIDSs are inherently sufficient to detect cyberattacks. Con-
sequently, future research has to investigate the raison d’être for complex IIDS
w.r.t. advanced and stealthy attacks, beyond limiting their evaluations to the
datasets currently in widespread use, for which simple approaches suffice.
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Appendix

To better understand the SIMPLE IIDSs mechanics, we take a detailed look at
their detection phase. We occasionally see alerts stretching significantly further
(with interruptions) than the actual attack. In Fig. 6a, the MinMax IIDS raises
an alarm throughout the ICS’s recovery phase since the process values still devi-
ate from their normal values and fluctuate until stabilizing. The Gradient IIDS
reveals another phenomenon in Fig. 6b, leading to supposedly false alerts inher-
ent to its design. As it indicates in- or declines, its alerts are short, which results
in a poor performance w.r.t. to metrics evaluating the attack coverage. While
this method is precise in finding the actual beginnings and endings of attacks, it
often raises an alarm shortly after an attack when the process quickly returns to
normal operation. Finally, in Fig. 6c, we observe effects that can occur after the
actual attack ended (or where datasets are not precisely labeled). All of these
effects result in insufficient attack coverage and false alarms, such that the good
performance of IIDSs is not captured well by the available metrics.

73.0 74.0 75.0
Passed Time [h]

4
0

0
6

0
0

LI
T4

01

M
in
M
ax

(a) Alerts may arise dur-
ing process stabilization.

96.5
Passed Time [h]

8
0

0
1

0
0

0
1

2
0

0
LI
T3

01

Gr
ad
ien

t

(b) Gradient does not
raise continuous alerts.

100.0 100.5 101.0
Passed Time [h]

4
0

0
6

0
0

8
0

0
LI
T1

01

M
in
M
ax

(c) Attacks may have a
delayed impact.

Fig. 6. IIDS performance metrics can show a skewed picture when to be detected
physical anomalies (green) are misaligned with the actual attack timing (red).


