
BP-MAC: Fast Authentication for Short Messages
Eric Wagner

eric.wagner@fkie.fraunhofer.de
Fraunhofer FKIE

RWTH Aachen University

Martin Serror
martin.serror@fkie.fraunhofer.de

Fraunhofer FKIE

Klaus Wehrle
wehrle@comsys.rwth-aachen.de

RWTH Aachen University
Fraunhofer FKIE

Martin Henze
henze@cs.rwth-aachen.de
RWTH Aachen University

Fraunhofer FKIE

ABSTRACT
Resource-constrained devices increasingly rely on wireless com-
munication for the reliable and low-latency transmission of short
messages. However, especially the implementation of adequate
integrity protection of time-critical messages places a significant
burden on these devices. We address this issue by proposing BP-
MAC, a fast and memory-efficient approach for computing message
authentication codes based on the well-established Carter-Wegman
construction. Our key idea is to offload resource-intensive compu-
tations to idle phases and thus save valuable time in latency-critical
phases, i.e., when new data awaits processing. Therefore, BP-MAC
leverages a universal hash function designed for the bitwise pre-
processing of integrity protection to later only require a few XOR
operations during the latency-critical phase. Our evaluation on
embedded hardware shows that BP-MAC outperforms the state-of-
the-art in terms of latency and memory overhead, notably for small
messages, as required to adequately protect resource-constrained
devices with stringent security and latency requirements.

CCS CONCEPTS
• Security and privacy→ Hash functions and message au-
thentication codes.

KEYWORDS
message authentication, universal hashing, cyber-physical systems
ACM Reference Format:
Eric Wagner, Martin Serror, Klaus Wehrle, and Martin Henze. 2022. BP-
MAC: Fast Authentication for Short Messages. In Proceedings of the 15th
ACM Conference on Security and Privacy in Wireless and Mobile Networks
(WiSec ’22), May 16–19, 2022, San Antonio, TX, USA. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3507657.3528554

1 INTRODUCTION
Cyber-Physical Systems (CPSs), such as industrial control systems,
power grids, or smart transportation, depend on mission-critical

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WiSec ’22, May 16–19, 2022, San Antonio, TX, USA.
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9216-7/22/05. . . $15.00
https://doi.org/10.1145/3507657.3528554

machine-to-machine communication, where short sensor and con-
trol messages need reliable transmission within a few milliseconds
and below [11, 18]. The wireless exchange of these messages is
extremely challenging, despite being as short as a single byte [11],
as it has to account for a shared and error-prone transmission
medium [22]. Implementing adequate security for such critical
communication further impedes reaching the latency requirements
due to the high processing times of cryptographic algorithms on
resource-constrained devices [5, 13]. While combining precom-
puted keystreams with message payload hardly introduces any
communication latency for encryption [13], data authenticity and
integrity cannot be solved as easily. However, the lack of integrity
protection in these scenarios facilitates attacks with severe conse-
quences, ranging from financial losses to threats to human lives [5].

A well-established method for authenticity and integrity pro-
tection is a Message Authentication Code (MAC): By appending
authentication tags (short: tags) to each message, the sender enables
the receiver to verify that a message has not been altered during
transmission [8]. However, as these tags depend on the transmitted
message, their computation and verification introduce delays dur-
ing the latency-critical phase, i.e., after new data becomes available
at the sender and before the receiver can process it. Since CPSs rely
on resource-constrained special-purpose devices, e.g., sensors and
actuators, they are typically not capable of computing and verifying
tags without significant delay [5]. Thus, the delay introduced by
MACs must be reduced to enable secure wireless communication
even under the most stringent latency requirements.

Therefore, we propose Bitwise Precomputable MAC (BP-MAC) to
speed up integrity protection by bitwise taking advantage of the
characteristics of CPS scenarios: While messages are often only a
few bytes long, special-purpose devices are usually idling until new
data has to be sensed and transmitted or received and processed [2,
13]. Hence, BP-MAC offloads message-independent and resource-
intensive computations to a preprocessing phase where devices
are otherwise idle. Moreover, as a Carter-Wegman construction [9,
25], BP-MAC’s security can be reduced to traditional time-proven
cryptographic primitives and can be trusted to protect even the
most sensitive and critical communication against manipulations.

Contributions. We thus present the following contributions:
• We propose BP-MAC, a novel Carter-Wegman scheme requiring

only a few XOR operations during the latency-critical phase. It
precomputes and caches authentication data for each bit of a
message and securely combines them to compute new tags.

https://doi.org/10.1145/3507657.3528554
https://doi.org/10.1145/3507657.3528554

• Since caching comes with a significant memory trade-off, we
introduce memory optimizations realizing a smaller memory
footprint than BP-MAC’s closest contender (UMAC [15]) for
messages smaller than 12 to 43 bytes, depending on tag lengths.
• We evaluate BP-MAC’s performance on different processor ar-

chitectures using the Zolertia RE-Mote and Z1 boards to show
BP-MAC’s capability to reduce the overhead of integrity protec-
tion by more than an order of magnitude for small messages.
Availability Statement. The source code underlying this paper

is available at: https://github.com/fkie-cad/bpmac

2 MESSAGE AUTHENTICATION CODES
In the following, we formally introduce Message Authentication
Codes (MACs) (Sec. 2.1) and universal hashing (Sec. 2.2) as a basis
for efficient, secure authentication schemes. Then, we discuss re-
lated work on optimizing MACs for low-latency scenarios (Sec. 2.3).

2.1 Formal Definition
A MAC scheme is composed of two algorithms, Sig𝑘 and Vrfy𝑘 ,
that generate and verify authentication tags 𝑡 with the help of a
pre-shared secret key 𝑘 [8]. A message𝑚, extended by a tag 𝑡 , com-
puted as 𝑡 = Sig𝑘 (𝑚), allows the receiver of a message to verify the
integrity of the received message. Upon reception of a message-tag
pair (𝑚, 𝑡), the receiver uses the algorithm Vrfy𝑘 (𝑚, 𝑡) to verify
whether the message or the tag has been manipulated in transit
by an attacker not possessing the secret key 𝑘 . In most popular
MAC schemes, Vrfy𝑘 (𝑚, 𝑡) computes the tag 𝑡∗ = Sig𝑘 (𝑚) based
on the received message𝑚 and returns whether 𝑡∗is identical to the
received tag 𝑡 . Consequently, MAC schemes are considered secure
if, even under a chosen-message attack, an attacker cannot create
an existential MAC forgery, i.e., a tag 𝑡 for a previously unseen
message 𝑚, that Vrfy𝑘 (𝑚, 𝑡) would accept. Achieving this prop-
erty typically requires the execution of (for resource-constrained
devices) processing-intensive cryptographic algorithms.

2.2 The Carter-Wegman MAC Construction
The Carter-Wegman construction allows building efficient and se-
cure MAC schemes, such as UMAC [15] and Poly1305 [6], which
gained popularity due to their superior performance compared to
traditional schemes. Carter-Wegman MAC constructions add an
additional nonce 𝑛 to the parameters of Sig𝑘 and Vrfy𝑘 , which na-
tively protects against replay attacks [8]. These constructions first
compute the digest of the message𝑚 with a hash function unknown
to the attacker. Then, this digest is masked by the encrypted nonce.
More formally, a Carter-Wegman MAC construction computes the
tag 𝑡𝑖 for a message 𝑚𝑖 and a nonce 𝑛𝑖 as 𝑡𝑖 = 𝐹𝑘1 (𝑚𝑖) ⊕ 𝐻𝑘2 (𝑛𝑖),
where 𝐻 is a pseudorandom function covering the same output
space as the universal hash function 𝐹 [8]. A universal hash function
is a (not necessarily cryptographic) secret hash function for which it
is hard to find a collision, i.e., finding𝑚,𝑚′ such that 𝐹 (𝑚) = 𝐹 (𝑚′),
as long as the attacker does not know a single output of 𝐹 [8].

2.3 Efficient MACs for Low Latency Scenarios
Optimized computations of established primitives such as AES or
SHA256 have been proposed to address the need for fast message
authentication on resource-constrained devices. Such approaches

include hardware acceleration [26] or the preprocessing of authenti-
cation for predictable parts of future messages [13]. However, these
approaches still fail to enable secure sub-millisecond communica-
tion as many CPS scenarios demand [11, 18]. Consequently, a range
of novel MAC algorithms based on new cryptographic primitives
has been proposed to reduce processing and latency overheads for
resource-constrained devices, including SipHash [4], TuLP [12],
Chaskey [21], and LightMAC [19]. MergeMAC [2] saves valuable
time during latency-critical phases by extracting predictable parts of
future messages to authenticate them in advance. However, mission-
critical CPS must rely on scrutinized and time-proven cryptographic
primitives to ensure the maximum possible security guarantees.

Therefore, competing approaches target efficient Carter-Wegman
MAC schemes, whose security can be reduced to underlying crypto-
graphic primitives (e.g., AES). To do so, UMAC [15] and VMAC [14]
use custom hash functions optimized for 32-bit and 64-bit archi-
tectures, respectively. The universal hash function employed by
Poly1305 evaluates a polynomial with the message as coefficients
over the finite field Z2130−5 [6]. Although highly efficient, these
schemes optimize for messages of at least a few hundred bytes [4].
PMAC [7] fragments messages to parallelize and thus speed up tag
computations. Nevertheless, typical resource-constrained devices
with single-core processors do not benefit from such optimizations.

Another branch of research tackles the reduction of bandwidth
overhead introduced by MACs schemes via progressive MACs (Pro-
MACs [3]). ProMACs reduce the tag sizes by aggregating authenti-
cation over several messages [3, 16, 17, 23, 24]. Thereby, ProMACs
protect each message with immediately reduced security, allowing
their optimistic processing without waiting for the reception of
subsequent messages. Still, a message’s authenticity is reinforced
with subsequent messages to ensure eventual strong security [3].
Like traditional authentication, ProMACs also benefit from faster
underlying MAC schemes to reduce processing latency.

3 BP-MAC: A BITWISE PRECOMPUTED MAC
To remove the bottleneck of cryptographic processing for message
authentication and thus enable low-latency transmissions of small
messages on resource-constrained devices using conventional secu-
rity primitives, we propose Bitwise Precomputable MAC (BP-MAC).
BP-MAC combines the idea of preprocessing message-independent
computations with a Carter-Wegman MAC construction specifically
designed for small messages. We begin by discussing preprocessing
as the underlying principle of BP-MAC (Sec. 3.1) before detailing
BP-MAC’s construction (Sec. 3.2). Then, we present memory opti-
mizations (Sec. 3.3) and discuss the security of BP-MAC (Sec. 3.4).

3.1 Precomputations for Fast Authentication
BP-MAC takes advantage of precomputations since the processing
loads in CPS scenarios are not evenly distributed over time [2, 13].
Instead, devices periodically have idle times until new data has to be
transmitted, received, or processed. Hence, the idea behind BP-MAC
is to offload computationally expensive operations into those idling
phases to reduce computations during latency-critical phases to a
minimum. Therefore, a naïve approach would be to precompute and
store authentication tags for each possible message. However, pre-
computing authentication information, e.g., for all possible, rather

https://github.com/fkie-cad/bpmac

nonce n

masking tag

AESk2(n)

⨁ tag t

b0 b1 bl-1

. . .

. . .

AE
S k

1(
0|
|b

0)

bit tag bit tag

bl-2

bit tag bit tag

cache

on
ce

 a
t c

on
ne

ct
io

n
es

ta
bl

is
hm

en
t

pr
ep

ro
ce

ss
ab

le
 p

er
 m

es
sa

ge

AE
S k

1(
1|
|b

1)

AE
S k

1(
l-2

||
b l

-2
)

AE
S k

1(
l-1

||
b l

-1
)

message m

Figure 1: BP-MAC achieves high-speed tag computations dur-
ing the latency-critical phase by only XORing the bit tag
depending on each bit value and the masking tag to generate
a secure authentication tag. The masking tag is independent
of the message and can thus be precomputed during idle
times. Bit tags are precomputed once for each unique key.

tiny two-byte messages would then already consume 1 MB of mem-
ory (assuming the recommended tag length of 16 bytes), a number
that is exponentially growing for longer messages. Hence, this naïve
approach is infeasible for resource-constrained CPS devices.

In contrast, the core idea of BP-MAC is to precompute tags for
individual bits, which are then efficiently combined when a message
needs authentication. As each bit can only represent either 0 or
1, BP-MAC’s memory consumption grows linearly with message
lengths and amounts to only 512 bytes for all possible two-byte
long messages. These tags can be precomputed once a new key is
exchanged or even provided by the (more powerful) communication
partner. In addition, BP-MAC masks the combined tags with a
secret masking tag to prevent replay attacks and enable their secure
aggregation. Such tags can be conveniently precomputed between
transmissions since they are independent of the actual message.

3.2 BP-MAC’s Design in Detail
BP-MAC achieves fast authentication by only executing the efficient
aggregation of previously precomputed tags during the latency-
critical phase. We illustrate the different steps of BP-MAC’s design
in Figure 1 and discuss them in detail in the following.

3.2.1 Bit Tags. As shown in Figure 1, bit tags are intermediate tags
computed for each message bit. To ensure BP-MAC’s security and
prevent collisions, all bit tags have to be a unique pseudorandom
number that must be kept secret. BP-MAC computes bit tags as the
digest of a pseudorandom function by concatenating bit index and
bit value. Concretely, BP-MAC uses AES-128𝑘1 as a pseudorandom
function. Here, 𝑘1 is a secret key shared between both communicat-
ing parties due to its increased efficiency over other functions, e.g.,
HMAC-SHA256. Thus, if the value of the third bit in the second
byte is zero, the corresponding bit tag is AES-128𝑘1 (10| |0). Overall,
there exist 2 · 𝑙-bit tags that have to be precomputed for a message
with 𝑙 bits. However, this only occurs once a new key is established
and could even be offloaded to a more powerful device if necessary.

3.2.2 Masking Tags. The purpose of masking tags is twofold. First,
they provide replay protection by incorporating a nonce into the

final tag. Second, these pseudorandom tags prevent the leakage of
information concerning individual bit tags and are thus crucial for
the security of BP-MAC. As nonce, BP-MAC uses a zero-initialized
counter that is incremented for each newly computed tag.

Computing the masking tag from a pseudorandom function and
the nonce is analogous to UMAC [15] and relies on AES-128𝑘2.
For tags with a length between 9 and 16 bytes, we use the leading
𝑛 bytes of the AES-encrypted nonce, where 𝑘2 (≠ 𝑘1) is also a
secret key shared between both parties. For smaller tags, we use the
cached 16-byte long AES output for multiple masking tags, as long
as no output bytes are reused. Thus, for tags of 4 bytes, only every
fourth nonce has to be encrypted to reduce processing overhead,
while we can use the unused bytes of the cached output to blind
the remaining tags. As nonces can be predicted, masking tags can
be precomputed and thus do not add to the latency-critical delay.

3.2.3 Tag Computation and Verification. After discussing the two
precomputation phases generating the bit and masking tags, we
now explain the computation of the 𝑛-th authentication tag 𝑡𝑛 for
the message 𝑚𝑛 . As shown in Figure 1, the final step of tag compu-
tation consists of XORing the intermediate tags. This observation
also manifests in the formal definition of computing tag 𝑡𝑛 :

tn =
⊕

𝑖∈ |𝑚𝑛 |

bit tags
AES-128k1 (𝑖 | |𝑚𝑛 [𝑖]) ⊕

masking tag
AES-128k2 (𝑛)

The second part is the masking tag that is XORed with the bit
tags that correspond to the message. Here |𝑚 | denotes the length
of the message and𝑚[𝑖] denotes the value of the 𝑖-th bit. Thus, all
computations besides these final XOR operations are independent
of the message that should be authenticated. Therefore, BP-MAC’s
construction enables the quick computation of new tags, especially
for short messages which require a low number of XOR operations.

As usual for deterministic MAC algorithms, the tag verification
happens by computing the tag 𝑡∗ for the received message𝑚 and
then comparing it to the received tag 𝑡 . If both tags are identical,
the receiver can conclude, with high confidence, that the received
message𝑚 has not been altered in transit.

3.3 Memory Optimizations for BP-MAC
The naïve realization of BP-MAC requires the storage of 2 · |𝑚 |
bit tags. For a fixed-length messages, we can, however, half this
memory overhead by precomputing the default tag of a message
composed of only zeros. To support the same optimization for
variable-length messages, we must pad the message before authen-
ticating it. Then, we only need to store how to alter the tag for a
bit set to one with so-called bitflip tags, of which we need |𝑚 | in
total (one for each bit). We sketch the tag computation with this
optimization in Algorithm 1, highlighting in blue the computations
executed during the latency-critical phase. Already before a new
message is ready, we can compute the masking tag and XOR it with
the default tag tdefault to generate the tag of an all-zero message as:

tdefault =
⊕

0≤𝑖<𝑛
AES-128k1 (𝑖 | |0)

Then, to compute the tag for the actual message, we need to change
the tag for each bit that is not zero as assumed for the default tag

Algorithm 1: Memory-efficient signature generation Sig*k
Input: message𝑚𝑠𝑔, nonce 𝑛𝑜𝑛𝑐𝑒
Output: tag t
t← AESk2(𝑛𝑜𝑛𝑐𝑒) ⊲ Preprocessable masking tag
len← length(msg) ⊲ The length of the message in bits
t← t ⊕ tdefault ⊲ Compute tag of all-zero message

for n between 0 and len-1 do
if the n-th bit in msg is set then

t← t ⊕ tbitflips[n] ⊲ Lookup the cached change to t
end

end
t← t ⊕ tbitflips[len] ⊲ Padding for the message
return t

tdefault. To efficiently realize these changes, we can precompute
bitflips tags for all 𝑖 bits in a message as:

tbitflip [𝑖] = AES-128k1 (𝑖 | |0) ⊕ AES-128k1 (𝑖 | |1)

By XORing these bitflip tags to the default tag tdefault, we com-
pute the tag as if the bit at the corresponding position is set. Finally,
we pad the message to a fixed length to be able to differentiate
between a shorter message and one with trailing zeros. BP-MAC
uses the Padding method 2 as described by ISO/IEC 9797-1 [1], ap-
pending a 1-bit at the end of the message followed by as many 0-bits
as necessary to reach the desired message length. As the default
tag tdefault already assumes that all bits are zero, we only need to
incorporate a single further bitflip tag t for the first index after the
end of the message. Thus, we only need to store |𝑚 | + 3 tags (one
for each bit, including padding, tnonce, and tdefault). This procedure
reduces the number of operations during the latency-critical phase
for each 0-bit, which accounts for about half of encrypted traffic.

3.4 Security Discussion
BP-MAC utilizes the secure Carter-Wegman MAC construction [9,
25] in which a tag 𝑡 for a message 𝑚 and a nonce 𝑛 is computed as
𝑡 = 𝐹𝑘1 (𝑚)⊕𝐻𝑘2 (𝑛), where𝐻 is a pseudorandom function covering
the same output space as the universal hash function 𝐹 (cf. Sec. 2.2).
For 𝐻 , BP-MAC uses the same AES-based procedure as UMAC [15],
with the sole difference that it computes the result in advance.
Meanwhile, the fragmentation of messages into individually au-
thenticatable bits is a special case of the established universal hash
function 𝐹⊕ [8]. Thus, BP-MAC is secure as long as the underlying
cryptographic primitive (i.e., AES) is secure. Moreover, BP-MAC
can easily exchange this primitive, if ever considered not secure
enough. In the following, we define the considered threat model
and subsequently discuss possible attack scenarios.

3.4.1 Threat Model. The attacker’s goal is to alter traffic such
that the recipient of a message accepts the modified message is
genuine. To achieve this goal, the attacker can observe and alter
the (plaintext) messages and exchanged tags to either learn the
secret key used by BP-MAC or directly alter a message and the
corresponding tag. The information to realize such an attack can

be extracted directly from the observed traffic or through side-
channel information by observing the timing of individual packets.
However, we explicitly do not consider an attacker with (partial)
control over one or both communicating entities that could try
to access keying information through a e.g., cache side-channel
attacks. However, BP-MAC does not prevent the use of common
mitigation techniques that protect against such attacks [20].

3.4.2 Resilience to Key Recovery Attacks. BP-MAC is not suscep-
tible to key recovery attacks, as otherwise a key recovery attack
against the underlying cryptographic primitive, i.e., AES, would ex-
ist. By overhearing transmissions, an attacker learns 𝑡 = 𝐹⊕

𝑘1 (𝑚) ⊕
𝐻𝑘2 (𝑛) for a known message 𝑚 and nonce 𝑛. An attacker cannot
learn 𝑘2 from such tags, as otherwise there would exist a key re-
covery attack against 𝐻𝑘2, i.e., AES-128: After learning a digest
𝑑 = 𝐻𝑘2 (𝑚), the attacker could generate a key 𝑘 ′, consider all
unique messages 𝑚 as nonces, and compute a BP-MAC tag 𝑡 ′ for
arbitrary new messages 𝑚′ as 𝑡 ′ = 𝐹⊕

𝑘′
(𝑚′) ⊕ 𝐻𝑘2 (𝑚). Thus, if an

attack that recovers 𝑘2 from 𝑡 exists, this attack could be used to re-
cover 𝑘2 from simple 𝐻𝑘2 digests. Similarly, 𝑘1 cannot be recovered
by an attacker. Even if an attacker would learn the output of 𝐹⊕

𝑘1 (𝑚),
a recovery of 𝑘1 would imply the existence of a key recovery attack
against AES-128: The attacker can compute 𝐹⊕

𝑘1 (𝑚1 | | · · · | |𝑚𝑘) for
observed ciphertexts 𝑐𝑡 = 𝐴𝐸𝑆𝑘 (𝑝𝑡) by considering the first part
of an observed plaintext 𝑝𝑡 to be the index and the second part
to be a truncated message, i.e., 𝑝𝑡 = 𝑖 | |𝑚𝑖 . Then, if a key recovery
attack would exist against 𝐹⊕ , this same attack would also enable
recovering 𝑘 for AES plaintext-ciphertext pairs.

3.4.3 Unforgeability of Authentication Tags. However, a successful
attack does not need to recover the authentication keys to attack a
MAC scheme. In many cases, it suffices if an attacker can forge au-
thentication tags and thus inject harmful messages into a protected
communication. Nevertheless, BP-MAC is also secure against such
attacks. First, a message is hashed by 𝐹⊕ , with an unpredictable
result for the attacker if they did not observe previous digests of 𝐹⊕ .
Therefore, each output of 𝐹⊕ is masked by a unique pseudorandom
number, ensuring that an attacker cannot learn a single output of
𝐹⊕ . As the nonce changes for each message, no information about
the internal state of BP-MAC is revealed to an outsider. Thus, BP-
MAC is also secure in the presence of an attacker that merely wants
to generate valid tags for altered or new messages.

3.4.4 Timing Side-Channel Attack against BP-MAC. The presented
memory optimizations for BP-MAC execute some computations
only for bits set to one, potentially enabling timing side-channel at-
tacks. In particular, the time a message authentication computation
takes might hint at the number of bits set to one in the authenti-
cated message. If the message is sent in plaintext, this information
is already accessible to third parties and does not leak confidential
information or help in recovering keys. However, when authenticat-
ing encrypted traffic, it is crucial operating in the encrypt-then-MAC
mode [8] not to reveal information about the plaintext.

4 PERFORMANCE EVALUATION
BP-MAC reduces the delay of message authentication for short,
mission-critical wireless communication. We validate this claim

5 10 15 20 25 30
Payload Length [byte]

0
600

1200
1800
2400
3000
3600
4200

Pr
oc

es
sin

g
Ti

m
e

[`
s] BP-MAC (ours) UMAC BP-MAC incl. preprocessing

Figure 2: On the 16-bit architecture of the Zolertia Z1, BP-
MAC outperforms UMAC by up to two orders of magnitude
for short messages and shows significantly less overall pro-
cessing overhead for 32 byte long messages.

by performing measurements on two different embedded devices
(Sec. 4.1) and evaluating BP-MAC’s memory consumption (Sec. 4.2).

4.1 Latency Measurements
We implement BP-MAC for Contiki-NG and evaluate its perfor-
mance on two different architectures to ensure the observed benefits
generalize across them: Zolertia Z1 (MSP430 @ 16 MHz, 16-bit CPU,
8 kB RAM) and Zolertia RE-Mote (ARM Cortex-M3 @ 32 MHz, 32-
bit CPU, 16 kB RAM). To assess the performance of BP-MAC, we
have to compare it to other MAC schemes with similar security
guarantees, such as UMAC, VMAC, or Poly1305. We choose to
compare BP-MAC against an optimized implementation of UMAC1

as it introduces the least processing overhead for short messages
(<32 bytes) even on an unfavorable architecture [14].

4.1.1 BP-MAC on the Zolertia Z1. First, we compare BP-MAC’s
and UMAC’s performance on the 16-bit MSP430 processor of the
Zolertia Z1, a typical architecture for resource-constrained CPS
devices. Here, we report on the time for computing 16-byte tags for
messages of varying lengths. Figure 2 depicts the means and 99%
confidence intervals for the respective computations of one tag. We
measured 100 tag computations and derive from this the time of
one tag computation due to a too low clock resolution. We repeated
each measurement 30 times. Note that Sig𝑘 and Vrfy𝑘 require one
tag computation each, such that the actual delay introduced into
one secure transmission is twice the reported time.

As expected, the time required to compute UMAC tags is inde-
pendent of the message length on the analyzed scale. In contrast, BP-
MAC’s bitwise processing introduces a linear dependency between
message length and processing time. We observe that BP-MAC
significantly outperforms UMAC, such that even for 32 bytes long
messages, the overall processing time of BP-MAC is still 40 % lower.
For 1 byte long messages, the difference is even more extreme, as
BP-MAC induces a delay of only 86 𝜇𝑠 for one tag computation,
compared to 3.2 ms for UMAC. BP-MAC is thus significantly faster
than UMAC for short messages on a 16-bit architecture.

We repeated the same measurements for shorter tags (12, 8, and
4 bytes). There, we observed similar behavior, whereas the absolute
processing time of BP-MAC became shorter by 24.8 − 35.4%, 38.6 −
54.0%, and 51.1− 66.5% for increasingly shorter tags as shorter tags
require less XOR operations. In turn, UMAC also becomes faster,
primarily through its ability to reuse AES computations to mask
multiple tags for 8 and 4-byte tags. However, the irregular need to
compute AES blocks introduces jitter to the processing of UMAC,
1https://fastcrypto.com/umac

5 10 15 20 25 30
Payload Length [byte]

0
50

100
150
200
250
300
350

Pr
oc

es
sin

g
Ti

m
e

[`
s] BP-MAC (ours) UMAC BP-MAC incl. preprocessing

Figure 3: Even on the faster Zolertia RE-Mote, BP-MAC re-
alizes faster tag computations than UMAC in the latency-
critical phase for messages shorter than 21 bytes and less
overall processing for messages shorter than 10 bytes.

which is undesirable in low-latency communication [10]. For BP-
MAC, these bursty computations only occur in the preprocessing
phase and thus do not influence actual transmission delays.

4.1.2 BP-MAC on the Zolertia RE-Mote. To show the performance
of BP-MAC on a more powerful device, we furthermore compare
BP-MAC and UMAC on the Zolertia RE-Mote. While it still consti-
tutes an embedded device, its ARM Cortex-M3 is significantly more
powerful than the Zolertia Z1. Also, its 32-bit processor is precisely
the architecture targeted by UMAC. Hence, we repeat our previous
measurements and report on the results in Figure 3.

Still, BP-MAC outperforms UMAC for small messages, partially
by more than one order of magnitude. To be precise, the latency-
critical processing of BP-MAC is faster for messages not longer
than 21 bytes. Furthermore, even the overall processing overhead
is smaller for messages shorter than 10 bytes. These results thus
show that BP-MAC is particularly suited for authenticating short
messages, even in a worst-case comparison to UMAC. For shorter
tags, this trend continues, with BP-MAC outperforming UMAC by
17.2−24.4%, 22.8−32.0%, and 35.2−48.3% during the latency-critical
phase for tags of sizes 12, 8, and 4, respectively. The tipoff points
below which BP-MAC outperforms UMAC are 26, 18, and 15-byte
messages for increasingly shorter tags.

Concluding, BP-MAC enables secure communication based on
the established security of AES with low processing overhead for
small messages across different processor architectures. However,
the performance gap between BP-MAC and UMAC is much nar-
rower on the Zolertia RE-Mote. This behavior is not due to a worse
performance by BP-MAC, but instead due to UMAC being specifi-
cally optimized for the 32-bit processor in this scenario.

4.1.3 BP-MAC and Hardware-accelerated Cryptography. Due to
the rising importance of low-latency security in CPS scenarios, low-
powered devices increasingly provide hardware accelerators for
cryptographic operations. However, using the Zolertia RE-Mote’s
sha-256 accelerator for HMAC computations shows that even hard-
ware-accelerated cryptography can introduce significant processing
overheads. Indeed, our measurements reveal that the computation
of one HMAC-SHA256 tag takes approximately 220 𝜇𝑠 , independent
of tag and payload lengths for small payloads. Thus, in these cases,
hardware-accelerated HMAC-SHA256 is even slower than a soft-
ware implementation of UMAC. Still, accelerators for specialized
MAC schemes can be constructed to achieve even faster crypto-
graphic operations. Fittingly, BP-MAC’s heavy reliance on XOR
operations and its high parallelizability by individually processing
each bit promise highly efficient hardware implementations.

0
1
2
3
4

M
em

or
y

[k
b] BP-MAC (ours) UMAC

0
1
2
3

M
em

or
y

[k
b]

0

1

2

M
em

or
y

[k
b]

5 10 15 20 25 30
Payload Length [b]

0

1

2

M
em

or
y

[k
b]

16
by

te
ta

gs
12

by
te

ta
gs

8
by

te
ta

gs
4

by
te

ta
gs

Figure 4: BP-MAC’s memory footprint grows linearly with
tag and message lengths. Thus, for messages shorter than
12, 15, 21, and 43 bytes, BP-MAC requires less memory than
UMAC for 16, 12, 8, and 4-byte long tags, respectively.

4.2 Memory Overhead
Fast MAC schemes based on universal hashing, such as BP-MAC
and UMAC, typically trade memory usage for high processing
speeds, a limited resource on low-power devices. Hence, we com-
pare BP-MAC’s and UMAC’s memory footprint by compiling Conti-
ki-NG as a native Linux application. We then use Valgrind’s massif
tool to analyze the peak memory footprint of both schemes for
varying message and tag lengths. We depict our results in Figure 4.

We notice that the memory footprint of UMAC is constant for
different message sizes and hardly changes across tag lengths (rang-
ing from 1.4 kB to 1.6 kB). In contrast, BP-MAC’s memory footprint
increases with the sizes of tags and messages. Overall, BP-MAC’s
memory footprint increases by eight times the tag lengths when
messages become one byte longer, which we expected since an ad-
ditional bitflip tag has to be stored for each additional message bit.
Consequently, BP-MAC’s memory footprint is favorable for small
messages up until a tipoff point where UMAC becomes, in turn,
more resource-efficient. These tipoff points lie at a message size of
12, 15, 21, and 43 bytes for 16, 12, 8, 4 byte long tags, respectively.

Overall, our evaluation thus shows that BP-MAC outperforms
UMAC in terms of processing latency and memory footprint for
small messages while providing the same security guarantees, i.e.,
reducible to the security of AES. Thus, BP-MAC enables secure
communication in critical CPS scenarios with a significantly smaller
impact on communication latency than state-of-the-art approaches.

5 CONCLUSION
CPSs rely on low-latency wireless communications with stringent
security guarantees. In this context, a significant challenge is to
ensure the authenticity and integrity of exchanged messages, which
typically leads to computationally intensive calculations in latency-
critical phases, e.g., once a new message is ready for transmission.
While numerous MAC schemes aim to reduce latency, none ad-
dress small messages of only a few bytes, an essential characteristic

of many latency-critical CPS scenarios. To fill this gap, we pro-
pose a new Carter-Wegman MAC scheme with AES-based security
(BP-MAC), optimizing the extensive use of preprocessing with a
universal hash function for the aforementioned small messages.
Thus, BP-MAC reduces latency-critical computations to a few XOR
operations, which overall leads to more than a ten-fold reduction
in processing overhead compared to the state-of-the-art. Conse-
quently, BP-MAC enables integrity protection of small messages
in latency-critical scenarios, even for CPS devices with limited
computational and memory resources.

ACKNOWLEDGMENTS
Funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy – EXC-
2023 Internet of Production – 390621612. We thank the reviewers
and our shepherd Kasper Rasmussen for their fruitful comments.

REFERENCES
[1] 2011. ISO/IEC 9797-1:2011 Information technology - Security techniques - Mes-

sage Authentication Codes (MACs) - Part 1: Mechanisms using a block cipher.
[2] Ralph Ankele et al. 2018. MergeMAC: a MAC for authentication with strict time

constraints and limited bandwidth. In ACNS.
[3] Frederik Armknecht et al. 2020. ProMACs: Progressive and Resynchronizing

MACs for Continuous Efficient Authentication of Message Streams. In ACM CCS.
[4] Jean-Philippe Aumasson and Daniel J Bernstein. 2012. SipHash: a fast short-input

PRF. In Indocrypt.
[5] Amira Barki et al. 2016. M2M Security: Challenges and Solutions. IEEE Commu-

nications Surveys & Tutorials 18, 2 (2016).
[6] Daniel J Bernstein. 2005. The Poly1305-AES message-authentication code. In

FSE.
[7] John Black and Phillip Rogaway. 2002. A block-cipher mode of operation for

parallelizable message authentication. In Eurocrypt.
[8] Dan Boneh and Victor Shoup. 2020. A graduate course in applied cryptography.
[9] J Lawrence Carter and Mark N Wegman. 1979. Universal Classes of Hash Func-

tions. Journal of computer and system sciences 18, 2 (1979).
[10] Andreas Frotzscher et al. 2014. Requirements and current solutions of wireless

communication in industrial automation. In ICC.
[11] Brendan Galloway and Gerhard P Hancke. 2012. Introduction to Industrial

Control Networks. IEEE Communications surveys & tutorials 15, 2 (2012).
[12] Zheng Gong et al. 2014. Tulp: A family of lightweight message authentication

codes for body sensor networks. JCST 29, 1 (2014).
[13] Jens Hiller et al. 2018. Secure low latency communication for constrained indus-

trial iot scenarios. In LCN.
[14] Ted Krovetz. 2006. Message authentication on 64-bit architectures. In SAC.
[15] Ted Krovetz et al. 2006. UMAC: Message authentication code using universal

hashing. RFC 4418.
[16] He Li et al. 2020. Cumulative Message Authentication Codes for Resource-

Constrained Networks. In CNS.
[17] He Li et al. 2021. Cumulative Message Authentication Codes for Resource-

Constrained IoT Networks. IEEE Internet of Things Journal 8, 15 (2021).
[18] Michele Luvisotto et al. 2017. Ultra High Performance Wireless Control for

Critical Applications: Challenges and Directions. IEEE TII 13, 3 (2017).
[19] Atul Luykx et al. 2016. A MAC mode for lightweight block ciphers. In FSE.
[20] Yangdi Lyu and Prabhat Mishra. 2018. A survey of side-channel attacks on caches

and countermeasures. Journal of Hardware and Systems Security 2, 1 (2018).
[21] Nicky Mouha et al. 2014. Chaskey: an efficient MAC algorithm for 32-bit micro-

controllers. In SAC.
[22] Mohsin Raza et al. 2018. A Critical Analysis of Research Potential, Challenges, and

Future Directives in Industrial Wireless Sensor Networks. IEEE Communications
Surveys & Tutorials 20, 1 (2018).

[23] Jackson Schmandt et al. 2017. Mini-MAC: Raising the bar for vehicular security
with a lightweight message authentication protocol. Vehicular Communications
9 (2017).

[24] Eric Wagner et al. 2022. Take a Bite of the Reality Sandwich: Revisiting the
Security of Progressive Message Authentication Codes. In WiSec.

[25] Mark N Wegman and J Lawrence Carter. 1981. New Hash Functions and Their
Use in Authentication and Set Equality. J. Comput. Syst. Sci 22, 3 (1981).

[26] Kaiyuan Yang et al. 2017. Hardware designs for security in ultra-low-power IoT
systems: An overview and survey. IEEE Micro 37, 6 (2017).

	Abstract
	1 Introduction
	2 Message Authentication Codes
	2.1 Formal Definition
	2.2 The Carter-Wegman MAC Construction
	2.3 Efficient MACs for Low Latency Scenarios

	3 BP-MAC: A Bitwise Precomputed MAC
	3.1 Precomputations for Fast Authentication
	3.2 BP-MAC's Design in Detail
	3.3 Memory Optimizations for BP-MAC
	3.4 Security Discussion

	4 Performance Evaluation
	4.1 Latency Measurements
	4.2 Memory Overhead

	5 Conclusion
	Acknowledgments
	References

