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ABSTRACT
Anomaly-based intrusion detection promises to detect novel or un-
known attacks on industrial control systems by modeling expected
system behavior and raising corresponding alarms for any devia-
tions. As manually creating these behavioral models is tedious and
error-prone, research focuses on machine learning to train them
automatically, achieving detection rates upwards of 99 %. However,
these approaches are typically trained not only on benign traffic but
also on attacks and then evaluated against the same type of attack
used for training. Hence, their actual, real-world performance on
unknown (not trained on) attacks remains unclear. In turn, the
reported near-perfect detection rates of machine learning-based in-
trusion detection might create a false sense of security. To assess this
situation and clarify the real potential of machine learning-based
industrial intrusion detection, we develop an evaluation method-
ology and examine multiple approaches from literature for their
performance on unknown attacks (excluded from training). Our
results highlight an ineffectiveness in detecting unknown attacks,
with detection rates dropping to between 3.2 % and 14.7 % for some
types of attacks. Moving forward, we derive recommendations for
further research on machine learning-based approaches to ensure
clarity on their ability to detect unknown attacks.

CCS CONCEPTS
• Security and privacy→ Intrusion detection systems; • Com-
putingmethodologies→Machine learning; •Networks→Cyber-
physical networks.
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1 INTRODUCTION
With ongoing digitization, Industrial Control Systems (ICS) are
increasingly networked and connected to the Internet [43, 48], thus
suspending the long-deployed air-gap principle as primary protec-
tion against intrusion. However, legacy ICS devices were usually
not designed to implement adequate network security and are
rarely replaced due to high costs and long device lifetimes [32, 48].
Consequently, ICS are increasingly targeted by cyberattacks with
potentially severe damage [24, 27], exposing the glaring security
deficits of ICS, which stem most importantly from weak or missing
protection mechanisms [1, 37]. To alleviate this situation, security
mechanisms must be retrofitted for Internet-connected ICS devices.

Network-based intrusion detection systems (IDSs) [40, 49] con-
stitute a promising approach for such retrofitting. While signature-
based IDSs detect attacks using pre-configured signatures, e.g., a
specific sequence of network packets, anomaly-based IDSs model
the expected behavior of a system and consider deviations as po-
tential intrusion, e.g., a control parameter outside physical bounds.
Thus, while signature-based IDSs can only identify known attacks,
anomaly-based IDSs promise to also detect novel attacks [29, 51].

Anomaly-based intrusion detection is particularly well-suited for
ICSs, as industrial devices usually exhibit regular and predictable
communication patterns [25] that remain largely unchanged over
time and ease the creation of behavioral models. However, the
individual and application-specific use of industrial devices requires
tailoring IDSs to the deployed system, involving high effort [5].

A promising approach to address this issue for industrial IDSs
(IIDSs) is the application of machine learning (ML). ML algorithms
can be trained on historic ICS data, thereby learning properties of
the physical system and attacks on it. Hence, ML algorithms super-
sede the manual crafting of system models in anomaly detection
and signatures in signature-based detection. Furthermore, the abil-
ity of ML to generalize and abstract patterns allows even operating
on “new” (i.e., unseen) data. However, classifying ML-based IDSs as
signature- or anomaly-based [50], i.e., determining whether an IDS
learns normal behavior, attack signatures, or both, is non-trivial
due to the intransparency of the learning process within ML.

Related work has proposed various ML-based IIDSs, either by
training exclusively on benign network traffic from the ICS [20] or
by training on a mix of benign and malicious traffic [28], indicating
almost perfect detection performance in excess of 99 % [35]. How-
ever, widely-used performance evaluation methods, e.g., metrics
such as precision, recall, or 𝐹1-score, only cover the ability of an
IIDS to detect known attacks and do not capture their ability to de-
tect new variations or even entirely new types of attacks, which is
the core promise of anomaly-based over signature-based detection.

https://doi.org/10.1145/3494107.3522773
https://doi.org/10.1145/3494107.3522773


CPSS ’22, May 30, 2022, Nagasaki, Japan Kus et al.

We argue that, especially for systems trained on a randomly
sampled mix of benign and malicious traffic, it is debatable whether
those IIDSs can actually realize anomaly detection as opposed to
only learning signatures of trained attacks. Thus, also taking unseen
attacks into account, the actual performance of ML-based IIDSs
remains unclear to this point. By only providing evaluation results
on known attacks while claiming to perform anomaly detection,
such approaches create the impression of almost perfect protection
and lead to a false sense of security in real-world deployments.

Thus, clarification of the real potential of ML-based IIDSs to offer
comprehensive protection is urgently needed. While literature on
attacking specific IIDSs [19] and on performing stealthy attacks
against ICS [21] exists, there is a lack of research w.r.t. the perfor-
mance of IIDSs on unknown attacks. In this paper, we address this
issue by examining and evaluating multiple ML-based IIDSs from
literature for their performance on unknown attacks.
Contributions. Our main contributions are as follows.
• We derive a methodology to evaluate the generalizability of ML-

based IIDSs to detect attacks they have not been trained on.
• Using our methodology, we evaluate existing ML-based IIDSs

on attacks that were deliberately excluded from training. Our
results show that these approaches only perform well on attacks
they have been trained on, leading to a false sense of security.

• By further training ML-based IIDSs on only one attack type, we
assess their ability to work in scenarios where the amount of
available training data is limited. We show that ML-based IIDSs
do not generalize well enough to capture new (unknown) attacks.

Availability Statement. To foster further research and ensure re-
producibility, our evaluation framework and evaluation artifacts are
available at: https://github.com/COMSYS/ML-IIDS-generalizability.

2 INDUSTRIAL INTRUSION DETECTION
Complementing preventive security measures such as firewalls,
encryption, and authentication, intrusion detection acts as an im-
portant additional safeguard to discover remaining attacks [32, 57].
In the following, we provide the necessary background on intru-
sion detection and argue that its passive nature eases retrofittabil-
ity and thus makes it especially attractive for industrial networks
(Section 2.1). We then specifically focus on ML-based intrusion
detection (Section 2.2), as it promises strong detection capabilities
for advanced attacks on industrial networks [12, 28, 32].

2.1 Traditional vs. Industrial IDSs
Intrusion detection systems (IDSs) passively monitor the behavior
of individual devices (host-based) and/or communication between
devices (network-based) [32] to discover attacks or suspicious be-
havior. To this end, the core idea behind IDSs is that attacks lead to
observably different behavior than normal system operation and
can thus be detected. In traditional IDS settings such as office or
server networks [53], attacks are typically spread out widely, e.g.,
through Internet-scale malware. Rule-based IDSs, such as YARA [6],
Suricata [40], or Zeek [52] (previously Bro [49]), can often reliably
detect them. Consequently, state-of-the-art IDSs in these tradi-
tional settings often rely on signatures or rules as attack indicators.
They raise an alarm whenever device or communication behavior
matches any of the predefined rules or signatures [31].
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Figure 1: 𝑘-fold cross-validation allows to accurately evaluate
the performance of a machine learning classifier. For each
fold, different parts of the dataset are used for training and
testing. Eventually, the full dataset is classified (tested) once.

Especially in industrial settings, IDSs promise to be an easily
deployable safety net for otherwise often insufficiently secured
industrial networks [17, 18, 48]. In particular, network-based IDSs
can easily be integrated into existing infrastructure without time-
consuming and costly changes to deployed devices or software.
Furthermore, the unique characteristics of industrial networks and
processes facilitate the use of intrusion detection: In contrast to
traditional IT networks (office or server), communication in indus-
trial networks follows a significantly more regular and predictable
pattern [25, 59], e.g., sensor readings that are refreshed with a fixed
periodicity [3]. As such, an underlying assumption of industrial
IDSs is that attacks likely lead to a distinctly different commu-
nication behavior. At the same time, the strong interdependence
between industrial processes and the communication necessary
to monitor and control them allows IDSs to detect even subtle at-
tacks, such as minor manipulations to the water’s acidity in a water
treatment plant [56]. Therefore, the industrial context is uniquely
suitable for the deployment of, especially anomaly-based, IDSs.

However, while industrial networks provide ample additional
opportunities to detect attacks, these attacks typically cannot easily
be described using rules or signatures (as it is possible for tradi-
tional IT networks) [61]. For example, subtle attacks might send
unsuspicious network packets (i.e., those also appearing in legiti-
mate communication), but cleverly time these to bring a supervised
process into an unsafe state [56]. As detecting such attacks pushes
rule- or signature-based IDSs beyond their limits [13, 28], a large
research community has gathered around ML approaches to also
detect advanced attacks on industrial networks [12, 36, 60].

2.2 Machine Learning for Industrial IDSs
The premise of machine learning (ML) for industrial intrusion de-
tection is simple: “Automatically” learn what constitutes benign
and malicious behavior to later classify observed behavior without
having to care about details [50] of the underlying physical pro-
cess and communication. We explain the training and evaluation
process of an ML-based industrial IDS in the following alongside
Figure 1. After successful training, the IDS can then be deployed
to predict whether observed samples (e.g., a sequence of network
packets) constitute an attack.

The first step to creating an ML-based IIDS is to obtain a suit-
able ICS dataset covering nominal operation and labeled attack
patterns (Step 1○). In Step 2○, this dataset is split into a training
(used for creating the classifier) and a testing dataset (used for
evaluating the classifier), e.g., according to a predefined ratio, such
as 80/20. The respective training process (Step 3○) depends on the
specific classifier, but usually relies on iterative optimization, e.g.,
using gradient descent. After the classifier is trained, in Step 4○, it
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is applied on the test set to predict whether the contained samples
are malicious or not. Finally, in Step 5○, the prediction results are
validated against the known labels (from the dataset) to evaluate
the classifier’s performance (i.e., how “well” it detects attacks).

In our simplified example, so far, the results are obtained using
a single train/test split, i.e., testing is performed on a single test set,
providing only limited insights into the performance of the IIDS on
different datasets. To mitigate this issue, cross-validation (CV) [47]
is a structured approach for evaluating an IIDS on multiple train/test
splits and thus increases confidence in the results. For 𝑘-fold cross-
validation, the dataset is partitioned into 𝑘 equal-sized parts. As
shown in Figure 1, Steps 2○– 4○ are then repeated 𝑘-times using a
non-random train/test split where one of the 𝑘 parts is used as the
test set while the remaining 𝑘−1 parts form the train set. For the
final evaluation of the approach, the results from each of those 𝑘
folds are then aggregated, e.g., by calculating the arithmetic mean.

While the used classifiers vary widely across approaches (cf. Sec-
tion 3), the process to measure their performance (Step 5○) remains
the same. A classifier’s predictions over the test set (cf. Step 4○) are
interpreted alongside four possible outcomes: True positives (TP)
count the number of correctly identified malicious samples, while
false positives (FP) count the number of benign samples incorrectly
classified as malicious. Analogously, true negatives (TN) count the
number of correctly classified benign samples, whereas false nega-
tives (FN) count the number of malicious samples falsely classified
as benign. A perfect classifier has only true positives and true neg-
atives, i.e., no false positives or false negatives.

Two widely used metrics based on these outcomes are preci-
sion and recall [11]. Precision represents the ratio of correctly
identified malicious samples among all samples predicted as ma-
licious (TP/(TP + FP)). Hence, the optimal value of 1 implies that all
samples predicted as malicious indeed correspond to malicious be-
havior (i.e., no false alarms). Recall represents the ratio of correctly
identified malicious samples among all actually malicious sam-
ples (TP/(TP + FN )). For an optimal value of 1, all malicious samples
were correctly identified (i.e., no malicious sample is missed). Thus,
these metrics complement each other and provide good insights
into a classifier’s performance, even with unbalanced datasets [11].

Optimally, both precision and recall would be 1; however, there
is often a trade-off between the two values. Both metrics can be
aggregated into the 𝐹1-score (2/(Precision−1 + Recall−1)), which provides
a single measure for a classifier’s performance. Ergo, an 𝐹1-score of
1 would be optimal and imply that both precision and recall are 1.

While employing ML for industrial intrusion detection offers
various benefits, such as easier deployment [12], one fundamen-
tal drawback is that classifiers can only “learn” information and
patterns for which corresponding training data exists [50]. Con-
sequently, while ML promises to also detect advanced attacks on
industrial networks that rules or signatures cannot cover, there is a
latent apprehension that such approaches can only detect attacks
they have been trained on and thus remain oblivious of all other,
especially evolving and newly developed, attacks.

Takeaways. Intrusion detection, especially based on ML, is
promising to easily retrofit industrial networks with capabilities
to timely uncover attacks. However, there is an inherent risk that
ML-based IDSs for industrial networks cannot generalize to detect
attacks they have not been trained on.

3 RELATEDWORK ON ML-BASED IIDSS
In recent years, ML, with all its benefits and potential pitfalls, has
seen widespread application in industrial intrusion and anomaly
detection, and a plethora of ML-based anomaly detectors have
been proposed [12, 36, 55]. Notably, supervised learning-based ap-
proaches gained significant interest for their high attack and anom-
aly detection rates [45]. Such supervised classifiers include random
forests (RFs) [4, 7, 8, 10, 15, 28, 33, 35, 38], which utilize multiple
decision trees to split a dataset’s features into similar classes. Con-
trary, support vector machines (SVMs) [7, 8, 10, 13, 28, 30, 33, 35]
map all features into a vector space and derive decision boundaries
to separate individual classes. From a different angle, neural net-
works (NNs) [4, 14, 20, 23, 26, 28, 30, 35, 44, 46] mimic human brains
and can be trained to model any function, e.g., classifying input
features as benign or malicious. Besides this plurality in ML-based
approaches, their common motivation is to increase utility com-
pared to deterministic signature-based intrusion detection through
(i) generalizability across domains and (ii) the ability to identify
novel, not previously seen, anomalies.

However, whether machine-learning intrusion detection can in-
deed live up to these promises has been challenged recently [2, 19,
45, 60]. Concerning generalizability, recent investigations [19, 60]
show that applying IIDSs to novel domains is not as straightfor-
ward, and its success depends on the underlying detection methods.
With respect to the ability to detect unknown, i.e., not trained on,
attacks, even if detection scores for individual attack types are
calculated [7, 13, 14, 20, 28, 35, 46], it remains unclear how classi-
fiers handle unseen attacks or variations. The claimed strength of
many ML-based IIDSs can be further questioned when considering
that classifiers that only train on benign data [9, 22, 34] generally
suffer from worse detection performance and higher false-positive
rates [28]. While these discussions point out problems w.r.t. claimed
generalizability of existing results beyond specific evaluation sce-
narios, they do not further focus on the underlying evaluation
methodology in initially proposed scenarios.

To this end, problems with the evaluation methodology of ML-
based systems in general and anomaly detectors in specific were
raised by various related work [2, 11, 41, 45, 50, 51, 55]. For one, the
interpretation of evaluation results is not straightforward, leading
to false conclusions from misinterpreted data [11, 41]. Moreover,
related work questions whether ML is actually suitable for anomaly
detection, or if it is rather only able to detect variations of already
seen attacks in office networks [50] as well as for ICSs [2, 45]. How-
ever, these statements are not backed with detailed analysis of the
actual ability of ML to perform anomaly detection for ICS networks,
where the predictable behavior under normal operation potentially
allows to still detect anomalies. In a similar vein, the enhancement
of existing datasets with additional, artificial attack signatures to
more accurately present what constitutes anomalous behavior is
proposed [54, 58]. However, the exact implications for ML-based
IIDSs that train on those enhanced datasets remain unexplored.

Takeaways. Machine learning-based industrial intrusion detec-
tion received broad attention from research due to the promise to
generalize across domains and detect previously unseen anomalies.
Simultaneously, it becomes clear that such claims require much
more scrutiny. While first detailed analyses of the generalizability



CPSS ’22, May 30, 2022, Nagasaki, Japan Kus et al.
da

ta
se

t

train set test set
model

train evaluate

Le
ge
nd

benign traffic attacks

(a) Traditional ML approach, using a random
sample of the dataset for classifier training.

da
ta

se
t

train set test set
model

train evaluate

Omit a specific attack from the training data

(b) Excluding a specific attack during the train-
ing of the classifier to test its generalizability.

da
ta

se
t

train set test set
model

train evaluate

Only include a single attack during training

(c) Focusing on a single attack only to reveal in-
terrelations between different trained attacks.

Figure 2: Traditional evaluations source their training data from a random sample. Thus, they fail to properly test the classifier’s
generalizability. By proposing a methodology consisting of two experiments, we intend to address this gap in IIDS research.

of industrial intrusion detection have been conducted [19, 60], to
the best of our knowledge, the potential of (supervised) ML to de-
tect unknown, i.e., not trained on, anomalies remains unexplored.
Thus, it remains unclear whether novel anomalies and variations
of known attacks can be detected reliably by ML, demanding a
methodology to perform such an analysis.

4 DISSECTING ML-BASED IIDS EVALUATIONS
The main goal of evaluating an IDS is to gain insight into its capa-
bilities [50]. While performance metrics help to express achieved
results, the underlying evaluation methodology is far more im-
portant to accurately rate IDS performance, as it dictates how to
interpret generated metrics and what meaning they convey for prac-
tical, real-world performance. Given safety-related considerations
in industrial settings, this issue is crucial for deployed IIDSs.

Due to the specific abstracting properties of ML, the underlying
methodology is especially relevant for ML-based IIDSs. When sur-
veying ML-based security evaluations, research discovered various
prevalent pitfalls in a multitude of papers [11]. In our context, the
selection of the test dataset is most concerning as it determines
what scenarios the system is actually tested for and what scenarios
are not credibly covered by the proposed IIDS.

To shine a light on this issue, we discuss the traditional, state-of-
the-art evaluation methodology and its deficits w.r.t. the IIDSs’ abil-
ity to generalize to new attacks (Section 4.1). We address those short-
comings by proposing an improved evaluation methodology that is
specifically tailored to evaluating ML-based IIDSs (Section 4.2).

4.1 Today’s Traditional Evaluation Approach
A commonly used approach to evaluate ML-based IIDSs is to apply
a traditional evaluation methodology from the field of ML, as we
illustrate in Figure 2(a). Here, the final evaluation is performed on
the test set, which corresponds to a sample of the original dataset
that was withheld during training. Thus, the classifier has not seen
this exact data during the training step. Based on the classification
results of the test set, metrics, such as precision and recall, express
the achieved performance. We refer to Section 2.2 for more elaborate
details on the general training and evaluation processes.

While precision- and recall-based metrics are generally recom-
mended to address an imbalanced dataset and to prevent the base
rate fallacy [11], the selection of the test set warrants further atten-
tion. When randomly sampling both training and testing data from
the ICS source dataset, they most likely cover similar observations.
Hence, they are very homogeneous (visualized by the same types of

attacks in both train and test set in Figure 2(a)). Thus, assuming the
measured performance to be indicative of real-world performance
contains the implicit assumption that the real-world environment
in which the IIDSs will be deployed is homogeneous to the train
set—an assumption with severe implications.

While this assumption is reasonable for traditional ML applica-
tions, such as image classification or natural language processing,
it is not suitable for security-related applications, and more specifi-
cally IIDSs, for the following reasons: (i) Identifying and predicting
all perceivable risks is highly unlikely, and (ii) attackers are con-
stantly adapting and improving their tools. Consequently, IIDSs are
most likely confronted with novel attacks or variants of existing
attacks during their deployment. Regardless, those scenarios are not
captured by the above methodology: Given that the sampled test
and train sets are homogeneous, the likelihood of new, unknown
attacks is not accounted for while testing the classifier.

Unfortunately, for this reason, corresponding evaluations leave
many questions unanswered. In particular, they fail to explain
how systems react to new attacks and what their overall classi-
fication limitations are. However, these aspects are important to
provide accurate evaluations [50]. Thus, today’s inadequate evalua-
tion methodology can lead to a warped perception of IIDS perfor-
mance and create a false sense of security. To tackle this problem
and to develop further insight into the IIDSs’ capabilities, especially
concerning their ability to detect unknown attacks in the wild, we
propose an improved evaluation methodology for ML-based IIDSs.

4.2 Our Proposed Evaluation Methodology
In the following, we introduce our new methodology to allow for
expressive performance evaluations in the context of ML-based
IIDSs and thus address today’s methodical shortcomings.

4.2.1 Methodology Overview. Overall, we propose a methodology
to evaluate the performance of ML-based IIDSs that sources from
two distinct experiments. Thereby, we intend to provide additional
insights into the real-world performance of deployed IIDSs. In the
first experiment, we investigate the IIDSs’ ability to detect new
attacks by deliberately omitting attacks from the training set. This
setting synthetically simulates a situation where the IIDS is con-
fronted with a new, unknown kind of attack during its deployment.
For the second experiment, we only train the classifier for a single
kind of attack (as well as benign data) by omitting other (known)
attacks from the training set. This setting can help to put the results
from the first experiment into perspective. It further highlights in-
terrelations between different attacks present in the dataset. Finally,
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for settings where the intended generalization failed to reliably de-
tect (new) attacks, it answers the question of whether “specialized”
classifiers that only focus on single attacks are a promising way.

Our methodology is independent of the used classifier (i.e., used
IIDS) and the input dataset (which only must be segmentable into
different classes of attacks). In this paper, we systematically analyze
and compare the performance of three different ML-based IIDS clas-
sifiers (cf. Section 5). To ensure generalizable and significant results,
we also mandate the use of cross-validation for our methodology.
In Figures 2(b) and 2(c), we visualize how the train and test sets are
prepared. Now, we elaborate on the individual experiments.

4.2.2 Detection of New, Unknown Attacks. Overall, we propose a
method to analyze a classifier’s ability to detect novel attacks during
its deployment. To this end, we specifically adapt the dataset split-
ting (Step 2○ in Figure 1) prior to the classifier’s training (Step 3○).
We illustrate the general idea for a single fold in Figure 2(b). The
subsequent performance evaluation of the used classifier is then
based on known metrics, i.e., precision and recall.

As a prerequisite, the dataset is split into 𝑘 parts of equal size,
which corresponds to a 𝑘-fold cross-validation, i.e., we use a sin-
gle part for the test set while the remaining parts constitute the
train set. When using 𝑘 = 5, the resulting train set corresponds
to approximately 80 % of the input data, and the remaining 20 %
are used for the test set. Subsequently, for each type of attack, we
conduct an evaluation. More specifically, we consider every attack
to be unknown once, i.e., we filter all instances of this attack from
the train set and move them to the test set. While this approach
alters the ratio between train and test set, its implications are usu-
ally negligible in practice due to the inherent imbalance between
benign and malicious packets (in common ICS datasets). Thus, we
prepare 𝑘 folds for each type of attack where the instances related
to the attack are only part of the test set, i.e., overall, we repeat the
process of Figure 2(b) (𝑘 × #attack) times to evaluate a classifier.

After training and testing on all these folds, we individually com-
pute the performance metrics (typically, precision and recall) for
each type of attack. Inspecting those results can provide an overall
impression of how well the classifier abstracts from the specifics
of the dataset, e.g., by learning process-specific parameters or com-
munication patterns of the ICS, to detect attacks without relying
on specific pre-trained attack patterns. Thus, our methodology pro-
vides an understanding of whether the ML-based IIDS only detects
known attacks (i.e., being limited in its practical use), or whether
it is also able to generalize the input data—a central promise of
ML-based approaches—i.e., to also reliably detect “anomalies” in
safety-critical, real-world deployments.

4.2.3 Independently Evaluating Attacks. Following this first experi-
ment, we intend to obtain an improved understanding of how the
classifier learns, deals with, and abstracts from seen (trained on)
attacks. For evaluations, these insights are instrumental in different
ways: (i) They underline why we observe a generalizability for
specific types of attacks, (ii) they allow us to identify interrelations
between attacks, and (iii) thus, they also assist in understanding
results that we obtained by performing the first experiment.

We propose a second experiment that focuses only on individual
attacks. To this end, we again adapt the dataset splitting (Step 2○
in Figure 1). When compared to the first method, the overall setup

is very similar: We only modify the applied filter as we detail in
Figure 2(c) to only keep one attack at a time in the train set. In
particular, for each attack, we fully exclude all other attacks from
the train set, i.e., we filter all malicious instances not belonging
to the respective attack from the train set and move them to the
test set. Thus, we train a classifier on a single type of attack. For a
complete evaluation, we repeat this process (𝑘 × #attack) times.

Overall, the first experiment corresponds to an “all-but-one” ap-
proach and the second experiment follows an “only-one” evaluation.

While we primarily want to study the classifier concerning spe-
cific attacks, the observed results might also reveal interrelations
between different types of attacks in the dataset. In addition, this
experiment can highlight issues of the classifier related to underfit-
ting, i.e., the used classifier is not able to properly handle all types of
attacks in the dataset simultaneously. Thus, it provides important
insights into today’s challenges with ML-based IIDSs. To address
the issue of underfitting, a potential approach could be to also train
a “specialized” classifier for this specific, challenging attack only.

Takeaways. Today’s state-of-the-art evaluation methodology
for ML-based IIDSs fails to consider the approaches’ ability to detect
new, unknown attacks. As this property is crucial to properly assess
their capabilities (especially in light of generalization), we propose
a methodology consisting of two experiments. Thereby, we are able
to obtain further insights into how IIDSs deal with attacks and
how well they generalize to novel forms of attacks, i.e., how much
security they can provide in real-world settings.

5 REVISITING THE EVALUATION OF IIDSS
To assess the impact of shortcomings in today’s evaluation method-
ology for ML-based IIDSs (cf. Section 4.1) and shine a light on their
true capability to detect novel attacks, we apply our methodology
proposed in Section 4.2 to three ML-based IIDSs from literature.

To this end, we first discuss our experimental setup, including the
examined IIDSs, the used dataset, and the specific application of our
methodology (Section 5.1). The results of omitting certain attacks or
attack categories from training show that the examined approaches
are largely unable to detect novel attacks (Section 5.2). Training
the IIDSs on single attacks or categories reveals that cross-learning
between attacks and categories is limited to some special cases.
Classifiers mostly learn the attacks on which they are explicitly
trained on. Combining the results from both experiments details
that the examined IIDSs, despite contrary promises, behave much
more like signature-based than anomaly-based IDSs (Section 5.3).

5.1 Experimental Setup
Over the last years, a plethora of ML-based IIDSs have been pro-
posed and evaluated without much concern about how these gen-
eralize to new attacks (cf. Section 3). In this paper, we specifically
revisit the performance of three recently proposed IIDSs based
on different ML algorithms: RFs, SVMs, and BLSTMs [35]. These
IIDSs constitute prime candidates for our analysis as (i) they feature
official open-source implementations, and (ii) research has indepen-
dently validated and reproduced their reported performance [60].
Specifically, for our evaluation, we rely on existing IIDS implemen-
tations that utilize the industrial abstraction layer IPAL [60].



CPSS ’22, May 30, 2022, Nagasaki, Japan Kus et al.

Table 1: Attack categories as introduced for the gas pipeline
dataset [39] that we use during our methodology evaluation.

ID Abbr. Descriptive Name #Attacks

1 NMRI Naïve Malicious Response Injection 4
2 CMRI Complex Malicious Response Injection 7
3 MSCI Malicious State Command Injection 5
4 MPCI Malicious Parameter Command Injection 12
5 MFCI Malicious Function Code Injection 3
6 DoS Denial of Service 1
7 Recon Reconnaissance 3

While our experiments arguably would benefit from a larger set
of IIDSs, we were unable to consider additional implementations.
Due to the lack of publicly available artifacts, we initially tried to
contact the authors of four recent publications. Unfortunately, we
only received a single negative response, indicating that the main
author no longer works at the corresponding lab. Subsequently, we
attempted to re-implement these approaches on our own. However,
despite this effort, we were unable to reproduce the reported results.
Regardless, given the variety of our considered ML algorithms, cov-
ering both traditional ML (RFs and SVMs) as well as deep learning
techniques (BLSTMs), we are confident to report representative re-
sults in this paper. In the future, other researchers can easily repeat
our experiments for other classifiers due to the use of IPAL.

For our evaluation, we require datasets that ideally contain multi-
ple instances of labeled attack types (cf. Section 4.2). In particular, in
this paper, we rely on an established dataset from a gas pipeline ICS
that has been specifically designed for cybersecurity research [39].
At the hardware level, the ICS consists of a pressure sensor and two
actuators (a pump and a solenoid valve) that are automated by a con-
trol system to regulate the pipeline’s pressure. In total, the dataset
contains 274,628 network packets, out of which about 22 % belong
to labeled attacks. These attacks stem from 35 different attack types
designed for this ICS, which are grouped into 7 categories, as we
detail in Table 1.

For NMRI - and CMRI -related attacks, the attacker injects ma-
licious sensor readings and setpoints to manipulate control algo-
rithms. Attacks that are included in MSCI, MPCI, and MFCI send
manipulated commands to actuators to change the state of devices
or interfere with their communication. The DoS category consists
of a single type of attack in which bad CRC checksums are used
to disrupt a device’s functionality by overloading it with invalid
messages. Finally, the Recon-related attacks attempt to obtain in-
sights into the ICS’s operation by scanning for devices and their
functionality. For the ordering of attacks within a category, we
follow the original publication.

For both described experiments (cf. Section 4.2), we conducted
our evaluation on two different aggregation levels: (a) by omit-
ting/training all attacks from a specific attack category (cf. Table 1),
and (b) by focusing our analysis on the individual 35 attack types to
analyze the generalization within and between attack categories. In
line with best practices, we use 5-fold cross-validation throughout
our evaluation to retain the 80/20-split between train and test set
from the original publication [39]. We report on the average recall
and precision values across our 5 folds and forgo examining the
differences between the folds as they are irrelevant for our analysis.
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Figure 3: Precision over the test set changes only minimally
when attack categories (left and shaded in on the right) or
individual attacks (right) are omitted from training. Notably,
BLSTM’s precision falls below the baseline in many cases,
while the precision for RF and SVM generally exceeds it.

5.2 Understanding the Impact of Novel Attacks
In our first analysis (cf. Section 4.2.2), we investigate how the three
ML-based IIDSs perform when they are challenged to classify novel,
previously unseen, attacks. To this end, we omit individual attacks
or entire categories one by one during training. As established
earlier (cf. Section 2.2), we have to consider both precision and recall
to gain a complete understanding of a classifier’s performance.

In Figure 3, we thus analyze the effects on precision first. For the
RF- and SVM-based classifiers, we observe a slight improvement,
indicating that the classifiers can separate benign and malicious
traffic easier if the trained on attacks are less diverse. Contrary, the
BLSTM performance decreases by up to 1.6 percentage points if
certain attacks are not seen during training, especially if entire at-
tack categories are not trained on, indicating difficulties identifying
benign behavior. In general, the effects on precision when omitting
certain attacks from the train sets are, however, rather marginal.

Besides precision as a performance metric, recall is the key met-
ric for our evaluation (and real-world deployments) as it allows
measuring how the detection of an attack type or category changes
when it is omitted from training. Optimally, we would expect an
anomaly detector to retain good recall for an attack even if it is
omitted from training, indicating its ability to generalize beyond the
known attacks. Next, we discuss how well ML-based IIDSs actually
detect novel attacks, as well as variations of known attacks.

5.2.1 Omitting Entire Attack Categories. First, we analyze the recall
when entire attack categories are omitted, which we illustrate as the
recall value heatmaps for the three classifiers in Figures 4(a)–4(c).
We further include the baseline of training on all attack categories as
well as the changed recall when removing a single attack category
during training. Each row corresponds to an experiment where the
category, denoted on the y-axis by its ID (cf. Table 1), was omitted.
Additionally, the first row (“none”) denotes the baseline where the
whole train set was used. Each column again corresponds to an
attack category, but now with the first column (“benign”) denoting
benign traffic. Each field of the heatmap shows the recall averaged
over 5 folds. The value of 93.7 % in the fourth row and the fifth
column of, e.g., Figure 4(b) thus indicates that 93.7 % of network
packets in the test set belonging to Attack Category 4 were detected
by the BLSTM classifier when it was not trained on Category 3.

Throughout Figures 4(a)–4(c), we observe drops in the recall val-
ues primarily on the main diagonals of the heatmaps falling from,
e.g., 90.3 % to just 6.3 % in Category 3 using the BLSTM classifier.
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(d) RF classifier
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(e) BLSTM classifier
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(f) SVM classifier

Figure 4: We applied our evaluation methodology (Section 4.2.2) to RF, BLSTM and SVM classifiers from literature on two
aggregation levels: once by omitting attack categories ((a)–(c)) and once by omitting individual attacks ((d)–(f)). The achieved
recall [%] is visualized as a heatmap where each row corresponds to one omitted attack or category, and each column matches
the attack or category for which the recall is measured, respectively. The results illustrate a significant drop in recall for many
cases, indicating that those attacks or categories are hardly detected by the used IIDS when not explicitly trained on.

These results are expected as those fields correspond to the recall
of attacks that were omitted from training. However, the severity
varies widely between categories and classifiers: Categories 3, 4,
and 6 are most severely affected, with drops in recall between 45 and
94 percentage points, reaching a recall of as low as 2.2 % compared
to the baseline of 97.8 % for Category 4 and the RF classifier. Except
for the SVMs, all values in those categories fall below 30 % from a
baseline of over 90 %. Categories 1, 2, and 7 undergo a smaller drop
between 16 and 52 percentage points, reaching as low as 39.6 % for
Category 2 in the SVM classifier. For the SVM classifier, Category 7
is an exception as its recall drops by almost 70 percentage points
to just 28.4 %. Finally, Category 5 is an outlier as RF and BLSTM
still recognize it with a recall of almost 100 %, even when not being

trained on, showing virtually no performance degradation com-
pared to the baseline. With the SVM, however, the performance
decreases more significantly, achieving a recall of only 54.1 %.

The primary, but incomplete, explanation for the recall reduction
is that (i) the classifiers have mostly learned signatures of attacks
in contrast to the repetitive normal behavior of the ICS, and (ii) it
depends on the amount of overlap between the omitted and other
remaining categories. As such, Categories 1 and 2, both representing
different forms of malicious response injection (cf. Section 5.1),
contain multiple attacks that manipulate the reported pressure
value in different ways, which is a plausible explanation for the
classifiers to correlate both categories. However, this explanation
would imply similar behavior across different classifiers.
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While the observed drop in recall across the classifiers is similar
in magnitude for most categories, there are some notable differ-
ences. In particular, a classifier’s ability to retain a decent recall for
Categories 1, 2, 5, and 7 seems to correlate with an inability to retain
it for Categories 3, 4, and 6. While the SVM classifier fares worse
on Categories 1, 2, 5, and 7, being consistently outperformed with
at least 9 percentage points by the RF and BLSTM classifiers, it out-
performs them in Categories 3, 4, and 6, where it reaches a higher
recall by between 8 and 20 percentage points. Similarly, the BLSTM
classifier is outperformed by RF on Categories 1, 2, 5, and 7 while
outperforming it on Categories 3, 4, and 6. It seems that classifiers,
which model known attacks accurately and thus achieve high recall
on them (e.g., RF-based classifiers), tend to specifically overfit those
known attacks and are therefore less likely to detect different kinds
of anomalies. This observation indicates the existence of a major
difference between the classifiers’ general or specific understand-
ings of anomalous behavior. Most indicative of this phenomenon
is the detection of attacks from Category 5 when it is not learned:
While the RF- and BLSTM-based classifiers are perfectly capable of
identifying this traffic as malicious, with recall values of 100 % and
99.9 %, respectively, the SVM classifier is only able to label about
half (54.1 %) of the corresponding malicious traffic correctly.

Finally, we examine the recall observed aside from the main
diagonal, which mostly details little variation. However, cases exist
where the recall of a specific attack category increases as a different
category is omitted, e.g., the recall for Category 6 increases from
96.7 % to 97.3 % when Category 2 is omitted for the RF classifier.
Contrary, there are cases where we notice the opposite observation,
e.g., as the recall for Category 6 decreases from 96.7 % to 95.0 % when
Category 4 is omitted when training the same classifier. The size of
those fluctuations seems to be dependent on the classifier: While
the recall in Category 3 changes by at most 1.2 percentage points
when omitting a different category during the training of the RF
and SVM classifiers, it drops by nearly 10 percentage points when
Category 2 is omitted for the BLSTM classifier. Overall, we can thus
conclude that not training for a specific category in general only
influences the detection rate of that specific category, with a mostly
insignificant influence on the detection rate of related categories.

5.2.2 Omitting Individual Attack Types. To investigate the classi-
fiers’ ability to generalize within categories, i.e., across attacks that
are allegedly much more similar, we also analyze the recall when
specific attacks are omitted from training one by one. We include
the corresponding heatmaps in Figures 4(d)–4(f). The labels on both
axes correspond to the categories the individual attacks belong to.

Similar to omitting entire attack categories, we do not observe
any significant adverse effects on other attack types when removing
individual attack types from the train set, as the effects are again
confined to the main diagonal. Merely for the BLSTM classifier,
the attacks from Categories 2 and 3 exhibit a marginally visible
effect outside the main diagonal. These effects indicate an existing,
though minimal and insignificant, ability of the BLSTM classifier
to abstract attack patterns across attack categories.

Focusing again on the main diagonal, we observe similar pat-
terns across the different classifiers. For Category 1, the classifiers’
ability to detect attacks is primarily unaffected. However, Attack 1.2,

i.e., the second attack from Category 1, is an exception, with re-
call values dropping significantly across all three classifiers. The
dataset describes Attacks 1.1–1.3 as “Random Value Attacks” on
the pressure measurement without further differentiation between
those attacks [39]. In light of this description, our reported num-
bers raise the question to which extent Attack 1.2 differs from the
others to warrant the observed recall drop. A manual investigation
of the dataset revealed that Attack 1.2 sends pressure values mainly
within the normal bounds of the system, e.g., 7.52, while Attacks 1.1
and 1.3 send values clearly out of bounds, such as 0 or 6.9 × 1031.
Thus, we assume that the classifiers cannot detect those attacks
within the normal operating bounds without explicit training.

Similar patterns apply to Categories 2, 3, 4, and 6, i.e., some
unlearned attacks are detected as a variation of another attack
independently of the classifier, while others are not identified as
such despite originating from the same category. Yet, Category 7
shows major differences across our evaluated classifiers. While the
RF classifier exhibits no drop in recall, the others (BLSTM and SVM)
achieve a reduced recall for Attacks 7.2 and 7.3, motivating an in-
depth analysis of the attacks in Category 7. Attack 7.1 (Device Scan
Attack) generates packets whose “address” field deviates from the
regular address 4, e.g., setting it to 0 or 9, to scan for the presence of
those addresses in the network. Attacks 7.2 and 7.3, in contrast, do
not change the address field but introduce “novel” Modbus function
codes instead. All classifiers are able to detect the abnormal address,
while only the RF classifier is able to detect the malicious function
codes without prior training. This detail shows that classifiers are
able to learn the system’s normal behavior to some extent and
thus detect anomalous deviations from it. However, this ability is
restricted to a specific scenario, and real-world deployments cannot
generally trust ML-based IIDSs to detect previously unseen attacks.

Overall, within Categories 1, 2, 4, 5, and 7, most attacks show only
minor drops in the recall value, contrary to Categories 3 and 6, with
more significant drops across all attacks. These numbers match our
observations when omitting entire categories except for Category 4,
which resulted in a very low recall when omitted completely. It
seems that removing some attacks from this category has no signif-
icant, immediate effect, while completely removing them drops the
recall significantly. This aspect indicates some form of generaliza-
tion within Category 4, but not beyond it and to other categories.

Takeaways. Our analysis highlights the limited generalization
capabilities of the analyzed classifiers within and across attack cate-
gories, as many attacks cannot be detected reliably without explicit
training. Further, we observe significant variances in recall rates
of previously unseen attacks. These variances can be (partly) at-
tributed to the similarities between related attacks, but what is
interpreted as similar differs between classifiers and does not nec-
essarily match human-created attack categorizations, i.e., existing
dataset labels. Consequently, despite the predictable nature of ICSs,
the analyzed ML-based IIDSs were unable to detect truly novel at-
tacks reliably and thus fail in serving as reliable anomaly detectors.

5.3 Understanding (Dis-)Similarities of Attacks
After investigating and validating that ML-based IIDSs hardly gen-
eralize to unseen attacks, we now intend to provide a better under-
standing of the relations between different attacks. To this end, we
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(b) BLSTM classifier
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(d) RF classifier
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(e) BLSTM classifier
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(f) SVM classifier

Figure 5: We specifically trained the classifiers only for single attacks or single attack categories, respectively, using our
evaluation methodology (Section 4.2.3). The resulting recall [%] is visualized as a heatmap similar to Figure 4 and underlines
that the examined classifiers are hardly able to detect attacks apart from those attacks they were explicitly trained on.

explicitly train the classifiers on a single attack (category) only. By
doing so, we can examine the classifiers’ ability to detect different
attacks beyond the one presented during training. For the same
reasons as in Section 5.2, we again focus on recall as the primary
performance metric and visualize our measured results in Figure 5.

5.3.1 Training Specific Attack Categories. We begin by training on
individual attack categories. We provide the corresponding results
in Figures 5(a)–5(c). Contrary to the previous experiment, we expect
the recall values on the main diagonal to be especially high as those
fields correspond to explicitly trained attacks. However, assuming
that the classifiers embody anomaly detectors, we would expect
noticeable recall apart from the main diagonal. This observation
would indicate some form of general understanding of malicious
activities as well as the ability to detect variations of known attacks.

Evidently, detecting novel attack patterns and anomalies between
categories is limited to very few cases, with the plots turning out
mostly yellow, constituting low recall. Nevertheless, we observe
two main instances of substantial positive recall apart from the main
diagonal. First, we notice an interrelation between Categories 1
and 2: If one of the two categories is trained, the classifiers also
achieve a high recall in the other category, e.g., when training
the BLSTM classifier using attacks from Category 2, attacks from
Category 1 are detected with a high recall of 76.6 %. As discussed
in Section 5.2, those categories contain attacks that manipulate the
pressure reading, which could be the cause of this interrelation.

In addition, Categories 5 and 7 are connected: If one of the two
categories is trained for, the recall in the other category is gener-
ally high (up to 100 %). According to the dataset’s description, one
similarity between the six attacks in those categories is that they
all employ Modbus function codes that are otherwise not used. The
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diagnostic function 0x08, for example, is only used in the attacks
of Category 5 and the “Device Scan Attack” in Category 7 [39].
Thus, we assume that the classifiers learn that only specific func-
tion codes are used during normal operation when training on one
of the two categories, and, therefore also detect attacks in the re-
spective other category. Here, the behavior of the SVM classifier
is in stark contrast to the others’, as it does not derive the same
strong relationship between both categories. Thus, the SVM seems
to differentiate benign and malicious traffic on different properties.

Moreover, we observe further differences between the classifiers.
For all but the RF classifier, the recall values of the trained attack
categories drop in comparison to the baseline when all attacks
are trained, indicating that these classifiers benefit from a general
understanding of malicious activities. The recall values offside the
diagonal further underline this observation as the classifiers are
partly able to correctly detect attacks they have not been trained
on (predominantly noticeable in the yellow regions of Figures 5(b)
and 5(c)). In contrast, the RF classifier achieves lower recall values
outside of the main points of interest but is, therefore, able to
detect attacks more reliably when explicitly trained for them. These
observations suggest that the RF classifier realizes a much more
targeted training of the attacks it knows from the train set.

Finally, another notable observation is the increase in recall for
benign traffic when training on single attacks. For the RF classifier,
the recall reaches 100 % when single attack categories are trained
compared to 99.8 % before. A similar improvement can be seen
for the SVM classifier. As the amount of benign traffic in a real-
world deployment is expected to be orders of magnitude larger than
malicious traffic, this improvement implies a significant decrease in
false-positive alarms. In contrast, both recall and precision, which
we calculated additionally, drop when using the BLSTM classifier
and training the IIDS exclusively on Categories 1 and 2.

5.3.2 Training Individual Attacks Exclusively. In the following, we
take a look at the attack detection when the classifier is trained on
individual attacks only (Figures 5(d)–5(f)). The main observation is
that the classifiers generalize within and across categories to some
extent, and the SVM classifier generalizes less than RF and BLSTM.
The distinct patterns that we observe do, however, highlight the
importance of digging deeper into the classifiers’ results to get an
accurate impression of their capabilities in a real deployment.

When focusing on Categories 1 and 2, we observe a generaliza-
tion within and across the categories for all three classifiers, e.g.,
most attacks are detected with a significant recall if the classifiers
are trained on Attack 2.4. Thus, the classifiers are able to general-
ize well enough to detect the different attacks in those categories,
even with such a reduced sample set. Noticeable exceptions are At-
tacks 1.2, 2.3, 2.5 for SVM only, and 2.7, which are hardly generalized
when training on the other attacks from this attack category.

The pattern for Attack 1.2 is particularly interesting, as it is not
correctly detected when training on other attacks in its category.
In contrast, when training the RF classifier on this category, it also
detects other attacks in both categories with a significant recall. As
discussed in Section 5.2, this attack mainly generates malicious pres-
sure readings within the normal operating bounds of the system,
while Attacks 1.1 and 1.3 send out-of-bounds readings. A plausible
explanation for this behavior is that abstracting to detect malicious

readings within bounds enabled the classifier to also detect mali-
cious readings outside the normal bounds, but not vice versa. We
observe similar generalization patterns between and across attacks
of Categories 5 and 7 for RF and BLSTM. These results again un-
derline that the SVM classifier seems to base its model on different
characteristics than the others, at least for this subset of attacks.

Finally, we discuss the pattern that emerges in Category 4 where
pairs of two neighboring attacks display an interrelation, e.g., At-
tacks 4.1 and 4.2, while interrelations to any other attacks in the cat-
egory are mostly missing. Attacks 4.1 and 4.2 both cover “Setpoint
Attacks” [39] and differently manipulate the same communicated
value. Due to the focus on one value, the classifiers can more easily
correlate both of these attacks, even if only one of the attacks has
been known before. Similar patterns are also found when looking
at the other interrelated attacks from Category 4, e.g., Attacks 4.4
and 4.5. Thus, while attacks on the same parameter can be inter-
related by the classifiers to some extent, manipulations of other
parameters cannot be handled in the same way.

These results further strengthen the assumptions that ML-based
IIDSs do not base their detections on abstracted process knowledge
but rather on pre-trained signatures of attacks. Within Category 3,
we virtually do not notice any generalization. Together with the
limited generalization in Category 4, where only pairs of attacks are
interrelated, we again conclude that human-made categorizations
of the dataset, while sensible to humans, are of limited relevance.

Takeaways. Our second experiment shows that cross-learning
within categories is limited to a few cases, particularly those pat-
terns where very similar attacks manipulate the same process val-
ues. Thus, ML-based IIDSs, despite contrary promises, only achieve
limited generalizability and act much more like signature-based
IIDSs. We further observe major differences between the classifiers’
abilities that warrant such in-depth analyses. Otherwise, we cannot
truly understand which attacks an IIDS is able to detect reliably.

5.4 Implications for IIDS Generalizability
As the last part of our evaluation, we want to take a holistic look
at what can be concluded from the detection capabilities of our
examined ML-based IIDSs when combining both of our previous
experiments. We observed a distinct connection between Attack
Categories 1, 2, 5, and 7 that performed well when being omitted
(cf. Section 5.2) and the interrelations between Categories 1 and 2
as well as 5 and 7 when being trained individually (cf. Section 5.3).
In the case of RF, we observe a recall of 55.0 % in Category 2 when
trained on Category 1, which matches closely with the 55.8 % when
Category 2 is omitted. Furthermore, we can make identical obser-
vations for Categories 5 and 7 across all evaluated classifiers.

A similar picture emerges when looking at the fine-grained
results, i.e., individual attacks: Those attacks that showed inter-
relations when classifiers were trained exclusively on them, e.g.,
Attack 4.2, show decent recall even when being omitted. Mean-
while, those attacks that demonstrate hardly any interrelations, e.g.,
Attack 4.11, cannot be detected without training for them explicitly.
We also observe that the same attacks are outliers in both exper-
iments, i.e., Attacks 1.2, 2.3, 2.5 for SVM, and 2.7. When omitted,
those attacks faced a significant drop in recall while other attacks
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in their category fared much better. Simultaneously, when training
exclusively for those attacks, other attacks were rarely detected.

To conclude, it seems that the observed ability to generalize
when omitting attacks can be mainly explained by the interrela-
tions found when training on single attacks. This finding also puts
the observations from Figures 4(d)–4(f), which hinted at slight gen-
eralizability, at least within categories, into a better perspective.
Overall, we emphasize that the evaluated ML-based IIDSs do not
actually learn normal system behavior but rather directly learn
signatures of the attacks that they have been trained on. Nonethe-
less, we believe that ML-based IIDSs can constitute an effective and
reliable defense mechanism for ICSs. However, they are in need of
additional research and analyses to foster an understanding of their
actual capabilities and to allow for accurate assessments and under-
standings of their benefits outside of (artificial) lab environments.

6 A FALSE SENSE OF SECURITY
Applying our evaluation methodology to quantify the generalizabil-
ity of ML-based IIDSs to unseen attacks (cf. Section 4), we find that
all three of our analyzed classifiers are largely unable to success-
fully detect unknown attacks (cf. Section 5), despite scoring high
in widely-used performance metrics. Thus, the results reported by
related work can lead to a false sense of security for practitioners.

While we observe cases in which unknown attacks are detected,
they mostly result from an overlap of specific attack patterns with
trained attacks, rather than the classifiers being able to abstract
from known attacks. Thus, overall, our results support concerns
and made claims formulated in literature that ML-based IDSs can
only detect variations of known attacks (cf. Section 3). Thereby,
we confirm that our considered classifiers only learn signatures of
attacks instead of realizing proper anomaly detection. Consequently,
they fail to reap the benefits anomaly-based detection can provide,
highlighting that further attention concerning this issue is crucial.

We further observed that the human-made categorization of
“similar” attacks (within ICS datasets) does not constitute a con-
structive approach as classifiers tend to source relevant information
for the classification from other characteristics than humans. As a
result, research must reconsider its understanding of similarities
within the scope of IIDSs. Otherwise, further research on the gen-
eralizability of attack categories could be unnecessarily impaired.

Additionally, our analysis shows that the ability to detect un-
known attacks varies between the considered classifiers, highlight-
ing the need to compare multiple classifiers and approaches regard-
ing their abilities in real-world deployments. The currently used
(traditional) evaluation methodology, mainly focusing on recall,
precision, or 𝐹1-score metrics on a randomly chosen test set, is
insufficient when targeting industrial settings with the need for
anomaly detection. Thus, it is incapable of providing researchers
and practitioners with a realistic understanding of the capabilities
of an IIDS (particularly w.r.t. the protection against novel (unseen)
attacks), which is technically the primary goal of any evaluation.

This situation limits the assessment and comparability of dif-
ferent approaches and hinders further advances in this field. Our
proposed methodology addresses this issue by explicitly testing
the system on selectively filtered datasets, enabling an in-depth

analysis and explanation of the results. Still, conducting such de-
tailed analyses requires access to a dataset with explicit labeling
of (similar) attacks and enough repetitions or observations of each
of them. Unfortunately, the availability of suitable ICS datasets for
IDS use is limited [12, 16, 42].

Given that such analyses are lengthy and require detailed man-
ual analyses of the results, the used dataset, and the aggregated,
achieved performance, developing real-world-practical IIDSs is far
from trivial. To at least improve the comparability of different ap-
proaches, we argue that developing a precise, comprehensible met-
ric (e.g., based on our evaluation methodology) should be a primary
concern of future work. With such a metric at hand, research can
then properly compare the IIDSs’ abilities to detect unknown at-
tacks, i.e., to truly perform anomaly detection. Regardless, even
with corresponding advances in the area of generalizability, the
real-world feasibility of ML-based IIDSs is still in its infancy as
significant deployment challenges, such as model tuning, sampling
rates, and operational changes of the monitored ICSs, await [2].

7 CONCLUSION
The convergence of ICSs with the Internet leads to an increasing
number of cyberattacks against such systems [43, 48]. To detect
and prevent these attacks, anomaly-based intrusion detection is
especially interesting as its detection rate benefits from repetitive
communication patterns that frequently occur in industrial settings.
While research focuses on the usage of machine learning enabling
industrial IDSs to automatically determine what constitutes benign
and malicious behavior, it still remains unclear whether these IDSs
have any ability to detect novel attacks as they are typically trained
not only on benign behavior but also on attacks [28]. Notably,
promised detection rates of up to 99 % are reached by training the
IDSs on attack types that are used for training and evaluation.

In this paper, we showed that these standard evaluation methods
disguise the missing ability of ML-based IIDSs to detect formerly
unseen attacks. More specifically, we proposed a methodology to
analyze the ability of ML-based IIDSs to detect novel forms of
attacks and applied it to three IIDSs [35]. We discovered that these
IIDSs are widely unable to detect unseen attacks and find detection
rates dropping to between 3.2 % and 14.7 % for specific unseen
attack types. Furthermore, we proved that the ML-based IIDSs
mainly learn specific attack signatures instead of process-specific
properties. Hence, in scenarios where the training data does not
cover all possible attacks, the IIDSs can only detect types of attacks
that are known beforehand and fail to generalize to new attacks.

We suggest that our methodology should be performed on more
IIDSs to ensure comparability w.r.t. the achieved level of general-
ization and to prevent the manifestation of a false sense of security
based on the good performance numbers achieved with state-of-
the-art evaluation methods.
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