
A Moderation Framework for the Swift and
Transparent Removal of Illicit Blockchain Content

Roman Matzutt, Vincent Ahlrichs, Jan Pennekamp, Roman Karwacik, Klaus Wehrle
Communication and Distributed Systems

RWTH Aachen University
Aachen, Germany

lastname@comsys.rwth-aachen.de

Abstract—Blockchains gained tremendous attention for their
capability to provide immutable and decentralized event ledgers
that can facilitate interactions between mutually distrusting
parties. However, precisely this immutability and the openness
of permissionless blockchains raised concerns about the con-
sequences of illicit content being irreversibly stored on them.
Related work coined the notion of redactable blockchains, which
allow for removing illicit content from their history without
affecting the blockchain’s integrity. While honest users can safely
prune identified content, current approaches either create trust
issues by empowering fixed third parties to rewrite history,
cannot react quickly to reported content due to using lengthy
public votings, or create large per-redaction overheads.

In this paper, we instead propose to outsource redactions to
small and periodically exchanged juries, whose members can
only jointly redact transactions using chameleon hash functions
and threshold cryptography. Multiple juries are active at the
same time to swiftly redact reported content. They oversee their
activities via a global redaction log, which provides transparency
and allows for appealing and reversing a rogue jury’s decisions.
Hence, our approach establishes a framework for the swift and
transparent moderation of blockchain content. Our evaluation
shows that our moderation scheme can be realized with feasible
per-block and per-redaction overheads, i.e., the redaction capa-
bilities do not impede the blockchain’s normal operation.

Index Terms—redactable blockchain, illicit content, chameleon
hash functions, threshold cryptography

I. INTRODUCTION

Author manuscript.

Permissionless blockchains, such as Bitcoin [1], allow
anybody to participate [2]: For instance, anyone can propose
new transactions, run a full node to revalidate the blockchain,
or attempt to mine new blocks and earn rewards. While this
openness enables interactions among unknown or distrusting
parties, it becomes problematic if users irreversibly store illicit
content on the blockchain [3]. In 2019, for example, police in-
vestigated in the UK after someone stored child abuse imagery
on the blockchain of Bitcoin SV [4], [5]. Such incidents show
that blockchain networks must become capable of swiftly and
proactively counteracting illicit blockchain content.

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1109/ICBC54727.2022.9805508

Redactable blockchains [6]–[11] emerged to enable ret-
rospective blockchain modifications, e.g., to remove illicit
content. This way, honest node operators can safely delete
redacted data and remain capable of fully validating the
(modified) blockchain. However, previously proposed redac-
tion schemes have to trade off trust, flexibility, and perfor-
mance, i.e., they either give the control over redactions to

a fixed set of few (trusted) nodes [6], [7], they establish
transparency by relying on on-chain voting with large delays
of, e.g., one week [8]–[10], or they impose large per-redaction
overheads [11].

In this work, we thus propose RedactChain, a moderation
framework that enables the swift retrospective redaction of
illicit content while ensuring transparency in the permission-
less setting. RedactChain achieves this desirable combination
by outsourcing redactions to multiple small redaction juries
that are periodically elected at random. Furthermore, juries
coordinate and mutually oversee each other via a separate
redaction log, e.g., to prevent a jury from stalling the removal
of content. Each redaction jury can swiftly decide to redact
reported transactions. However, they have to cooperate to do
so, and they can only modify a small portion of the blockchain
for a limited time. To account for cases where illicit content
remained undetected for a long time, RedactChain can still
use a long-term voting scheme (e.g., [8]) as a fallback mech-
anism. In our design, we rely on chameleon hash functions
(CHFs) [6], [12], [13], which enable anybody knowing a secret
trapdoor key to modify individual blocks efficiently. In contrast
to other CHF-based approaches, RedactChain does not rely on
a fixed CHF controlled by a fixed set of redactors. Instead,
newly elected juries establish new CHFs via distributed key
generation (DKG) [14]. Further, we subject all redactions to
rules that enable juries to redact content even from spendable
transaction outputs without permitting arbitrary modifications,
e.g., they prevent attempts to override previous payments.
Finally, the redaction log provides a transparency ledger of
all accepted modifications, which additionally supports the
coordination between currently active redaction juries.

Contributions. We make the following main contributions
to redacting illicit content from permissionless blockchains:

• We enable swift-and-transparent redactions in the permis-
sionless setting, i.e., without relying on a trusted third party.

• We define a moderation framework that enables multiple
juries to coordinate redactions and resolve disputes.

• We show how even theoretically spendable transactions can
be redacted globally while retaining their spendability.

• We detail that short-term redaction schemes can be com-
bined with slower long-term redaction schemes that, in turn,
enable redactions also within very old blocks.

https://doi.org/10.1109/ICBC54727.2022.9805508


II. THE NEED FOR CONTENT MODERATION

We first reiterate content insertion practices found in Bitcoin
before discussing related work and arguing for the need for
swift-and-transparent redactions in the permissionless setting.

A. Blockchain Content Insertion in Bitcoin

Non-financial content has been inserted into Bitcoin’s block-
chain in both intended and unintended ways in the past.

Bitcoin offers two intended means for inserting small
chunks of arbitrary data [3]. First, miners can add roughly
100B to the coinbase field of their blocks [3]. Second,
users can augment their transactions with up to 83B of data
by adding a single OP_RETURN output per transaction. This
limited method is widely accepted for realizing Bitcoin-backed
applications [15], [16]. However, other Bitcoin forks increase
the allowed payload size of OP_RETURN outputs [17]. This
way, OP_RETURN has been abused in the past to engrave child
abuse imagery, prompting a police investigation in the UK [5].

Furthermore, Bitcoin users had already earlier abused un-
intended ways to engrave larger data volumes by replac-
ing the mutable fields of standard transactions with their
data chunks [3]. For instance, each pay-to-public-key-hash
(P2PKH) output contains a 20B-long hash value that defines
the associated coins’ owner. A content inserter might create
a large transaction with thousands of manipulated P2PKH
outputs to engrave kilobytes of data [3]. In contrast to in-
tended insertion methods, this approach creates hypothetically
spendable transactions and, thus, simply deleting manipulated
outputs might impact the network’s consensus. For instance,
removing spent outputs would break the transaction graph.

B. Related Work

Previous research has dealt with unwanted blockchain con-
tent by either preventing its insertion, locally erasing content,
or creating different brands of redactable blockchains.

Content Prevention. One approach to reducing the risks
of blockchain content is preventing it from being recorded.
Available strategies include: (a) detecting content in pending
transactions, (b) financially disincentivizing the creation of
large transactions, or (c) hardening the easily replaceable
hash values of transaction outputs against manipulation [18].
However, while these strategies can limit the extent of content
insertion, none of them can provide full protection [18].

Local Erasure. Node operators can further erase transac-
tions from their local blockchain copy [19]. However, the node
operator then depends on other nodes to verify transactions
spending erased outputs. This dependency can be mitigated by
obfuscating transaction outputs instead of fully erasing them,
e.g., by hashing blockchain identifiers again [19]. However,
node operators have to actively maintain their local blockchain
copy, which implies further administrative overhead for them.

Trust-based Redactions. Another branch of research thus
creates redactable blockchains, which allow for retrospec-
tive blockchain modifications. Initial solutions [6], [7] use a
system-wide and fixed chameleon hash function (CHF) [12],
[13] to chain blocks. Computing the hash value via a CHF

involves a public key, and anyone knowing the corresponding
secret trapdoor key can compute collisions efficiently. Block-
chain designs can thus determine a redactor (or a small group)
who is in charge of redacting illicit content. However, the
redactor needs to be trusted to execute redactions faithfully.

Voting-based Redactions. To mitigate strong trust assump-
tions, other redactable blockchains rely on public voting
instead of fixed redactors. On the one hand, miners can
use their blocks to vote on user-proposed redactions [8]–
[10]. Previously proposed voting periods should last for 1024
Bitcoin blocks [8], [10], which corresponds to roughly one
week of real-world time. On the other hand, the redaction
capabilities can be outsourced to smaller consortia, who only
have temporal redaction capabilities; however, as of now, this
delegation of control comes with considerable per-redaction
overheads [11].

Policy-based Redactions. Finally, policy-based redaction
schemes [20]–[24] enable transaction owners to specify redac-
tion policies, e.g., to account for privacy concerns or achieve
GDPR compliance. However, these approaches cannot protect
against users who insert illicit content, as the transaction owner
has to cooperate to remove such content.

C. Missing Swift-and-Transparent Redactions

Previous reports warned that illicit blockchain content has
the potential to jeopardize permissionless blockchain systems
such as Bitcoin [3], [6], [19]. In 2019, we further observed a
police investigation triggered by child abuse imagery engraved
on the blockchain of a Bitcoin fork [5]. Since such content
is distributed to all full nodes in the permissionless setting,
the network has to react swiftly and provide transparency
to remove identified content without reducing trust in the
blockchain’s overall immutability.

Unfortunately, our analysis shows that previous proposals do
not provide swift and transparent redactions that also cover un-
intended insertion methods without complicating the validation
process. Content prevention [18] mitigates blockchain content
but only provides heuristics, i.e., full prevention cannot be
guaranteed. Local erasure [19] allows node operators to react
quickly but burdens them with removing the illicit content
themselves. While redactable blockchains promise to unburden
node operators, trust-based redactions [6], [7] create a point
of centralization and do not provide transparency. Contrar-
ily, voting-based redactions either react only slowly [8]–[10]
or create considerable per-redaction overheads [11]. Finally,
policy-based redactions [20]–[24] require the transaction cre-
ator to cooperate, which renders them inapplicable in our
scenario.

Furthermore, previous approaches focused on the technical
enablers for redactable blockchains. Other crucial aspects
tend to remain unaddressed: Potentially spendable transaction
outputs can hold content, but they are either explicitly declared
non-redactable [8], [10] or not considered. However, redacting
spendable outputs is required, e.g., to counteract P2PKH
manipulation, but such modifications may affect the valida-
tion of future transactions and thus need special treatment.



Redaction JuryAlice

Blockchain with Redaction Log

Block,
Transactions

Automatable
Obfuscation

Manual
Voting

Appeal

Accept / Vote2
Report
Transaction

1

Redact
(if approved)

3

Observe
Content

Coordinate and
Elect Juries

4

Other
Juries Bob

Fig. 1: Overview of RedactChain’s moderation framework.

Further, any redaction also changes the identifiers of affected
transactions. Nodes must account for changing identifiers if
transaction outputs remain spendable after the redaction.

In the following, we address this research gap by presenting
RedactChain, a swift-and-transparent moderation framework
for redacting illicit content in the permissionless setting.

III. REDACTCHAIN OVERVIEW

We first give an overview of RedactChain’s components,
moderation process, and block structure before presenting the
individual redaction steps in detail in the following sections.

Moderation Process. Figure 1 shows how RedactChain’s
components interact to moderate and execute redactions in a
swift-and-transparent manner in four steps (Steps 1⃝– 4⃝):

Any user can 1⃝ report a transaction for illicit content,
providing a claim arguing for redacting the transaction to one
of m simultaneously active juries Ji with n members each.

The jury then 2⃝ votes off-chain whether or not to redact the
reported transaction and 3⃝ executes the redaction depending
on the outcome of the voting process. Similar to previous
approaches [6], [7], RedactChain uses chameleon hash func-
tions (CHFs) [12], [13] to grant juries the ability to redact
blocks. However, RedactChain limits the juries’ influence in
multiple ways to prevent misuse of power. First, we rely on
distributed key generation (DKG) [14] to distribute the control
over a CHF’s secret trapdoor key across the jury members.
RedactChain further defines strict rules for valid modifications.
For instance, each jury may modify any transaction at most
once, and other nodes will reject further modifications once
the transaction has not been modified for ∆R blocks to ensure
that disputes are ultimately settled. New juries are elected
every ∆D blocks from the recently successful miners, i.e.,
replaced juries can no longer modify new blocks. To prevent
older content from becoming non-redactable, RedactChain
can fall back onto slower public voting processes (e.g., [8]).
Furthermore, in contrast to previous solutions, RedactChain
also supports the global redaction of theoretically spendable
outputs (e.g., manipulated P2PKH transactions) by obfuscating
instead of deleting these outputs. Since the spendability of
such transactions is not affected by the obfuscation step, juries
can execute such redactions without having to inspect content
inserted via unintended means manually.

M
et
ad
at
a

Block Version v
Prev. Block Hash HP

Timestamp t Target T
PoW Solution N

Block Version v
Prev. Block Hash HP

Timestamp t Target T
PoW Solution N

PoW-based
Confirmation

Link

Block Bn Block Bn+1

Va
lid
ity

Li
nk
s

Pa
yl
oa
d

Validity Hash HV,1

Validity Hash HV,m
Check Value ξ = (r, s)

Current TX Root M
History Root R

Validity Hash HV,1

Validity Hash HV,m
Check Value ξ = (r, s)

Current TX Root M
History Root R

Validity Hash HV,2Validity Hash HV,2 CHF-based
Validity
Links

Redact. Log Link(s) HRL Redact. Log Link(s) HRL

Original TX Root M0Original TX Root M0

Immutable Mutable through redaction Bitcoin Block

Fig. 2: Block structure of RedactChain compared to Bitcoin.

Juries 4⃝ coordinate via a separate redaction log. The redac-
tion log serves three functions. First, juries record update
entries on the redaction log that document individual modifi-
cations, i.e., redactions or restorations. Second, the redaction
log is coupled to the main blockchain to establish consensus
about an approximate timing of all events. Nodes maintain per-
transaction redaction timers ∆R,t based on this approximate
timing. The redaction timer ∆R,t of transaction t gets reset
whenever a valid modification of t is recorded on the redaction
log, and it expires when it was not reset for ∆R blocks. Nodes
reject any modification proposed after ∆R,t expires. This way,
RedactChain prevents juries from overstepping their compe-
tencies and establishes transparency. Further, users can now
appeal to unwarranted redactions by presenting the original
transaction to another jury. Finally, newly assembled juries
announce their new CHFs’ public values via the redaction log
so that miners can start using those CHFs.

Blockchain Structure. Figure 2 shows RedactChain’s block
structure (compared to Bitcoin’s) that facilitates its multi-jury
approach. RedactChain uses one validity link HV,i per jury
to assert the previous (potentially redacted) block’s current
state in addition to the common PoW-based confirmation link
HP . The confirmation link only covers the immutable fields
of a block header. Each block holds an immutable copy of
its initial Merkle tree root M0 to be covered by the next
block’s confirmation link. Additionally, each block has m
validity links corresponding to the m active juries’ CHFs. By
checking the validity links, any node can assert that the block
is in its initial state or that a responsible jury has redacted
it. Namely, jury Ji redacts a block by updating its check
value ξ = (r, s) via its CHF’s trapdoor key (cf. Section V-A) to
keep HV,i of the next block intact. Finally, the history root R
accumulates all update entries corresponding to modifications
of transactions within the current block (cf. Section V-C).

IV. DETECTING UNWANTED CONTENT

We now detail how users 1⃝ report transactions and how
juries 2⃝ handle these reports, i.e., vote whether to redact.

Filing Reports. Similar to previous solutions [8], [10], [11],
RedactChain enables users to report transactions containing
illicit content. Besides normal users, established organizations
fighting illicit content, such as the Internet Watch Foundation



(IWF) [25], can monitor the blockchain and report unwanted
and objectionable content in a timely manner. A user files their
report by contacting a randomly selected jury based on the
members’ hostnames, ports, and public keys published as part
of the jury election process (cf. Section VI-A). Each report
consists of a transaction’s identifier and a succinct claim of
why the content should be redacted. RedactChain relies on
a reliable-broadcast primitive [26] for filing reports to ensure
that all jury members receive the same report.

Handling Reports. After receiving a report, the jury en-
gages in an off-chain decision-making process to determine
whether to redact the reported transaction. Here, we distin-
guish content inserted via unintended and intended methods
as both means have distinctly different characteristics (cf. Sec-
tion II-A). Namely, intended methods typically only allow for
storing small data chunks (and past negative examples [4],
[5] provide arguments for keeping this line), and unintended
methods can circumvent these restrictions by interfering with
the validation of financial transactions.

We first consider handling unintended insertion methods.
Since the predominantly used methods rely on manipulating
mutable identifiers in transaction outputs, RedactChain does
not remove affected outputs during the redaction step but only
obfuscates them (cf. Section V-B). Thus, juries can automate
the decision-making process and always redact transactions
reported for embedding content via unintended means because
this form of redaction does not affect the outputs’ spendability.
However, the obfuscation inflicts overheads. Using further
heuristics, e.g., requiring a minimum number of outputs [18] or
explicitly checking for manipulations via content detectors [3],
can help identify false reports and reduce these overheads.

Contrary to this identifier manipulation, intended insertion
methods, by definition, are not abusing blockchain features.
Hence, the jury members have to manually vote for or against
redacting corresponding content. We expect only few instances
of such manual voting since encoding objectionable content is
harder due to these methods’ limited capacity. In scenarios
where the insertion of larger data chunks is desired (e.g., via
the Bitcoin Data Protocol [27], which is used to insert up
to 100 kB per OP_RETURN [27]), jury members need more
support. For example, public access to fingerprint databases
of known illicit material could vastly simplify the safe and
automatable detection of such material [28]. Alternatively,
stakeholders such as the IWF, which already works with such
databases to fight child abuse on the Internet [25], could
monitor the blockchain for such content.

V. DECENTRALIZED REDACTION PROCESS

After approving a report, a jury needs to 3⃝ redact the cor-
responding transaction. We now detail this redaction process.

A. Threshold CHFs for Trusted Redactions

RedactChain relies on distributed CHFs to enable juries
to modify the blockchain without preventing other nodes
from efficiently verifying the updated blockchain’s integrity.
Whenever a new jury is elected (cf. Section VI-A), it first

establishes and announces a new CHF and can subsequently
start to jointly apply that CHF to execute redactions.

Establishment. RedactChain makes use of the same class of
CHFs based on Nyberg-Rueppel signatures [13], [29] that was
used in initial redactable blockchains [6]. This scheme uses a
check value ξ = (r, s) to enable efficient collisions, which is
chosen randomly for the initial hashing. When computing a
collision, ξ is then updated based on the new input message,
the secret trapdoor key, and a randomly chosen collision value.

Despite providing fast redactability, the initial proposal for
redactable blockchains [6] relies on one fixed CHF, i.e., the
redacting nodes are fixed. Instead, RedactChain dynamically
exchanges CHFs over time to mitigate trust issues. When a
jury is elected (cf. Section VI-A), the jury’s members first
establish connections to each other and create a new CHF.
The jury uses DKG [14] to generate a new distributed secret
trapdoor key, i.e., each member only holds a share (according
to Shamir’s secret-sharing scheme [30]) of the secret key, but
all members obtain the corresponding public key required to
compute hash values. The jury then writes the public key to
the redaction log as a jury assembly block so that miners can
start mining blocks using the new CHF (cf. Section VI-A).

Secure Collision Computation. The jury can now redact
transactions from blocks mined during their duty period by
computing a collision for their CHF in a decentralized manner.
The initial CHF-based proposal suggested recombining the se-
cret trapdoor key before computing the collision [6]. However,
this approach enables single jury members to issue arbitrary
redactions from then on. RedactChain instead decentralizes the
computation of a collision value k′ and uses the homomorphic
properties of Shamir’s secret-sharing scheme [31] to locally
compute the new check value ξ′ = (r′, s′), i.e., update the
block without changing its hash value. The jury members
draw a new random collision value k′ also using DKG, as
that value needs to remain secret. Furthermore, the nodes can
update r′ locally using the collision value’s public value gk

′
,

but computing s′ involves knowing k′ [13, Section 4]; hence,
the nodes first prepare shares of s′ and then recombine those.

B. Updating Transactions and Blocks

Besides computing CHF collisions, the jury has to update
affected transactions and blocks to execute redactions.

Replacing Transactions. Each jury member locally updates
transactions to be redacted as an input for our decentralized
CHF collision computation (cf. Section V-A). The removal
technique depends on the applied insertion mode as derived
from the user’s report.

Data inserted via intended methods, i.e., OP_RETURN and
coinbase, is not tied to other transactions. Such content can
be removed without affecting the validation of other blocks.

Contrarily, unintended methods rely on manipulating spend-
able outputs (e.g., P2PKH), which hold coins. Simply re-
moving such outputs can have side effects as (a) coins can
be burned, and (b) some of the outputs might be spendable
or already spent. We prevent breaking the transaction graph
by only obfuscating content from manipulated transactions,



i.e., the content cannot be recovered after the redaction but
any spendable output remains spendable. To this end, we
cryptographically hash the mutable identifiers a second time
instead of removing them, which is in line with strategies
proposed for local content erasure [19] or obfuscating illicit
content from Bitcoin’s UTXO set [32]. When a user attempts
to spend an obfuscated output, the node can still validate the
transaction by executing additional hashing on the fly.

Finally, other insertion methods, e.g., using non-standard
transactions or input scripts [3], need to be mitigated via
strictly enforcing standardness tests [33] also on transactions
mined into a block. For instance, redacting input scripts always
breaks the transaction graph as they, by definition, satisfy
a previous transaction’s spending condition. Removing such
content thus relates to local erasure (cf. Section II-B) since the
removing node cannot fully validate the blockchain anymore.

Updating Blocks. To conclude the redaction, the jury Ji
updates the corresponding block (cf. Figure 2). Each member
computes an update entry describing the edit and appends it
to the block’s update history (cf. Section V-C). Each member
updates the Merkle root M and the history root R accordingly.
Then, the jury can jointly update the check value ξ using the
secure collision computation (cf. Section V-A). This way, the
confirmation link HP and the validity link HV,i of the block’s
successor remain intact and assert that the modified block
was previously confirmed and that it was altered by one of
the responsible juries. Finally, the jury broadcasts the updated
block, and other nodes accept the change after verifying it.

C. Ensuring the Transparency of Redactions

Besides preserving the blockchain’s integrity regardless
of redactions via CHFs, RedactChain maintains a per-block
update history as well as a dedicated redaction log to provide
transparency and to coordinate juries (cf. Section VI-B).

Update Entries. An update entry describes one blockchain
modification, i.e., a redaction or restoration. Each entry is
indexed by a block-level counter, which is incremented for
each edit, and the index i of the redacting jury Ji. Furthermore,
each entry summarizes the block’s state before the edit as well
as the reason for the edit based on the initial user report. The
j-th edit of a block covers the block’s previous state by stating
the edited transaction’s old identifier tj−1, the old Merkle
root Mj−1 and history root Rj−1, and the old check value
ξj−1. This way, other nodes can verify that the block was
in a valid state before, reasons for redactions become public,
and keeping track of old transaction identifiers helps nodes to
validate future transactions referencing edited transactions.

Update History. Each block has an update history. This
history contains all update entries affecting a block and is tied
to its header via the history root R. The update history serves
two purposes. First, nodes can comprehend and verify every
past edit of the block. Second, even joining nodes learn about
changes of transaction identifiers due to a redaction to validate
transactions spending outputs of modified transactions.

Redaction Log. In addition to per-block update histories,
RedactChain also keeps a global redaction log of all activities.

Blockchain

PRNG Seed

C2

CE
C1

CE-2

CE-1
C3

Election 
Triggered

Results of Jury ElectionElection 
Triggered

Ca = (Hosta, Porta, Puba)
Cb = (Hostb, Portb, Pubb)
Cc = (Hostc, Portc, Pubc)
Cd = (Hostd, Portd, Pubd)
Ce = (Hoste, Porte, Pube)
Cf = (Hostf, Portf, Pubf)
Cg = (Hostg, Portg, Pubg)

Elected
M

em
bers

N
ot

Elected

Eligible
Nodes

Duty
Period ΔD

Random
ElectionElection

Period ΔE

rD+1

r1

C1
ri

CE-1
rD-1

CE
rD

Advertised
Nodes

Fig. 3: Default jury election. Nodes locally draw n members of
the last ∆E successful miners from a pseudo-random shuffling.

The redaction log is a separate append-only ledger that is
publicly readable but only extended by juries. Namely, juries
publish their jury assembly block (cf. Section VI-A) as well
as the update entries of their blockchain edits on the redac-
tion log. Each update entry is additionally encapsulated with
backlinks confirming prior redaction log entries, a timestamp
of the entry’s creation, and a signature jointly created by the
jury. We use Nyberg-Rueppel signatures so that juries can
obtain the required randomness by running an additional DKG
instance in parallel during the collision computation for the
redaction (cf. Section V-A). Furthermore, the redaction log
helps to establish consensus about the approximate timing of
events among all nodes by coupling the redaction log to the
main blockchain. Namely, each block references the redaction
log’s current tip via HRL (cf. Figure 2). Thereby, the block
confirms that all entries on the redaction log existed at the
time the block was mined. Even though dishonest miners may
attempt to skew this timing by ignoring legitimate entries,
honest miners will faithfully confirm the most recent entries
to confirm all legitimate entries in a timely manner. Dishonest
miners further cannot predate entries because the signature-
based linking prevents inserting entries into an existing path.
Finally, miners can merge redaction log forks and confirm
the insertion time also of entries deliberately appended to old
entries by confirming multiple tips simultaneously.

VI. COORDINATING REDACTION JURIES

Juries have to 4⃝ coordinate the handover of redaction
capabilities and their activities. We further discuss our fallback
mechanism to also redact older transactions that this coordi-
nation would otherwise make non-redactable.

A. Jury Election Process

Figure 3 shows the election process for each jury Ji
consisting of n members. New juries are elected every ∆D

blocks from a pool of eligible nodes. By default, RedactChain
considers all successful miners of the ∆E most recent blocks
eligible to be voted into a jury. Each miner includes its
hostname, port, and a public key in its blocks so that juries
can bootstrap and users can create an index of how to reach
active jury members to file a report. For increased diversity,
RedactChain can be extended to also consider a Sybil-resistant
pool of non-miners eligible to become jury members [34].



After ∆D blocks, each node locally creates an eligibility list
from this data and shuffles this list based on a pseudo-random
number generator (PRNG) that is seeded with randomness
drawn from the last ∆D blocks. RedactChain can be extended
with dedicated randomness extractors [35] to further reduce
bias from blockchain-sampled randomness. We elect all i
juries in parallel by repeatedly hashing the initial PRNG seed
and reshuffling the eligibility list accordingly. The nodes then
consider the n topmost nodes of the shuffled eligibility list as
the elected members of Ji. The elected members also learn
their exact position in Ji and how to connect to the other jury
members. The juries can then bootstrap and create their jury
assembly block. The members sign the assembly block; other
nodes only accept assembly blocks with at least x ≥ 2n/3
valid signatures. If a jury cannot announce the assembly block
within a short time (e.g., <10 blocks), the nodes elect a jury
Jm+1 in its place. Finally, the jury publishes the assembly
block to the redaction log and starts accepting reports.

B. Coordination and Mutual Oversight

Simultaneously active juries ensure that RedactChain re-
mains actionable and accountable even if single juries misbe-
have, but the juries need to coordinate. We now present how
the redaction log and its approximate timing benefit coordi-
nation and enable a fair appeal process for users. Finally, we
briefly discuss conflicts stemming from concurrent redactions.

Approximate Timing for Coordination. Nodes mainly use
the mining process to coordinate, e.g., new juries are elected
every ∆D blocks. Coupling the redaction log to the main
blockchain (cf. Section V-C) further enables an approximate
timing for when edits happened. Nodes use this timing to keep
track of per-transaction redaction timers ∆R,t, i.e., the number
of blocks since the last edit of transaction t. Each node resets
∆R,t whenever a valid edit of t is appended to the redaction
log. Conversely, the nodes reject further jury actions once ∆R,t

exceeds a threshold ∆R and expires. If ∆R,t expires, t can
only be redacted via a slower public voting (cf. Section VI-C).

Fair Appeal Process. Appeals are necessary to settle dis-
putes stemming from manual jury votes or revert unwarranted
redactions. Our multi-jury approach enables users to request
reverting a past decision at another jury. Users can ask a jury to
restore a redacted transaction t by presenting a cached copy
of the original state of t. This way, the jury can revert the
redaction of t while still allowing all but appealing nodes to
immediately remove or obfuscate t locally. If the appeal is
successful, the nodes will reset ∆R,t, but keep track of which
juries already edited t to reject future modification attempts
from those juries. Hence, even strongly disputed transactions
ultimately reach a final state as their redaction timer will expire
at some point due to no jury intending or being able to issue
another edit. However, appeals can cause redaction timers to
expire after the juries’ duty ends. In these cases, juries may
resolve pending disputes before dissolving.

Conflicting Redactions. As juries are active concurrently,
their modifications can provoke conflicts when they attempt
to edit two transactions of the same block simultaneously.

Nodes arrange the edits based on their timestamps on the
redaction log to prevent accidentally overwriting any edits.
In the worst case, the jury losing this tiebreaker has to redo
its modification. Since juries are intentionally small (e.g., tens
of nodes), they can coordinate their intended edits even before
the update entries are confirmed on the redaction log to lower
the risk of collisions. Furthermore, the most resource-intensive
step of a redaction is using DKG to obtain a collision value
(cf. Section VII-C), which is independent of the transaction
to be redacted. Hence, juries can delay applying a specific
collision value until after the off-chain coordination.

C. Integration of Other Moderation Schemes

While RedactChain’s redaction process enables swift redac-
tions without relying on fixed redactors, older transactions
become immutable again and could potentially contain over-
seen content. To mitigate this risk, RedactChain is compatible
with long-term, voting-based redaction schemes [8]. Both
approaches use an immutable confirmation link as a fallback
to validate a block’s initial state and a validity link that is
invalidated as soon as the block is edited. Hence, RedactChain
can be extended to offer a similar long-term voting process
for older transactions. In this case, all miners vote on-chain,
independent from juries and redaction timers, and all nodes
can observe the voting process. This approach introduces
significant delays over RedactChain’s default redaction process
but enables the removal of deeply engraved content. Similarly,
content mitigation schemes, which limit the insertion of con-
tent (cf. Section II-B), can be deployed with RedactChain to
reduce the number of expected redactions.

VII. EVALUATION

Now, we evaluate RedactChain’s redactions by discussing
their effectiveness, security, and performance overheads.

A. Effectiveness and Non-Invasiveness

We first discuss that RedactChain provides a holistic rule
set for redactions suitable for decentralized settings while
protecting the blockchain’s and transaction graph’s integrity.

RedactChain can redact small chunks of content inserted via
intended means (OP_RETURN or coinbase) by simply removing
the respective values after a manual vote without side effects
on the transaction graph since no spendable transaction out-
puts are affected. Contrarily, removing potentially spendable
outputs, e.g., manipulated P2PKH outputs, can alter the trans-
action graph. RedactChain prevents breaking the transaction
graph by only obfuscating instead of removing potentially
spendable outputs during redaction (cf. Section V-B). Nodes
can validate pending transactions even against obfuscated
outputs by replaying that obfuscation on the fly. However,
any modification of a transaction alters its identifier. The
update entries attached to each block and the redaction log
(cf. Section V-C) ensure that all nodes can keep track of
changing transaction identifiers. Since input scripts, e.g., for
P2SH outputs, are inherently tied to the transaction graph’s
integrity, RedactChain does not modify them, and their in-
clusion must rather be mitigated [18] or handled locally [19]



0 5 10 15 20 25 30 35 40 45 50

Adversary-controlled Miners x [%]

0

10

20

30

40

50

60

70

80

90

100
A

d
ve

rs
ar

y
S

u
cc

es
s

R
a

te
[%

] Stallable (x ≥ n/3)

Infiltrated (x ≥ n/2)

(In each group, jury sizes
increment from 4 to 58
in increments of 6)

(In each group, jury sizes
increment from 4 to 58
in increments of 6)

Fig. 4: Success probability of an increasingly powerful adver-
sary to obstruct a single jury (bars are not stacked).

by other means. Finally, RedactChain prohibits non-standard
transactions to reduce the complexity of executing redactions.
Overall, RedactChain extends upon the limited redactability
achieved by related work in the permissionless setting, which
only considers provably unspendable transaction outputs.

We enable swift operation through outsourcing redactions to
small juries and deliberately limit their capabilities through our
periodic election of new juries (cf. Section VI-A). While older
transactions would become immutable this way, we extend
RedactChain’s coverage by remaining compatible with slower
public votes as a fallback (cf. Section VI-C).

B. Security Discussion: Adversary Resilience

We assess RedactChain’s security by considering a mali-
cious adversary who intends to stall redactions or perform
rogue modifications based on their share of nodes eligible for
jury election and the other nodes’ verifiability of redactions.

An adversary can modify a transaction t if (a) they know
one of the responsible juries’ secret trapdoor key and (b) the
redaction timer ∆R,t has not yet expired. Secret trapdoor keys
are generated using DKG (cf. Section V-A); hence, the adver-
sary can recombine a jury’s key and then compute collisions
for the jury’s CHF to modify blocks if they control x ≥ n/2
jury members [14]. In this case, we say that the adversary
successfully infiltrated a jury. Even though the adversary could
technically execute redactions at will, they must still adhere
to the rule set for redactions (cf. Section V-B). Namely, the
adversary can delete only OP_RETURN and coinbase fields, but
they must correctly obfuscate potentially spendable outputs,
i.e., the adversary cannot alter the transaction graph even after
infiltrating a jury. The adversary must update the redaction log
properly before other nodes accept the edit. Hence, the nodes
detect attempts to modify a transaction more than once. If the
adversary controls n/3 ≤ x < n/2 jury members, they can
only stall the final recombination step and prevent the honest
members from executing redactions. While this strategy can
delay a redaction, users can report the transaction to another,
actionable jury (cf. Section VI-B) or ultimately fall back to a
long-term public voting scheme if required (cf. Section VI-C).
As long as the adversary controls only x < n/3 members, they
cannot affect RedactChain’s operability.

Figure 4 shows the probability that an increasingly powerful
adversary can stall or infiltrate a single jury. We simulated an
adversary who controls an increasing share of a total of 100

0 5 10 15 20 25 30 35 40 45 50

Adversary-controlled Miners x [%]

0

10

20

30

40

50

60

70

80

90

100

A
d

ve
rs

ar
y

S
u

cc
es

s
R

a
te

[%
] Stallable

m=1 jury

m=3 juries

m=5 juries

m=7 juries

m=9 juries

Infiltrated

m=1 jury

m=3 juries

m=5 juries

m=7 juries

m=9 juries

Infiltrated

m=1 jury

m=3 juries

m=5 juries

m=7 juries

m=9 juries

Fig. 5: Mutually overseeing juries (here: n=28 peers) increase
the resilience against adversaries for x≤30%.

equal miners. We fix the duty period at ∆D = 1000 blocks
(∼one week for Bitcoin) and the election period at ∆E=150
blocks (∼one day). We then elect 1000 juries of 4, 10, . . . , 58
members from the randomly chosen miners of the last ∆E

blocks based on a seed derived from the block identifiers of
a randomly chosen sequence of ∆D + 1 Bitcoin blocks. This
simulation shows that, while especially large juries only face a
low infiltration risk from an adversary controlling up to 35%
of the miners, there is a non-negligible risk that an adversary
can stall a jury once controlling at least 25% of the miners.

We can further reduce this risk by relying on multiple,
mutually overseeing juries. An odd number of juries ensures
that an honest jury will have control over the final decision for
at most y<m/2 infiltrated juries. Figure 5 gives the success
rate of the adversary of gaining control over y >m/2 juries
for m=1, 3, 5, 7, 9 and a fixed, moderate (cf. Section VII-C)
jury size of n = 28. While the adversary has a success rate
of 15.1% to stall a single jury when controlling 25% of all
miners, they have a lowered chance of only 3.8% of stalling
the redaction process for m = 9 active juries. Notably, this risk
is lower than relying on a single jury of n=58 members and
still provides feasible redactions. Even though the adversary
can stall redactions temporarily in rare cases, the network can
still resort to public voting as a fallback (cf. Section VI-C).

C. Redaction Time

We now discuss the redaction times achieved by
RedactChain and its scalability to large network sizes.

Measurement Setup. We measure the redaction time for
a single jury based on a Python prototype [36], which
uses aiohttp for communication and an adapted version of
python-bitcoinlib to handle redactable blocks. All jury
members run on the same server (2× Intel Xeon Silver 4116,
196GB RAM) and communicate over local TCP connections
via RSA-signed messages. We use 2048-bit primes for our
cryptographic primitives. We create a simulated blockchain
of redactable blocks without mining difficulty by imple-
menting a pre-calculated transaction graph using the adapted
python-bitcoinlib module. This blockchain consists of a
genesis block for distributing initial funds and 1000 blocks
with 1000 transactions each. Each block contains two redact-
worthy transactions, one with 50 P2PKH outputs and one
with an OP_RETURN output. From this blockchain, one fixed
redaction jury of increasing size redacts both redact-worthy



4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

Jury Size [#]

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

D
u

ra
ti

o
n

[m
in

]
Obfuscation

Full Redaction

DKG

Update r’

Update s’

OP RETURN

Full Redaction

DKG

Update r’

Update s’

OP RETURN

Full Redaction

DKG

Update r’

Update s’

Fig. 6: Larger jury sizes affect the performance of our redac-
tion process, mainly due to DKG.

transactions from the first 30 blocks. We give the duration
of the measured redaction steps by averaging the difference
between the earliest jury member entering the phase and the
last jury member concluding it for each redaction over the 30
blocks. We further give 99% confidence intervals. Since the
phases can overlap between jury members, the sum of phases
can be larger than the overall redaction time.

Measurement Results. Figure 6 shows the time it takes a
single jury of sizes 4, 7, . . . , 58 to redact a transaction after
accepting a user’s report. We additionally highlight the main
steps of the distributed collision computation, i.e., obtaining a
collision value using DKG and computing the new check value
components r′ (local) and s′ (involves Shamir recombination).

Our results indicate no substantial difference between obfus-
cating large transactions and redacting an OP_RETURN output.
However, the redaction time increases superlinearly for larger
jury sizes, mainly due to DKG. For instance, obfuscating a
single large transaction takes a jury with n = 58 members
13.98min, whereas a jury with n= 28 only requires 54.9 s,
and a small jury with n=16 takes only 11.0 s. Hence, relying
on multiple but smaller juries can reduce the overhead of indi-
vidual redactions without forfeiting RedactChain’s resilience
against adversaries (cf. Section VII-B). We have to create
collision values via DKG since knowing a collision value
allows retrieving the jury’s secret trapdoor key [13]. However,
juries can pre-compute an appropriate number of DKG values
after their assembly [37]. While this approach does not reduce
the overall performance overhead of a redaction, it can further
improve the jury’s reaction time to user reports. Finally, these
redaction times are independent of the total network size.

D. Overhead of Additional Information

RedactChain tracks additional information to keep redac-
tions easily and publicly verifiable. We now discuss the over-
head due to this metadata, i.e., our block structure compared
to Bitcoin’s, the jury assembly blocks, and the redaction log.

Block Header. Bitcoin blocks have a fixed-length 80B-long
header [38]. In addition to this header’s fields, RedactChain’s
block headers keep track of the original Merkle root M0

(32B), the 1≤ i≤m confirmations of the redaction log (1B
for the length, 32B per link), the m CHF-based validity links
(1B for the length, 2048 bit = 256B per link), the check
value ξ = (r, s) (2048 bit per component), and the history
root R (32B). Hence, the block header has a total size of

946B for one jury and a worst-case size of 3250B for nine
juries confirming nine redaction log branches (i.e., one branch
per jury). Since the average Bitcoin transaction has a size of
250B [18], even using nine juries would reduce the block
capacity by only 13 transactions on average.

Redaction Log and History. Each redaction has an update
entry that is referenced in a block’s update history and on
the redaction log. As described in Section V-C, an update
entry consists of the per-block redaction counter (4B), the
redacting jury’s index (1B), the block header’s previous state
as given by the old transaction identifier, Merkle tree root, and
the history root (32B each), as well as the old check value
(2× 256B) and a reason for the redaction. In total, an update
entry has a size of 854B, assuming that the reason has a
length of ≤240B (plus a 1B length field). Each update entry
is encapsulated on the redaction log and holds a timestamp
(4B), a signature (256B), and 1 ≤ i ≤ m confirmations of
recent branches of the redaction log (1+ i · 32 B). Hence,
each entry has a total size between 1147B and 1403B. This
overhead is significantly lower than recently achieved per-
redaction overheads of 60 kB− 110 kB [11].

Jury Assembly Blocks. These blocks publish a new public
mining key (256B), and they hold signatures of 2n/3 < x ≤ n
jury members (1+x ·256 B). Jury assembly blocks are also
part of the redaction log and thus hold i confirmation links
(1+ i · 32 B) as well. Hence, jury assembly blocks remain
below 26 kB even for juries with 100 members, and they stay
below 7.5 kB for moderate-sized juries of 28 members.

VIII. CONCLUSION

In this paper, we presented RedactChain as a moder-
ation framework to counteract illicit blockchain content.
RedactChain distributes redaction capabilities by operating
multiple independent juries in parallel. Each jury consists of
randomly selected nodes and is periodically replaced by a
new jury. Our utilization of threshold cryptography during
redactions and a global redaction log to coordinate the ac-
tivities of different juries ensures that RedactChain remains
actionable and resilient against adversaries. Our design further
limits the damage an adversary-controlled jury can inflict,
and our evaluation shows that RedactChain is robust against
an adversary who controls up to 1/4 of the total mining
power. RedactChain further realizes its swift-and-transparent
moderation process with feasible per-redaction and per-block
overheads. Hence, illicit content can be redacted in under a
minute in contrast to previous day-long or even week-long
on-chain voting processes. Due to RedactChain’s current focus
on Bitcoin-like blockchains, we identify its generalization to
other systems (e.g., Ethereum [39]) as promising future work.

ACKNOWLEDGMENTS. This work has been funded by the German
Federal Ministry of Education and Research (BMBF) under funding
reference numbers 16KIS0443, 16DHLQ013, and Z31 BMBF Digital
Campus. The funding under reference number Z31 BMBF Digital
Campus has been provided by the German Academic Exchange
Service (DAAD). The responsibility for the content of this publication
lies with the authors. The authors further thank Eric Wagner, Jan
Rüth, and Muhammad Hamad Alizai for the valuable discussions.



REFERENCES

[1] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” White
paper, 2008. [Online]. Available: https://bitcoin.org/bitcoin.pdf

[2] K. Wüst and A. Gervais, “Do you Need a Blockchain?” in Crypto Valley
Conference on Blockchain Technology (CVCBT). IEEE, 2018, pp. 45–
54.

[3] R. Matzutt, J. Hiller, M. Henze, J. H. Ziegeldorf, D. Müllmann,
O. Hohlfeld, and K. Wehrle, “A Quantitative Analysis of the Impact of
Arbitrary Blockchain Content on Bitcoin,” in International Conference
on Financial Cryptography and Data Security (FC). Springer, 2018,
pp. 420–438.

[4] Money Button. (2019) Against Illegal Content on the
Blockchain. Archived on 2021-01-28. [Online]. Available:
https://web.archive.org/web/20210128090213/https://blog.moneybutton.
com/2019/01/31/against-illegal-content-on-the-blockchain/

[5] BBC News. (2019) Child abuse images hidden in crypto-
currency blockchain. Archived on 2021-06-25. [Online].
Available: https://web.archive.org/web/20210625141025/https://www.
bbc.com/news/technology-47130268

[6] G. Ateniese, B. Magri, D. Venturi, and E. Andrade, “Redactable Block-
chain – or – Rewriting History in Bitcoin and Friends,” in European
Symposium on Security and Privacy (EuroS&P). IEEE, 2017, pp. 111–
126.

[7] K. Ashritha, M. Sindhu, and K. Lakshmy, “Redactable Blockchain using
Enhanced Chameleon Hash Function,” in International Conference on
Advanced Computing & Communication Systems (ICACCS). IEEE,
2019, pp. 323–328.

[8] D. Deuber, B. Magri, and S. A. K. Thyagarajan, “Redactable Blockchain
in the Permissionless Setting,” in Symposium on Security and Privacy
(S&P). IEEE, 2019, pp. 124–138.

[9] A. Marsalek and T. Zefferer, “A Correctable Public Blockchain,” in
International Conference on Trust, Security and Privacy in Computing
and Communications/International Conference on Big Data Science and
Engineering (TrustCom/BigDataSE). IEEE, 2019, pp. 554–561.

[10] S. A. K. Thyagarajan, A. Bhat, B. Magri, D. Tschudi, and A. Kate,
“Reparo: Publicly verifiable layer to repair blockchains,” in Interna-
tional Conference on Financial Cryptography and Data Security (FC).
Springer, 2021, pp. 37–56.

[11] X. Li, J. Xu, L. Yin, Y. Lu, Q. Tang, and Z. Zhang, “Escaping from
Consensus: Instantly Redactable Blockchain Protocols in Permissionless
Setting,” Cryptology ePrint Archive, Report 2021/223, 2021, version
20211207:102627. [Online]. Available: https://ia.cr/2021/223

[12] H. Krawczyk and T. Rabin, “Chameleon Signatures,” in Network and
Distributed System Security Symposium (NDSS). The Internet Society,
2000.

[13] G. Ateniese and B. de Medeiros, “On the Key Exposure Problem in
Chameleon Hashes,” in Security in Communication Networks. Springer,
2005, pp. 165–179.

[14] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure Distributed
Key Generation for Discrete-Log Based Cryptosystems,” Journal of
Cryptology, vol. 20, no. 1, pp. 51–83, 2007.

[15] M. Bartoletti and L. Pompianu, “An Analysis of Bitcoin OP RETURN
Metadata,” in International Conference on Financial Cryptography and
Data Security (FC). Springer, 2017, pp. 218–230.

[16] M. Bartoletti, B. Bellomy, and L. Pompianu, “A Journey into Bitcoin
Metadata,” Journal of Grid Computing, vol. 17, no. 1, pp. 3–22, 2019.

[17] Money Button. (2019) How We Added Support for Giant OP RETURN
Data in Money Button. Archived on 2021-01-21. [Online].
Available: https://web.archive.org/web/20210121180521if /https:
//blog.moneybutton.com/2019/01/26/how-we-added-support-for-giant-
op return-data-in-money-button/

[18] R. Matzutt, M. Henze, J. H. Ziegeldorf, J. Hiller, and K. Wehrle,
“Thwarting Unwanted Blockchain Content Insertion,” in International
Conference on Cloud Engineering (IC2E). IEEE, 2018, pp. 364–370.

[19] M. Florian, S. Henningsen, S. Beaucamp, and B. Scheuermann, “Erasing
Data from Blockchain Nodes,” in European Symposium on Security and
Privacy Workshops (EuroS&PW). IEEE, 2019, pp. 367–376.

[20] I. Puddu, A. Dmitrienko, and S. Capkun, “µchain: How to Forget
without Hard Forks,” Cryptology ePrint Archive, Report 2017/106, 2017,
version 20200602:075626. [Online]. Available: https://ia.cr/2017/106

[21] A. Dorri, S. S. Kanhere, and R. Jurdak, “MOF-BC: A memory optimized
and flexible blockchain for large scale networks,” Future Generation
Computer Systems, vol. 92, pp. 357–373, 2019.

[22] N.-Y. Lee, J. Yang, M. M. H. Onik, and C.-S. Kim, “Modifiable Public
Blockchains Using Truncated Hashing and Sidechains,” IEEE Access,
vol. 7, pp. 173 571–173 582, 2019.

[23] D. Derler, K. Samelin, D. Slamanig, and C. Striecks, “Fine-Grained
and Controlled Rewriting in Blockchains: Chameleon-Hashing Gone
Attribute-Based,” in Network and Distributed System Security Sympo-
sium (NDSS). The Internet Society, 2019.

[24] Y. Tian, N. Li, Y. Li, P. Szalachowski, and J. Zhou, “Policy-Based Cha-
meleon Hash for Blockchain Rewriting with Black-Box Accountability,”
in Annual Computer Security Applications Conference (ACSAC). ACM,
2020, pp. 813–828.

[25] Internet Watch Foundation. (2015) Hash List. Archived on 2022-03-13.
[Online]. Available: https://web.archive.org/web/20220313190554id /
https://www.iwf.org.uk/our-technology/our-services/image-hash-list

[26] G. Bracha, “An asynchronous ⌊(n− 1)/3⌋-resilient consensus proto-
col,” in Symposium on Principles of Distributed Computing (PODC).
ACM, 1984, pp. 154–162.

[27] “unwriter”. (2019) B:// – Bitcoin Data Protocol. Archived on 2022-03-
13. [Online]. Available: https://web.archive.org/web/20220313191035if
/https://github.com/unwriter/B

[28] K. Cremona, D. Tabone, and C. De Raffaele, “Cybersecurity and the
Blockchain: Preventing the Insertion of Child Pornography Images,” in
International Conference on Cyber-Enabled Distributed Computing and
Knowledge Discovery (CyberC). IEEE, 2019, pp. 197–204.

[29] K. Nyberg and R. A. Rueppel, “Message recovery for signature schemes
based on the discrete logarithm problem,” in Advances in Cryptology —
EUROCRYPT’94. Springer, 1995, pp. 182–193.

[30] A. Shamir, “How to Share a Secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[31] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness Theo-
rems for Non-Cryptographic Fault-Tolerant Distributed Computation,”
in Symposium on Theory of Computing (STOC). ACM, 1988, pp. 1–
10.

[32] R. Matzutt, B. Kalde, J. Pennekamp, A. Drichel, M. Henze, and
K. Wehrle, “CoinPrune: Shrinking Bitcoin’s Blockchain Retrospec-
tively,” IEEE Transactions on Network and Service Management,
vol. 18, no. 3, pp. 3064–3078, 2021.

[33] Bitcoin Project. (2011) Protocol rules – Bitcoin Wiki. Archived
on 2021-07-14. [Online]. Available: https://web.archive.org/web/
20210714145539id /https://en.bitcoin.it/wiki/Protocol rules

[34] R. Matzutt, J. Pennekamp, E. Buchholz, and K. Wehrle, “Utilizing
Public Blockchains for the Sybil-Resistant Bootstrapping of Distributed
Anonymity Services,” in ASIA Conference on Computer and Communi-
cations Security (ASIACCS). ACM, 2020, pp. 531–542.

[35] J. Bonneau, J. Clark, and S. Goldfeder, “On Bitcoin as a
public randomness source,” Cryptology ePrint Archive, Report
2015/1015, 2015, version 20151019:205945. [Online]. Available:
https://ia.cr/2015/1015

[36] R. Matzutt, V. Ahlrichs, J. Pennekamp, R. Karwacik, and K. Wehrle.
(2022) RedactChain: Proof-of-Concept Prototype for the Swift and
Transparent Removal of Illicit Blockchain Content. Accessed on 2022-
03-13. [Online]. Available: https://github.com/COMSYS/redactchain

[37] J. H. Ziegeldorf, R. Matzutt, M. Henze, F. Grossmann, and K. Wehrle,
“Secure and anonymous decentralized Bitcoin mixing,” Future Genera-
tion Computer Systems, vol. 80, pp. 448–466, 2018.

[38] Bitcoin Project. (2010) Block – Bitcoin Wiki. Archived on 2022-01-10.
[Online]. Available: https://web.archive.org/web/20220110114832id /
https://en.bitcoin.it/wiki/Block

[39] G. Wood, “Ethereum: A Secure Decentralised Generalised Transaction
Ledger,” White paper, 2014. [Online]. Available: https://ethereum.
github.io/yellowpaper/paper.pdf

https://bitcoin.org/bitcoin.pdf
https://web.archive.org/web/20210128090213/https://blog.moneybutton.com/2019/01/31/against-illegal-content-on-the-blockchain/
https://web.archive.org/web/20210128090213/https://blog.moneybutton.com/2019/01/31/against-illegal-content-on-the-blockchain/
https://web.archive.org/web/20210625141025/https://www.bbc.com/news/technology-47130268
https://web.archive.org/web/20210625141025/https://www.bbc.com/news/technology-47130268
https://ia.cr/2021/223
https://web.archive.org/web/20210121180521if_/https://blog.moneybutton.com/2019/01/26/how-we-added-support-for-giant-op_return-data-in-money-button/
https://web.archive.org/web/20210121180521if_/https://blog.moneybutton.com/2019/01/26/how-we-added-support-for-giant-op_return-data-in-money-button/
https://web.archive.org/web/20210121180521if_/https://blog.moneybutton.com/2019/01/26/how-we-added-support-for-giant-op_return-data-in-money-button/
https://ia.cr/2017/106
https://web.archive.org/web/20220313190554id_/https://www.iwf.org.uk/our-technology/our-services/image-hash-list
https://web.archive.org/web/20220313190554id_/https://www.iwf.org.uk/our-technology/our-services/image-hash-list
https://web.archive.org/web/20220313191035if_/https://github.com/unwriter/B
https://web.archive.org/web/20220313191035if_/https://github.com/unwriter/B
https://web.archive.org/web/20210714145539id_/https://en.bitcoin.it/wiki/Protocol_rules
https://web.archive.org/web/20210714145539id_/https://en.bitcoin.it/wiki/Protocol_rules
https://ia.cr/2015/1015
https://github.com/COMSYS/redactchain
https://web.archive.org/web/20220110114832id_/https://en.bitcoin.it/wiki/Block
https://web.archive.org/web/20220110114832id_/https://en.bitcoin.it/wiki/Block
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

	Introduction
	The Need for Content Moderation
	Blockchain Content Insertion in Bitcoin
	Related Work
	Missing Swift-and-Transparent Redactions

	RedactChain Overview
	Detecting Unwanted Content
	Decentralized Redaction Process
	Threshold CHFs for Trusted Redactions
	Updating Transactions and Blocks
	Ensuring the Transparency of Redactions

	Coordinating Redaction Juries
	Jury Election Process
	Coordination and Mutual Oversight
	Integration of Other Moderation Schemes

	Evaluation
	Effectiveness and Non-Invasiveness
	Security Discussion: Adversary Resilience
	Redaction Time
	Overhead of Additional Information

	Conclusion
	References

