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Abstract: The automatic identification system (AIS) was introduced in the maritime domain to
increase the safety of sea traffic. AIS messages are transmitted as broadcasts to nearby ships and
contain, among others, information about the identification, position, speed, and course of the
sending vessels. AIS can thus serve as a tool to avoid collisions and increase onboard situational
awareness. In recent years, AIS has been utilized in more and more applications since it enables
worldwide surveillance of virtually any larger vessel and has the potential to greatly support vessel
traffic services and collision risk assessment. Anomalies in AIS tracks can indicate events that are
relevant in terms of safety and also security. With a plethora of accessible AIS data nowadays, there
is a growing need for the automatic detection of anomalous AIS data. In this paper, we survey
44 research articles on anomaly detection of maritime AIS tracks. We identify the tackled AIS anomaly
types, assess their potential use cases, and closely examine the landscape of recent AIS anomaly
research as well as their limitations.

Keywords: automatic identification system; AIS; anomaly detection; maritime safety; maritime
security; maritime surveillance

1. Introduction

Freight transport via sea is one of the major backbones of our highly connected
global economy today. Global demand for freight transportation is expected to more than
double by 2050, with over 70% of goods shipped by sea [1]. In addition to commercial
transport vessels, the world’s oceans are traveled by a wide range of other ships, such
as passenger ships, ferries, fishing vessels, or recreational crafts. Therefore, ensuring the
safety and security of diverse maritime traffic is necessary for the continued functioning of
the increasingly globalized market economy and the well-being of passengers and marine
ecosystems.

To augment safety and security at seas, the International Maritime Organization (IMO)
designed the Automatic identification system (AIS) [2] in the 1990s, providing a comple-
mentary system to high-frequency radar. Ships equipped with AIS transceivers broadcast
their positions derived from the Global navigation satellite system (GNSS) periodically to
vessels and authorities in their vicinity. While neighboring vessels may utilize positional
data for collision avoidance, on-shore Vessel traffic services (VTSs) leverage AIS for traffic
planning and guidance. According to the SOLAS (Safety of life at sea) agreement from
2002 [3,4], it is mandatory for ships above a certain size to be equipped with AIS. Together
with this agreement, the use of satellite-mounted AIS receivers for increased reception
coverage led to an abundance of AIS data today [5]. Thus, AIS has become a valuable
system for maritime collision risk assessment [6,7] and surveillance, such as anti-piracy
operations or the prevention of illegal fishing [8].
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With over 1,490,776 ships tracked worldwide [9], a manual unveiling of suspicious ship
activities is infeasible. Hence, in recent years, many different approaches for automated
anomaly detection of maritime AIS tracks have been proposed [10–15]. These anomaly
detectors utilize the fact that vessel traffic is to some extent predictable, especially within
confined local regions, and that vessels cannot behave arbitrarily due to physical constraints
or mandatory sea routes. Thus, such detectors often train a model of normal vessel traffic
patterns. They mark outliers or violations as anomalies potentially indicating, e.g., accidents
or criminal activities.

To provide a concise overview on this research field, existing methodologies and their
applications, we review and compare recent approaches in this paper. Therefore, we first
summarize the anomaly types that can be revealed by suspicious AIS activity and map
these anomalies to their common use cases. Then, we present our literature survey on
anomaly detection of maritime AIS track covering 44 publications. We find that most
proposals focus on the detection of route deviation anomalies and are limited to a confined
geographical region their models were trained on. While there are many AIS datasets and
databases of real traffic freely available [14], one observation is that authors oftentimes
evaluate against self-recorded, inaccessible, or private AIS samples. In particular, it is
notable that there is no established dataset that also includes labeled anomalies as ground
truth. Finally, we highlight emerging privacy concerns related to AIS in general and its
implications for maritime AIS anomaly detection.

The paper is structured as follows: In Section 2, we provide an overview of AIS,
including a brief technical background, its history, initial purpose, and today’s applications.
Afterward, we elaborate on the concept of anomalies in AIS tracks and provide the rationale
for anomaly detection in Section 3. Section 4 presents our survey of recent research in detail.
We discuss limitations and emerging privacy concerns regarding AIS in Section 5 and
conclude the paper in Section 6.

2. The Automatic Identification System
2.1. Background, Regulations, and Requirements

AIS is an identification and localization system that is mainly used in the maritime
domain. The development of AIS began in the early 1990s to provide an additional ship-
to-ship awareness system to supplement radar and visual observation [16]. AIS was
designed for three primary purposes as specified by the IMO [2]: The first and foremost
purpose is collision avoidance enabled by exchanging AIS messages between all vessels
in a certain vicinity. These messages contain the vessels’ identities, precise locations, and
further relevant information to increase situational awareness and assist navigation. The
second purpose is to support on-shore VTS for improved guidance and assistance through
heavily trafficked areas or particularly dangerous passages, such as ports or sea routes [17].
Furthermore, traffic services can use special AIS messages to inform vessels about those
areas. For this purpose, specific stationary Aids to navigation (AtoN) transceivers are used,
e.g., installed on buoys. Similarly, AIS transceivers attached to survival crafts or even life
jackets greatly enhance Search and rescue (SAR) operations. Finally, littoral states have
the ability to identify ships and their cargo that are traveling in their territorial waters.
As an amendment to the SOLAS agreement of 1974, the IMO mandated that all ships on
international voyages above 300 gross tonnages must use AIS [3,4]. Many countries have
specified stricter rules, such as the United States (vessels above 65 feet) or the European
Union (fishing vessels above 15 m).

AIS messages are periodically broadcasted by transceivers onboard vessels and re-
ceived by nearby ship- or land-based receivers. The system uses two VHF radio bands
around 162 MHz and is based on Time-division multiple access (TDMA), allowing it to
be used simultaneously by multiple participants [4,18,19]. In the horizontal direction,
AIS has an effective communication range up to 50 km, which is limited by the geodetic
visibility, i.e., the fact that communication entities will be hidden by the horizon due to the
earth’s curvature. The effects on the reception range are evaluated in great detail by the



J. Mar. Sci. Eng. 2022, 10, 112 3 of 19

work of Mazzarella et al. [20]. In line-of-sight, AIS signals can however travel hundreds of
kilometers [21] mostly affected by radio interference and attenuation only. This is leveraged
by satellite-mounted receivers that nowadays provide Satellite-based AIS (S-AIS), enabling
global monitoring and a tracking extension addressing the gaps of terrestrial AIS in ocean
observations [22,23].

The actual reporting interval of AIS messages lies in the range of 2–12 s (3 min for ships
at anchor) and depends on the vessel’s velocity as specified in the IMO Resolution 74(69) [2].
According to this resolution, the reporting frequencies allow for accurate tracking of
positions and maneuvers by maritime authorities and other vessels. Moreover, further AIS
requirements are specified: AIS electronics onboard vessels must automatically transmit
information. On the other hand, they must be able to receive and process corresponding
information automatically. Furthermore, high-priority and safety-related calls must be
answered with a minimum delay. There should be a separate system with a user interface
for displaying, accessing, and selecting information for human operators. Positional data
of ships is generally obtained via one of the available GNSSs, such as GPS or Galileo [24].

While the AIS requirements in Resolution 74(69) state that cyber security mechanisms
should be implemented, it is important to note that the AIS protocol itself is not secured
and publicly accessible. In particular, neither authentication, encryption, nor integrity
protection is considered. Hence, AIS is highly vulnerable to a wide range of different cyber
attacks [25,26], e.g., false AIS message injection [27]. Unfortunately, the privacy issues of
ship crews, passengers, owners, and other associated persons are not addressed at all. This
has severe consequences, which will be considered in Section 5.2.

2.2. Data Format of AIS Messages

Information announced by AIS consists of so-called static, dynamic, voyage-, and
safety-related data [2]. All required information to be transmitted via AIS is shown in
Table 1. Besides the call name, call sign, and general information about the ship type, the
static information consists most importantly of the Maritime mobile service identity (MMSI)
number. The MMSI is uniquely assigned to each vessel and serves as the primary identifier
for ships in AIS [27].

Table 1. Information announced via AIS messages. Content of the table adapted and slightly modified
from IMO Resolution MSC. 74 (69) [2].

Type Data

Static

• MMSI number
• Call sign & call name
• Length & beam
• Ship type
• Antenna location (aft/bow; port/starboard)

Dynamic

• Ship position (PO), accuracy, and integrity
• Time in UTC
• Course over ground (COG)
• Speed over ground (SOG)
• Heading (HE)
• Rate of turn (ROT)
• Navigational status, e.g., at anchor (STA)

Voyage related
• Draught
• Hazardous cargo (type)
• Destination (DST), and estimated time of arrival

Safety related • Text messages

Since this paper is focussed on anomaly detection of AIS tracks, the dynamic part of
the AIS record is of most interest. Foremost, it includes the vessel’s position (latitude and
longitude), its course (COG), speed (SOG), heading (HE), and rate of turn (ROT) along with
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a timestamp. Voyage-related information, such as the destination port with the expected
time of arrival, or in rare cases, specific information about vessels’ draught or possible
hazardous cargo, may be suitable for anomaly detection as well.

2.3. AIS-Based Surveillance

The use of AIS as a surveillance tool for authorities has steadily increased since its
introduction, especially with the advent of satellite-based AIS that enabled an effective
global tracking of vessels [5]. With the increased desire by authorities to enhance maritime
security after the September 11 attacks, AIS has been recognized as a valuable tool for
identifying vessels approaching coasts and ports and, thus, for preventing possible terrorist
attacks [28]. Both civil and military research that focus on ship surveillance have been
steadily increased with surveillance approaches developed for a wide variety of different
domains [29]. They can be used, e.g., to investigate criminal activities [30], to monitor
fishing activities [8], or to optimize maritime logistics and supply chains [29].

2.4. Available Datasets

By design, AIS is an entirely open protocol. Since its communication is done by
radio broadcast, anyone in range can record and interpret AIS data with a suited receiver.
Nowadays, AIS equipment has become steadily more affordable [27] and viable for private
entities, research institutes, or companies to place AIS receivers along coastlines. Even the
costs of satellite-based receivers that enable tracking of vessels around the globe have been
significantly reduced and commercialized [5], which leads to a plurality of available AIS
datasets. In this context, Tu et al. [14] explored different AIS data sources and assessed the
data quality among different providers.

There is also a wide range of commercial providers that readily provide AIS data
to paying customers via publicly available websites. Other providers can be considered
non-commercial offering available data free of charge. Generally, large differences between
the providers exist in terms of pricing, data availability, and data quality. According to [31],
most providers generally do not fully provide all information carried via AIS (cf. Table 1).
Whereas AIS’s static information is never available in full detail, the available content of
dynamic or voyage-related data depends on the individual provider. In addition, shipping
tracks that can only be recorded by satellites, e.g., away from coasts on open oceans, may
be excluded by non-commercial providers. Furthermore, data validity, such as the accuracy
of ships’ heading information, is severely limited for most providers. Some providers sell
only live data but do not offer historical data, and vice versa. For scientific purposes, it
is also possible to directly request AIS data from maritime authorities like the European
Maritime Safety Authority (EMSA) [31].

3. AIS Anomaly Detection

In this section, we first elaborate on the possible types of anomalies in AIS tracks to
classify current research in the later sections. We will then focus on applications of anomaly
detection methods in the maritime domain, which aim to increase safety and security at sea.

3.1. Anomalous AIS Behaviors

The concept of anomalies in AIS tracks can be described as a behavior that is not
“normal” or, more specifically, not expected to occur during regular operation [32]. For
example, in the field of vessel traffic, it is expected that the velocity of ships does not change
too rapidly or that they usually travel along common sea routes. The latter can be observed
in visualizations of historical AIS tracks, as depicted in Figure 1.
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Figure 1. The usual shipping lanes and common patterns are directly accessible in the visualization
of AIS messages, exemplarily shown for the Gulf of Mexico (first four days of June 2020). The historic
AIS data is made publicly available by the NOAA Office for Costal Management (AIS data was
obtained by https://coast.noaa.gov/htdata/CMSP/AISDataHandler/2020/index.html, accessed on
3 December 2021. Note that the central area with sparse AIS data might be explainable by the range
of AIS transceivers and the providers’ reception capabilities).

Regarding different anomaly types, Lane et al. [33] defined five general anomalous
behaviors derived from AIS ship tracks. In this paper, we will use these anomaly types to
classify recent research. Examples for each of the five categories are sketched in Figure 2
including (a) deviation from standard route, (b) unexpected AIS activity, (c) unexpected
port arrival, (d) close approach, and (e) zone entry.

(a) Route Deviation (b) Unexpected Activity

+02:30h

(c) Port Arrival

(d) Close Approach (e) Zone Entry

Figure 2. These general five AIS anomaly types, derived by Lane et al. [33], are used in the survey to
classify the capabilities of published anomaly detectors. The arrows and data marked in orange in
each figure indicate a potential deviation from the normally expected patterns.

Deviation from standard routecan be considered the most elementary anomaly. Ships,
especially cargo or passenger ships on repetitive routes, generally take the most direct
path possible between the origin and the destination during travel (cf. Figure 1), with the
origin and destination usually being seaports. In open waters, a deviation from a straight
route may then indicate an anomaly. In areas where landmasses or narrow sea lanes
restrict traffic, ships can be expected to travel in relatively straight paths between common

https://coast.noaa.gov/htdata/CMSP/AISDataHandler/2020/index.html
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waypoints. At the entrance of seaports or in canals, ships should be expected to take very
similar routes, particularly when guided by VTS. Unexpected AIS activity encompasses
two types. The first type is AIS signal loss in areas where reception is usually adequate.
Such outages may indicate intentional on–off switching of AIS equipment. Unexpected
continuations of routes after an AIS outage represent the second type and might obfuscate
malicious actions. Unexpected port arrival can be investigated using the voyage-related
data of the AIS tracks, i.e., information about the destination port and waypoints. This
anomaly could occur, for example, when an illegal fishing catch is offloaded at different
ports. Long-lasting close approaches between vessels should generally be rare, except,
e.g., in case of emergencies. Otherwise, they might be an indication of illegal activity such
as the exchange of contraband and/or drugs. Finally, zone entry anomalies can be defined
as vessels entering an area for a significant amount of time they are not expected or allowed
to be in, such as marine protected areas or other exclusion zones.

One of the main drawbacks of AIS is its inherent unreliability, i.e., AIS tracks of ships
often show large blank spots [20]. This may be due to unintentional technical problems,
radio interference, attenuation, or actual tampering with equipment, such as intentionally
turning off AIS transceivers [34]. Moreover, as mentioned before, AIS signals can be easily
spoofed and manipulated by attackers or parties willing to obscure their locations [27],
which has been reported in practice [35]. Even if AIS tracks are complete, the detection of
vessel movements, which indicate emergencies, dangerous or illegal behaviors, is often not
feasible to be performed manually because the total number of ships to consider is simply
too large. For this purpose, a lot of research effort has been put into so-called automated
anomaly detection, which autonomously identifies anomalous behaviors, possibly acting
on the knowledge of data that represents the norm [32].

3.2. Applications of AIS-Based Anomaly Detection

Initially developed for safety purposes, the focus of AIS has shifted towards a surveil-
lance and security tool for maritime authorities AIS [5,16,28]. In this context, anomaly
detection can be an efficient tool for identifying conspicuous, dangerous, or even illegal
behavior at sea across a wide range of applications that are summarized in Table 2. These
use cases can be broadly categorized in monitoring criminal activities, supporting safety
activities, and environmental monitoring, which we explain in the following.

A lot of anomaly detection research focuses on monitoring criminal activities, such
as drug smuggling or piracy. Similar efforts are likely pursued in the military domain.
For instance, AIS transceivers of Iranian-flagged tankers were tampered with to disguise
the identity of the vessels in order to evade sanctions on oil exports [27]. Some of the
proposed anomaly detection methods have focused on concrete activities, such as the
rendezvous of ships (close approach) on the open ocean for the purpose of smuggling or
drug trade [36]. Others have focused on more general anomalies, such as on–off switching
of AIS transceivers [37] (unexpected activities) or route deviations [38], which are used to
detect pirate attacks, for example.

The majority of anomaly detection research considered in this review confirms the
use of the proposed methods with respect to safety activities. In the context of safety, AIS
anomaly detection may identify zone entering, where travel is considered dangerous [39].
It can also be effectively utilized to evaluate the vessel’s collision risks (close approach) [40]
and, thus, supports traffic surveillance [7] and also collision risk prediction [6]. It may even
be possible to decrease the coast guards’ or other responders’ rescue times by identify-
ing when and where SAR missions are occurring from the anomalous AIS tracks (route
deviation) of the involved vessels [41]. AIS anomaly detection can further increase the
efficiency of marine traffic management and planning [42]. Deploying these methods could
reduce the environmental impact and overall costs of shipping due to a lowered risk of
accidents or a decreased fuel consumption. Similarly, the identification of sea routes where
many close approach anomalies occur could provide engineers with insights to improve
the design of canals and traffic lanes.
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Table 2. Use cases supported by AIS anomaly detection methods presented in Figure 2. References
given in the Applications column address the individual use case.
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Monitoring criminal activities
• drug trade/smuggling [27,36] X X X X
• piracy [38] X X X X
• cloak the vessels’ identities [27] X X X

Support for safety activities
• collision risks [39,40] X X X
• Search and rescue (SAR) [41] X X X
• traffic monitoring [42] X X

Environmental monitoring
• (over)fishing [8] X X X
• illegal fishing [37,43] X

Finally, AIS anomaly detection can be beneficial for environmental monitoring to prevent
or reduce the degradation of the marine environment. The depletion of the oceans’ fish
populations due to overfishing poses an immense risk to a large part of humanity that
relies on seafood consumption. Pauly and Zeller [44] report that catch estimates have
been severely under-approximated for many years and that decreasing catch volumes
already indicate the decimation of fish populations. This disruption of the fragile remaining
ecosystems endangers all other marine wildlife. Data analyses of AIS tracks have already
helped to map fishing efforts in Europe [8]. AIS anomaly detection could supplement
existing methods, identifying illegal fishing and, thus, properly managing resources and
preventing overfishing. Interesting approaches have been suggested to identify illegal
fishing operations, such as the ability to detect intentional off switching of AIS on fishing
boats [43]. Other risks could also be reduced and the location of potential environmental
incidents identified.

In summary, AIS anomaly detection enables a variety of applications across the mar-
itime domain. In the future, there will likely be more applications in the field of AIS that
can undoubtedly increase the effectiveness of AIS data utilization.

4. Classification of AIS Track Anomaly Detection Approaches

With the advent of increasing demand for freight transportation in the following
years [1] and millions of vessels tracked worldwide [9], methods to automatically unveil
anomalous ship behaviors become increasingly necessary, e.g., to assist VTSs. To provide
a comprehensive overview of existing techniques, we present the results of our literature
survey regarding approaches for automated AIS anomaly detection in this section. We
begin by consulting related work (Section 4.1) and deriving the methodology of the sur-
vey (Section 4.2). Afterward, we classify the examined literature and successively discuss
them along their properties (Sections 4.3–4.7). Table 3 summarizes the results of the survey.
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Table 3. Summarized survey results of the 44 anomaly detection approaches for maritime AIS tracks.
While the methodologies are quite diverge, we observe large commonalities regarding the anomaly
type with route deviation being the most prominent one. Furthermore, the majority of detectors focus
on a specific region and thus require re-training in order to be applied in other regions. Moreover,
most publications refer to private datasets and struggle to find ground truth of known anomalies for
their evaluation.

Method Publication Anomaly Features (Section 4.5) Scope (Section 4.6) Dataset (Section 4.7)
(Section 4.3) Authors Year (Section 4.4) PO COG SOG HE DST Type STA EXT Region Vessel Time Type Ground Truth

D
BS

C
A

N

Guillarme and Lerouvreur [45] 2013 R    # # # # #  #  priv #
Wang et al. [46] 2014 R  #   # # # #  # # –  
Liu et al. [47] 2014 R    # # # #   #  priv #
Radon et al. [48] 2015 R    #  # # #  #  pub  
Fu et al. [49] 2017 R    #   # #  #  priv #
Goodarzi and Shaabani [50] 2019 R    # # # # #  # # priv #

G
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ia

n
M

ix
tu

re
M

od
el

an
d

K
er

ne
lD

en
si

ty
Es

ti
m

at
io

n

Riveiro et al. [51] 2008 R  #   # # # #    synth G#
Laxhammar [32] 2008 R  #  # # # # #  # # priv #
Ristic et al. [52] 2008 R  #  # # # # #  #  self #
Laxhammer et al. [53,54] 2010 R  #  # #  # #  # # pub G#
Smith et al. [55] 2014 R  #  # # # # #    self #
Anneken et al. [56] 2015 U  #   # # # #    self  

N
eu

ra
lN

et
w

or
k Rhodes et al. [57] 2009 R    # # # # #  # # priv #

Nguyen et al. [24] 2018 R    # # # # #  #  pub G#
Venskus et al. [58] 2019 R  #   # # #    # priv #
Singh and Heymann [37] 2020 U    # # # # # #   self  
Nguyen et al. [59] 2021 R    # # # # #    priv G#

G
eo

m
et

ry

Osekowska et al. [60] 2014 U  # # # # # # #  #  - -
Soleimani et al. [61] 2015 R  # # # # # # # #  # priv  
Venskus et al. [62] 2015 R  # # # # # #  #   priv #
Zissis et al. [15] 2020 R  # # #  # # #   # priv  
Guo et al. [63] 2021 R     # # # # #   pub #

St
oc

ha
st

ic

Katsilieris et al. [64] 2013 R Z  # # # # # #  # # # priv #
Keane [65] 2017 R  # # # # # # #  # # priv #
Ford et al. [43] 2018 U  # # # # # # #  #  priv G#
d’Afflisio et al. [66] 2018 U  #  # # # # # #   –  
Rong et al. [38] 2020 R  #     # #  #  – #

M
ac

hi
ne

-
Le

ar
ni

ng
&

C
lu

st
er

in
g Vespe et al. [39] 2012 R Z    # # # # #  #  priv #

de Vries and van Someren [67] 2012 R  # # # # # #   #  self #
Handayani et al. [68] 2013 R     # #  #  #  pub #
Zhen et al. [69] 2017 R    # # # # #  #  priv #

Fr
am

ew
or

ks Pallota et al. [70,71] 2013 R    # # #  #  #  priv #
Kazemi et al. [72] 2013 P  #          pub  
Lei [73] 2016 R  # # # # # # #  #  self G#
Lane et al. [33] 2010 R U P C Z  #    # # #   # – –

Ba
ye

si
an

N
et

w
or

k Johansson and Falkman [74] 2007 R  #   #  # #   # synth #
Mascaro et al. [75] 2010 R     #  #   #  priv G#
Mascaro et al. [76] 2014 R C     #  #   #  priv G#

G
au

ss
ia

n
Pr

oc
es

s Kowalska and Peel [36] 2012 R C  #   #  # #  #  priv G#

Zor and Kittler [77] 2017 R P  #    # # #    priv #

M
is

ce
lla

ne
ou

s

McAbee et al. [78] 2014 R  # # # # # # #  # # self G#
Wu et al. [79] 2014 U  #  # # # # #  #  self #
Terroso-Saenz et al. [80] 2016 R C  #  # # # #     pub G#
Kong et al. [81] 2017 R  # # # # # # #  #  priv #

Anomaly types: Route Deviation (R) Unexpected Activity (U) Port Arrival (P) Close Approach (C) Zone Entry (Z)
Dataset availability: Public (pub) Private/Closed (priv) Self-recorded (self) Synthetic (synth) : A feature is used or a
method is restricted to a scope#: otherwiseG#: For synthetic/simulated ground truth.
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4.1. Related Work

The interest in anomaly detection in the maritime domain experienced steady attention
over the past years and resulted in several scientific publications in this field. Related to
our work, there are surveys with similar intentions, which we discuss briefly. The first
publication from 2008 [82] derived a taxonomy for the term anomaly within the maritime
domain. It is followed by a summary of a few selected approaches in 2011 [11]. Sidibé
and Shu [13] conducted the first systematic review covering literature published from
2011 until 2016. Their review focuses on the individual detection methodology, approach
type, AIS attributes, and used dataset. Another extensive literature survey was conducted
by Riveiro et al. [12], yet many of the considered approaches are either very generic or
focus on other technologies besides AIS. The survey of Tu et al. [14] paid special attention
to differentiating between approaches that are geographically confined (map dependent)
or universally applicable (map-independent). The most recent study [10] covers only
18 publications found in a systematic literature review and discusses high-level research
questions. Finally, Zissis et al. [15] developing methods for modeling maritime routes also
performed an extensive literature review.

However, while there have been extensive studies in that area, most of them lack a
clear differentiation between methods developed primarily for detecting anomalies of AIS
tracks and those originally addressing related problems. Some approaches, for instance,
predict vessel trajectories [83] or their time of arrival [84]. Although deviations from
these predictions might indicate anomalies, the authors evaluated their approaches only
in terms of predictive quality and not its anomaly detection capabilities, as the papers in
our review do. Similar reasons for exclusion hold for related methods that investigate the
signal strengths of AIS [20] or optimize visualizations in human–machine interfaces [85],
which both can contribute to anomaly detection as well, but only as a secondary use case.
Thus, in our literature survey, we focus on publications specifically designed for anomaly
detection in AIS tracks, which allows, among others, to assess and compare their evaluation
methodologies qualitatively.

4.2. Survey Methodology

To identify publications that are explicitly concerned with the detection of anomaly
in AIS tracks, we conducted a literature review. We considered papers found according
to the keywords “AIS”, “anomaly detection”, “maritime”, and “tracks”. In addition, we
also considered publications covered by previous reviews [10–15]. The main reason for
excluding papers was that they do not fit the topic or do not focus exclusively on anomalies
in AIS tracks. This way, we obtained a selection of 44 papers, which encompass the years
2007 until 2021, cf. Table 3 summarizing our selection.

For each publication, similar to related work [13,14], we extracted the following
properties of the detectors: First, the underlying detection method is highlighted, which
groups similar detection methods. Furthermore, we list the anomaly types each method
addresses (cf. Figure 2), the used AIS features (cf. Table 1), or whether these use external
non-AIS features (referred to as EXT in Table 3). We display the scope of each approach
with respect to a fixed region or scaling independently of a trained region, following
to the notion of map-dependency used by Tu et al. [14] (cf. Section 4.1). Similarly, the
vessel scope indicates whether the approach distinguishes between different vessel types
announced via AIS (cf. static in Table 1), and the time scope whether temporal relationships
are incorporated. Finally, the survey lists the dataset type, e.g., public or private, and
whether the evaluation compares to a ground truth of known anomalies.

4.3. Methods for AIS Anomaly Detection

Regardless of the specific method, what most AIS anomaly detectors have in com-
mon is that they require learning an underlying model by using normal and sometimes
anomalous AIS training data. Based on this model, detectors can decide whether new
data classifies as normal or anomalous behavior. Among the considered research, only
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a few approaches are model-free, e.g., the approach by d’Afflisio et al. [66]. The authors
deterministically verify if trajectories could have occurred during an (intentional) AIS
outage, considering data before the individual outage. The scope of the models is discussed
in the later Section 4.6.

Our survey identified ten groups of utilized detection methods, which are further
categorized in Figure 3. One major group accounts for machine learning, either with
neural networks or clustering. In particular, DBSCAN is the primary method for the
latter. It finds wide use across the domain of AIS anomaly detection because it is an
algorithm that appropriately clusters similar regions such as maritime vessel tracks well
and can incorporate course (COG) or speed (SOG) as additional features in addition to the
position (cf. Section 4.5). Tracks outside of the clustered regions then indicate anomalies.
Another large group of works accounts for stochastic methods such as gaussian mixture
models, which assume that the properties of AIS tracks underlay probabilistic variations.
Complementing these fundamental methodologies, which are applied in other domains
of intrusion detection as well [86], further specialized approaches utilizing geometric
properties exist. Such approaches, for instance, calculate the convex hull of tracks in a
certain region [15] or model each AIS message as a potential electrical charge decaying
over a larger distance [60]. Finally, there are approaches that do not rely on a single
anomaly detection method but rather incorporate multiple methods into a comprehensive
framework. We therefore assigned them to a separate category (framework) in our survey.

Machine Learning Stochastic Geometry

Clustering Neuronal
Network

DBSCAN

Gaussian
Process

Gaussian
Mixture
Model

Kernal
Density

Estimation

Bayesian
Network

Figure 3. Classification of the underlying anomaly detection methods. Besides frameworks or
miscellaneous approaches, most works can be grouped into one of the the major groups: machine-
learning, stochastic, or geometry approaches.

4.4. Anomaly Types Addressed by Research

In this paper, research is classified according to the five categories proposed by
Lane et al. [33] as introduced in Section 3.1 (cf. also Figure 2). Current research on AIS
track anomaly detection considers all five types of anomalies. Yet, the proposed methods
often identify a single anomaly type only.

The deviation from a standard route is the most prominent anomaly type that research
addresses in 37 out of 44 publications. Many approaches extract frequently traveled sea
routes from historical AIS data, e.g., via clustering. Unknown AIS tracks can then be
compared in order to investigate whether they are similar enough to the extracted routes,
or in the case of clustering, belong to one of the identified route clusters. These approaches
work very well in areas where many ships take similar routes, which has been demonstrated
by Wang et al. [46] and Zhen et al. [69] for bay areas and port entrances. The deviations from
a standard route can also be used without a priori knowledge of common routes [64,66].

Seven approaches in our survey particularly consider unexpected AIS activity. The
work of d’Afflisio et al. [66] aims to identify velocity changes occurring during AIS out-
ages assuming that ships travel with similar velocity most of the time. They argue that
intentional on–off switching is generally used to hide changes in the nominal velocity of
vessels, which may occur when vessels change their course, for instance. The methodology
suggested by Singh and Heymann [37] relies on known AIS tracks from other vessels and
also addresses the detection of intentional on–off switching of the AIS equipment. It should
be noted at this point that a plurality of other methods in the context of unexpected AIS
activity aims to detect anomalies by monitoring radio signal strengths or outages occurring
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in specific areas. Suchlike approaches, most notably the work of Mazzarella et al. [20], are
excluded from this paper due to its clear focus on AIS tracks. However, they represent
promising complementary approaches that can be used alongside pure AIS-based methods
to improve the detection capability.

We found three publications that explicitly consider anomalous port arrival. Zor and
Kittler [77], for instance, look at ferries that run regular routes according to a fixed schedule.
However, only a single ship is considered separately at a time. Hence, it is known a priori
from where the vessel will (always) depart and where it is (always) expected to arrive. In
general, the destination port is transmitted via AIS. As a result, it can simply be checked if
the vessel’s AIS track violates the port order.

Similarly, close approach anomalies can only be found in a few publications, namely
in [33,36,76,80]. Mascaro et al. [76] consider the number of close interactions between ships,
which may be used to indicate cargo handover, for example. In contrast, Terroso-Saenz
et al. [80] forecast the closest point of arrival between two vessels. This approach could be
beneficial for VTSs and enable safer and more effective navigational guidance.

Zone entry as an anomaly type is considered only marginally in the methods developed
by Vespe et al. [39], Katsilieris et al. [64], and Lane et al. [33]. Restricted zones, which
should not be entered, are learned implicitly as part of the general shipping routes and
trajectories [39]. Zone entry in isolation may not be considered because it may be deemed
too trivial to implement, i.e., the vessel’s position being inside the zone constitutes an
anomaly. However, one could imagine other, more elaborate methods such as predicting
whether a zone entry is likely to occur soon [33].

4.5. Detection Features

As outlined in Section 2.2, AIS messages carry a wide range of different data (cf. Table 1).
All anomaly detection methods generally only use a limited subset of the available fea-
tures. Furthermore, they implicitly require the MMSI number to recover ship tracks from
individual AIS data points. Thus, the MMSI is not explicitly listed in Table 3.

Because approaches based on AIS tracks are considered, it is not surprising that all
methods use vessels’ positions (PO). Whereas the speed over ground (SOG), heading (HE),
or course over ground (COG) are often analyzed additionally, there exist approaches
that utilize a minimum of different features only [60,61,73,78,81]. In contrast, others have
seemingly adopted a maximalist approach [72,76]. Mascaro et al. [76], for instance, included
most of the dynamic AIS information (cf. Table 1), as well as a vast range of external non-AIS
features, such as information about weather or daytime. Similarly, although not including
external features, Handayani et al. [68] argue that the usage of a wider range of features
has the potential to further increase the precision. Only a few approaches use the port
destinations (DST), vessel types (Vessel), or status information (STA) features. Sometimes,
however, it remains unclear whether the authors obtain information about the destinations
from the actual AIS data or other sources. Note that some approaches utilize the vessel
type as a dedicated feature, whereas others already focus their scope on a specific vessel
type beforehand (cf. Section 4.6).

4.6. Scope of Detection Methods

Besides the detected anomaly types and utilized AIS features, the scope of the de-
tectors may differ largely regarding regions, vessel types, and time. Table 4 summarizes
the regional and vessel type scopes, which are discussed in more detail in the following.
Regarding the time scope, 31 publications incorporate temporal relationships. The remain-
ing 13 publications operate time-independently and solely test, e.g., whether new AIS
messages’ speed vectors are similar to adjacent historic ones [32].

The survey assesses the regional scope, meaning whether the learned model is valid
only in the confined region of the training data or whether it generalizes to unknown,
not yet trained areas. As shown in Table 4, the majority of approaches (38) are region
centric. Only six can be applied on a global scale. The geographical size the regional
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methods are constrained and can vary significantly from approaches focusing on bays
and port entrances [46,69] to areas of continental scale [45]. A major disadvantage of local
approaches is, however, that they strongly rely on historical AIS data of the region. Thus,
they cannot be applied to regions from which there exists no or sparse information.

Table 4. Overall, the majority of publications (38 out of the total 44 from the review) consider a given
constrained region, as show in the table below. Only a few (6) are region independent and generally
applicable, i.e., worldwide. Furthermore, the minority (16) differentiate between vessel-specific types
prior to training. Overall, most approaches (27) are vessel type independent and region constrained.

Vessel Type

Specific ( ) Independent (#)

R
eg

io
n constrained ( ) 11 27

independent (#) 5 1

Approaches also differ in the way vessel types are considered for detection. The
distinction made in this work is whether the methods aim to detect anomalies from one
specific vessel type or if anomalies can be detected for any other (unknown) vessel types.
It is apparent that many of the methodologies developed (28 papers) generalize to all
other vessels. Yet, not insignificantly few work (16 papers) focuses on unique vessels and
anomalies, such as Zor and Kittler [77] who consider route anomalies of ferries oscillating
between two fixed ports. The method exploits the characteristics of ferry traffic, which
always follows very similar and known paths. The models are then built from the individual
routes of specific ferries. Present behavior can then be analyzed with respect to anomalies,
but it remains questionable whether their approach can be applied to other ships traveling
a similar route. A limitation when considering approaches specific for single vessels is that
vessels involved in anomalous behavior have to be known in advance. Furthermore, a
sufficient amount of regular non-anomalous AIS data would have to be recorded before
anomaly detection could take place. While such approaches may be suitable for detecting
anomalies of ferries, it seems too specific for most scenarios beyond that context. In security-
and safety-related scenarios, such as terrorist attacks or emergencies, a meaningful selection
of ships for which to train a vessel-specific detection model is challenging because it is not
known in advance which ships are likely to be involved in an upcoming incident or illicit
activities (cf. Table 2).

4.7. Evaluation Datasets and Ground Truth

Besides proposing new anomaly detectors, evaluating their effectiveness and compar-
ing them to existing state of the art is essential in scientific research. The usual procedure
involves splitting a given dataset into training and test data containing (known) anomalies
that are expected to be found.

Regarding dataset types, we differentiate between publicly available, self-recorded,
private/closed, and synthetic AIS data. As shown in Table 3, the data sources vary widely
between the different research approaches. While 7 publications revealed their data sources,
unfortunately, 32 approaches are evaluated on closed data sets and 5 with unknown sources.
As our survey shows, 22 of the 32 approaches are evaluated on private datasets, whereas
eight publications are based on self-recorded and two are based on synthetic datasets.
Many authors obtained data from (military) authorities or defense contractors, e.g., the
Swedish navy [32] or BAE Systems [36], while others relied on commercial platforms,
such as MarineTraffic [66,68]. Since inexpensive Commercial off-the-shelf (COTS) AIS
equipment is available today, it is reasonable that some research groups self-recorded the
needed AIS data [37,52,55,56,67,73,78,79]. However, not all researchers used real-world
AIS data. Kong et al. [81], for instance, artificially generated a set of short AIS tracks that
are claimed to be consistent with real-world AIS traffic and terrorist behavior.
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Moreover, we observe that the lack of ground truth is a common challenge in this area
of research. When using real-world data, many researchers struggle to find a valid ground
truth [32,59,76] and resort to the artificial generation of AIS anomalies [55,66]. Besides
the 8 publications with a decent ground truth derived, e.g., from real reported incidents
in Europe [15] or suspected illegal fishing rendezvous [66], tracks labeled by domain
experts [61], or situations with severe weather conditions [78], there are also 11 publications
with makeshift ground truth (marked with G# in Table 3). These include drawing anomalies
by hand [75], introducing random data, or adding synthetic anomalies, among others.
Validation of methods with exclusively self-generated anomalies might limit the reliability
of the developed methods in real-world scenarios, the credibility of the approaches, and
hinders comparison in the research community.

Overall, this heterogeneous landscape of AIS data sources constraints science. A dedi-
cated scientific database for regular AIS data might not necessarily be of much additional
value because there is already a large number of sources available (cf. Section 2.4) [14].
However, having such a database including known and confirmed anomalous AIS tracks
would be of great value. From a scientific view, there are three general requirements for
such a dataset. First, it should be representative in terms of relevance and coverage. Second,
accessibility is crucial, meaning the data must be made available and easily accessible. Most
important, in the context of AIS anomaly detection, anomalous traces must be marked
with an appropriate label. It should be noted that Mao et al. [87] have already laid the
foundation for a scientific AIS database, but for evaluating trajectory prediction methods
rather than anomaly detection.

5. Discussion

This section discusses the results of our review and classification of research ap-
proaches for anomaly detection in AIS tracks. First, limitations arising from the homogene-
ity of methods are mentioned (Section 5.1). We then outline the critical challenges related to
privacy implications of AIS surveillance and anomaly detection (Section 5.2).

5.1. Limitations of Recent Approaches

The literature review reveals that research on anomaly detection in AIS tracks follows
a relatively homogeneous path. Firstly, the bulk of research is aimed at detecting route
anomalies (cf. Table 3), and thus, lacking diversity. Detection methods for zone entry and
unexpected port arrival could be effortlessly implemented and successfully complement
route deviation detection. Close approach anomalies may be more challenging to detect
reliably, especially in high-trafficked areas, because they simultaneously require position,
course, and speed information of multiple ships. Nevertheless, it is surprising, in particular
with respect to the original safety goal of AIS (see Section 2.1), that there is not more
research focused on the detection of close approaches. However, simple collision avoidance
mechanisms are already built into existing AIS equipment [2] and are likely to be not
covered by our survey due to their design (cf. Section 4.1).

The majority of research is concerned with modeling “normal” behavior specific to a
geographically confined region (cf. Table 4). While these approaches seem to work very
well, they may suffer from the following disadvantages: In areas where not sufficient data
is available or it is not plentiful enough, these approaches can hardly be used. In addition,
when entering AIS data or configuring AIS equipment, mistakes are often introduced [88]
that can be unintentionally and wrongly incorporated as normal into the learned detection
model. Finally, with the advent of upcoming autonomous vessels and ships [89–91],
implementing AIS track anomaly detectors directly into moving vessels may be beneficial
to enhance safe automated navigation. Again, region-specific approaches may not be fully
applicable here because they require re-training for each region the vessel moves to. Thus,
we deduce that these region-specific approaches are mostly only suitable for static use cases
and stationary AIS receivers.
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With respect to datasets that are used for the evaluation of proposed approaches, it
turns out that in many cases AIS anomaly detection is funded or performed by researchers
associated with maritime authorities or defense contractors. Thus, it is not surprising that
these entities often also supply their datasets. Nevertheless, some researchers (8 papers)
also recorded their own datasets, while only a few (seven papers) use publicly available
sources. Unfortunately, there is a lack of known anomalous AIS situations that represent
reliable ground truth. Hence, many researchers resort to simulating their own anomalies
as substituted ground truth. Existing approaches range from manually drawing AIS
tracks [75] to simulating data with rigid-hulled inflatable vehicles [36]. Overall, the lack of
a common dataset heavily reduces transparency, hinders a replication of results, and makes
it particularly impossible to evaluate and compare the effectiveness of different approaches
in a sound and scientific manner. The development of an established and freely available
AIS database, such as suggested by Mao et al. [87], is thus urgently necessary in order to
advance science in this domain.

Still, as found out recently by Serra-Sogas et al. [92], only a minority of the total vessels
contribute to AIS, and about 70% remain invisible. This severely limits the applicability
of detection methods, especially to small recreational vessels, which account for 53% of
the non-AIS-equipped vessels [92]. Thus, supplementary methods that can track vessels
regardless of their AIS equipment, such as those based on radar, may be beneficial in the
future in addition to AIS-based anomaly detection.

5.2. Privacy Considerations

With respect to information security, a problem already mentioned in Section 2.1 is the
general openness of the AIS protocol because AIS information can be accessed by anyone at
any time. The trade-off between the gain in security and safety through AIS and the loss of
privacy for those traveling on vessels may be skewed in favor of the former. With AIS data
readily available for anyone willing to pay (cf. Section 2.4), the location of known crews and
passengers can be revealed in real time. In addition, AIS receivers placed around the globe
are connected to the Internet, sometimes without any security mechanisms in place [93].

The IMO noted already in 2004 that freely available AIS data may undermine the
initial safety and security goals [94]. The situation is so serious that the European Data Pro-
tection Supervisor has acknowledged that AIS may have infringed the EU’s data protection
regulation since its inception [95]. Similar considerations that AIS may violate the freedom
of information act are made in the United States [96].

To the best of our knowledge, none of the anomaly detection research considers
privacy issues. Existing work may be used to identify and track individuals involved
in (suspected) illicit activities by anyone having the ability to obtain AIS data. However,
this also means that these methods can be used by authorities and governments that vio-
late basic human rights to, e.g., actively prohibit identified SAR missions and persecute
individuals involved in such missions. These issues may be partially remedied by extend-
ing confidentiality and authentication protection to AIS as suggested by Goudossis and
Katsikas [25], Aziz et al. [97], and Kessler [26].

6. Conclusions

To increase the safety and security of a globally growing maritime traffic, AIS was
introduced by fitting transceivers to each vessel, primarily to suit as a digitized ship-to-
ship collision avoidance system. With the ability to overhear AIS position broadcasts
from ships worldwide, e.g., via satellite-based receivers, AIS became the leading tool to
enable surveillance of the entire maritime domain. With plenty of available AIS datasets
and vessels following predictable routes and maneuvers, automated anomaly detection
promises to detect unintended or even malicious behavior, e.g., by learning frequent
shipping routes.

In this paper, we performed a literature survey to classify academic anomaly detection
approaches utilizing AIS tracks. Based on a detailed assessment of 44 publications, it
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reveals that most research tackles deviations from the expected or well-known shipping
routes by focusing on confined regions rather than training universally applicable models.
This may be suitable for stationary VTSs or vessels on repetitive routes, but hinders the
adoption of new use cases such as future autonomous vessels operating on worldwide
cargo routes. Moreover, an objective and sound comparison between approaches is hardly
possible due to closed evaluation datasets and missing ground truth for anomalies.

With AIS being a powerful tool for worldwide surveillance, it contradicts the indi-
vidual’s rights to privacy, as already recognized by the IMO and also at state level [94–96].
Hence, we believe that awareness should be raised, especially for AIS tracking and auto-
matic anomaly detection in the future. Extensions to AIS that provide both pseudonymity
and confidentiality to vessels are needed to protect the privacy and data sovereignty of
individuals at sea.
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