
Evolving the End-to-End Transport Layer in Times
of Emerging Computing In The Network (COIN)

Ike Kunze
RWTH Aachen University

Aachen, Germany
kunze@comsys.rwth-aachen.de

Dirk Trossen
Huawei Technologies Germany

Düsseldorf, Germany
dirk.trossen@huawei.com

Klaus Wehrle
RWTH Aachen University

Aachen, Germany
wehrle@comsys.rwth-aachen.de

Abstract—The possibility of richer computing capabilities
within Internet network elements, often captured as Computing
in the Network (COIN), promises performance and flexibility
gains to the wider Internet, akin to those seen in recent data
center advances. At the same time, moving computation into the
network is seemingly at odds with the fundamental end-to-end
principle underlying the development of key technologies in the
Internet. In this paper, we do not only argue that the latter is not
the case, but we also shed light on what ‘in the network’ may or
may not entail, aiming to sharpen a possible research agenda for
COIN. Taking the transport layer as an example due to its typical
end-to-end realization in and importance for today’s Internet,
we outline key design considerations for evolving towards a
COIN-enabled transport capability. By further creating linkages
to existing efforts and concepts, we provide possible future
directions for the design of protocols for the future Internet.

I. INTRODUCTION

© IEEE, 2022. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1109/ICNP55882.2022.9940379.

A fundamental consideration for the Internet’s design is
that functions can be implemented correctly and completely
only with the knowledge of the applications, as formulated
by Saltzer et al. [1]. The Internet community has adopted
this consideration as the fundamental end-to-end (E2E) princi-
ple [2], [3], postulating that end-hosts perform most, if not all,
relevant computations. In contrast, the network is merely seen
as performing suitable operations for the delivery of packets
from a source to a destination, the latter typically expressed
within the semantics of the IP addressing scheme. This view
on the Internet is captured in the notion of the network being
a ‘dumb pipe’, with all intelligence beyond simple packet
delivery pushed to its endpoints.

Emerging technologies, such as Software-Defined Network-
ing (SDN) or P4, seem to run counter this fundamental Internet
design principle, postulating programmable forwarding actions
that utilize packet header information as input; this is often
termed as Computing in the Network (COIN). However, Saltzer
et al. do consider that ”sometimes an incomplete version of
the function provided by the communication system may be
useful as a performance enhancement” [1], which again aligns
programmable networking technologies as well as COIN with
possibly the most fundamental Internet design principle.

Nonetheless, there is ample ambiguity in Saltzer et al.’s
formulations [1], most notably regarding the extent of the
‘incompleteness’ as well as the ‘function’ itself that may be
considered for (partial) realization in the network. It is here

where the question on what defines COIN needs answering: in
relation to both, the original E2E argument and the functions
traditionally implemented on endpoints only.

For this, we discuss in Sec. II the notion of E2E function-
internal versus -external computations in an attempt to better
contrast the ‘in the network’ terminology against the endpoints
standing at the ends of a communication relation. Thereby, we
concretize the more general COIN notion, specifically through
proposing two design principles for COIN in Sec. III. We then
apply this thinking to transport protocol mechanisms as an
example of functions that are (i) traditionally implemented
at endpoints but (ii) may well be impacted by as well as
explicitly utilize merging in-network capabilities. For this,
we focus on the aspects of addressing, flow granularity, and
collective communication and first delve into considerations
for realizing transport layer functions in the presence of
COIN throughout Sec. IV before linking those to ongoing
efforts and concepts in Sec. V. With this, we not only aim
to provide guidance for future COIN-related research, but also
considerations for the general future Internet. In particular, we
link to the development of future transport protocols in light
of expected increased capabilities of its underlying (New) IP
and transport network layers, as discussed as part of possible
future directions of needed work in Sec. VI.

II. WHAT IS COIN, ANYWAY?

The Internet [4] has long grown into a world-spanning
system from its original research network roots. In the early
stages, roles in the Internet were largely divided between hosts
and the network, the latter designed to deliver packets between
the former. This is illustrated in Fig. 1 (top): the network serves
as a ‘dumb pipe’ for the endpoints, which in turn realize all
functionality for transport layer and above.

However, with time, many new communication paradigms
have emerged, extending the established peer-to-peer (P2P)
communication of the Internet. For example, large Internet
companies now provide centralized computing resources in
their data centers, often denoted as the ‘cloud‘. Recent devel-
opments in edge computing aim at decentralizing this (cloud-
based) functionality towards the ‘edge‘, optimizing latency and
localizing traffic overall. Furthermore, enabled by advances in
networking hardware as well as corresponding new program-
ming paradigms (SDN) and languages (P4), it is now possible



F={f0, f1, f2, ... fn}

F={f0, f1, f2, ... fn}

f‘1

f‘‘1

Host BHost A

Path of E2E function

Off-path COIN element

On-path COIN element

Fig. 1. Evolving from a dumb pipe (top) to a COIN vision with on- and
off-path deployments (bottom).

to push previously host-centric computations into the network
using programmable network devices (PNDs).
What may ’in-network’ mean? All these paradigms are often
linked to Computing in the Network (COIN) and corresponding
discussions typically revolve around the ‘place’ of execution,
captured by the ‘in-network’ aspect of COIN. Here, views
range from restricting COIN to only considering computations
on networking hardware to broader definitions interpreting
COIN as a possible subset of edge or cloud computing.
We generalize these considerations by broadly capturing any
computation realized in COIN elements, i.e., devices providing
COIN functionality, as shown in Fig. 1 (bottom). However,
we do distinguish between COIN elements that are on-path
in relation to the original E2E packet flow, e.g., PNDs, and
off-path, e.g., in the context of typical edge, cloud, or P2P
approaches. This location in terms of the original E2E packet
flow can have important implications on the E2E function as
we will discuss later. We next turn our focus from the ‘place’
to the ‘computing’ part in COIN.
Which computations matter to COIN? For an answer to this
question, we hark back to the E2E argument [1], contrasting
endpoints against the network facilitating communication be-
tween them. We argue that the notion of the function realized
between the original endpoints (cf. Fig. 1, Hosts A and B) is
essential for grasping what ‘computing’ in COIN may mean.

In order to conform to the E2E argument, any inserted com-
putation must contribute to the original E2E function, thereby
forming the incomplete version of the E2E function [1]. We
term such computation as E2E function-internal (cf. Fig. 1
bottom), where the key to its insertion is that it enriches the
original E2E function, while not violating its key requirements.
In contrast, we consider computation that is inserted as an
endpoint itself as being E2E function-external. We argue that
it does not constitute COIN but merely traditional service
chaining, e.g., using edge or cloud computing.
Takeaway. Reflecting on COIN using the E2E argument
identifies any E2E function-internal computation between end-
points as a possible form of COIN. These computations can
then be divided into on- and off-path COIN functionality in
terms of their place of execution ‘in the network’.

Based on our broad categorization for COIN, we next derive
two design principles for E2E-compliant COIN functionality.

III. DESIGN PRINCIPLES FOR COIN
In the landscape of different computing paradigms with

different compute locations, the next question for COIN is
how and with that also where in the network function-internal
computation should be inserted. Guidance can be found in the
simplicity principle [5], which states that functionality should
be kept as simple as possible, thereby limiting any needed
additional complexity (in the network).

Let us illustrate this principle and its consequences for
COIN by revisiting Fig. 1 (bottom). Consider a scenario where
an E2E function-internal computation f1 is to be deployed in
a COIN environment. In our example, there are two possible
deployment locations: on-path as f

′

1 or off-path as f
′′

1 . Each
deployment location comes with a unique set of characteristics,
e.g., regarding latency, compute complexity, or orchestration
overhead. For illustration purposes, we choose ‘latency’ as the
key requirement for our application.

The two deployment locations most likely have different
impact on the additionally introduced latency. Specifically, the
on-path COIN element does not induce any additional path
latency, while forwarding packets to the off-path entity might
unduly increase latency compared to just following through the
normal path. On the other hand, the complexity of computation
may be limited in PNDs compared to off-path COIN elements.
However, as long as the computational capabilities suffice
for the function-internal computations, on-path computation
is clearly preferred from a latency perspective.

Similar considerations can be done for other optimization
criteria. Consequently, deploying COIN functionality consti-
tutes a multi-dimensional optimization problem. We argue
that key to solving this optimization problem is that any
additional functionality must not violate the original E2E
function requirements and, additionally, strive for optimizing
the key requirements, i.e., latency in the above example.

Based on these considerations and taking both, the E2E and
the simplicity principle, into account, we can now formulate
the following first design principle for COIN:

Any incomplete version of an E2E function must adhere to
the original requirements of the E2E function, while enriching
its functionality and optimizing functional complexity against
its key communication requirement.

But simplicity is not the only guidance here. Transparency
of any intended insertion of function-internal computation
towards the functions at the endpoints is equally important.
Computation that is inserted without such transparency may
lead to problems in the overall operation of the E2E function,
letting us formulate our second design principle for COIN:

Any incomplete version of an E2E function should be
inserted in full transparency to the functions at the endpoints.

Let us take Performance Enhancing Proxies (PEPs) as an
example to illustrate our discussion so far: The insertion of
PEPs aims at enhancing the capabilities of TCP albeit in a
manner that is not transparent to the E2E hosts, leading to
well-recognized problems with PEPs in real deployments [6].

As another example, realizations of Network Address Trans-
lation (NAT) (in the network) do not impede the best effort



delivery of IP packets (expressed through latency as the pri-
mary requirement), while providing an enriched functionality
in the form of address translation. While initial NAT solutions
were implemented on-path, emerging carrier-grade NATs have
been realized off-path, e.g., in cloud or edge sites, enabled
by increasing capabilities for processing large numbers of
flows without adding significant latency. However, the non-
transparent insertion often leads to problems, such as non-
reachability of hosts behind NATs. We can see from both
examples how a positively intended function insertion may
still lead to problems if the above principles are not followed.
Takeaway. COIN functionality can be deployed in compliance
with the E2E principle as long as the inserted functionality
(i) is E2E function-internal, (ii) does not violate the original
requirements, enriches the functionality and optimizes against
the key communication requirements, and (iii) is inserted in
full transparency to the endpoints.

IV. CONSIDERATIONS FOR TRANSPORT

Let us now use the E2E principle compliant view on COIN
to discuss considerations for novel transport layer solutions.
We chose the transport layer as the most direct layer atop
the packet delivery functions provided by the network itself,
with transport functions being traditionally implemented in
endpoints only. As such, we see the transport layer as not
only being possibly impacted by emerging in-networking
computing capabilities but also as a possible target for ex-
plicitly designing novel solutions with COIN capabilities in
mind, positioning the transport layer as an ideal candidate for
highlighting the challenges but also opportunities introduced
through COIN. We do so by focussing on three key aspects
presented in the following subsections.

A. Addressing

The core challenge for inserting COIN elements into a
communication relation is that today’s systems are designed
for E2E communication. Consequently, end-hosts address each
other while addresses of networking devices are only used for
forwarding packets to the correct destination. Integration of
the COIN functions into the E2E communication is required
in order to create function-internal computation and adhere to
the E2E argument.

Implicit integration of on-path COIN functionality may be
manageable in smaller or private deployments. For example,
functionality can be placed at specific network locations that
are expected to be passed by the E2E communication and end-
hosts can be adapted according to the expected computation
on the transmitted data. In large-scale or public deployments,
however, where, e.g., only parts of the traffic might be intended
to be subject to COIN or where the concrete paths of traffic are
typically unknown in advance, this approach is not feasible.
Additionally, an implicit approach would generally not enable
the off-path notion of COIN as traffic is still steered along
the standard path. Note that implicit integration still requires
adaptations on the endpoints to satisfy our second design
principle of full transparency.

Explicit steering of traffic to the COIN elements, including
specifying what functionality should be applied to the data,
significantly broadens the possible scope of COIN. In partic-
ular, it extends the problem of addressing towards capturing
the communication semantics in relation to the original E2E
function that is being enriched, particularly in light of single
COIN elements providing a richer set of possible functionality.
Approaches could be similar to transport addressing in the
form of IP address and port information. However, there are no
means for specifying multiple IP/port pairs in current transport
protocols and the use of ports may even be too limiting for
app-specific functionality, possibly requiring richer semantics
for ‘services’ being addressed.

Instance selection. It might further be the case that there
are multiple instances of the same COIN service at different
network locations. As a consequence, an endpoint may want
to explicitly select one of those service instances, e.g., using
constraints for the selection rather than directly specifying
the network locator of the desired COIN elements. How to
encode such constraints is crucial, especially with respect to
the supported semantics for selection and when considering
our first design principle.

Affinity. In addition, any relationship with COIN elements
might need to ensure affinity to a particular member of the
set of COIN elements that provide a desired functionality,
e.g., due to ephemeral state being created through an ongoing
transaction. For instance, orchestration functionality may be
implemented using an indirection mechanism which routes a
packet along a pre-defined or dynamically chosen path along
which to realize the desired functionality. Traffic may be
routed here based on service or functionality identifiers in-
stead of sending individual packets between locator-addressed
network elements [7], while selecting the ‘right’ computational
endpoint (out of possibly several ones) becomes critical to the
proper functioning of the overall service [8].

Efficient forwarding. Besides the decision of directing
requests to COIN elements, the efficient execution of this
decision is crucial in the form of packet forwarding operations.
Programmable forwarding technologies, such as P4, may al-
low for rich decisions being implemented at the forwarding
plane [9], while multi-optimality routing approaches [10]
may choose offline routing operations to realize semantic-rich
decision criteria for traffic steering. The tradeoff here may lie
between forwarding complexity and possible dynamicity of
frequently changing routing state.

Legacy integration. Lastly, we recognize that not all de-
vices necessarily partake in COIN. To allow COIN utilize
legacy systems, it is important to provide backwards compat-
ibility without compromising COIN nor legacy functionality.

B. Flow Granularity

Today’s networking hardware is built to process incoming
packets on a per-packet basis, keeping little to no state
between them. While appropriate for packet forwarding, this
may pose challenges for transport layer semantics spanning



many packets, captured as a flow, often with interrelated state
between packets.

For instance, TCP dynamically distributes data across dif-
ferent segments within a data stream, so that data needed for
application-level computations might be split up across multi-
ple segments by the transport protocol. In contrast, semantics
for UDP datagram payload are defined by the application
itself, i.e., the datagrams can be self-contained or information
can be distributed across different datagrams. Yet other notions
of flow may even consider relations between flows across
different sender-receiver relations. Transport protocols are
often designed with specific ‘flow’ semantics in mind, driven
by application needs and requirements, while it is crucial to
understand how COIN capabilities could support all or at least
some of them.

Different levels of flow granularity. We recognize (at
least) three levels of flow granularity: (i) Every packet is
treated individually, mapping to the capabilities of existing
networking equipment. (ii) Every packet is treated as part of a
message. The packet alone does not have enough information
for computation and it is important to know the content of
surrounding packets forming the overall message. (iii) Every
packet is treated as part of a byte stream. All previous packets
and, potentially, even all subsequent packets need to be taken
into consideration for the computations.

Granularity selection. The diversity in available COIN
elements raises the problem of finding an appropriate flow
granularity, possibly requiring a runtime selection of the
‘right’ flow granularity in one situation over another. The best
analogy here is that of maximum transfer unit (MTU) size
discovery with its limited computational operation of packet
fragmentation to understand the possible complexity of de-
termining the right granularity for COIN elements. Given that
COIN elements are possibly less in numbers than intermediary
routers, other approaches than on-path discovery should be
investigated, such as those combining the granularity selection
with orchestrating the computational function at the COIN
elements. Furthermore, different granularities might even im-
pact the previously discussed instance selection procedures and
affinity concepts.

Impact on resource management. Another key aspect to
consider is how different flow granularities might affect the
short- and long-term management of (network) resources. For
instance, error control may be best applied to the smallest
available flow units, e.g., on the scale of individual packets,
while congestion control may be applied to the relation be-
tween the network elements hosting the computational end-
points, i.e., across the overall flow. Considering that COIN el-
ements might offer additional functionality, solely accounting
for error and congestion control might be insufficient as, e.g.,
the forwarding capacities might still be sufficently available
while only advanced compute capacities become a bottleneck.
Extending the notion of resource management, similar to the
aforementioned extension of MTU path discovery, might thus
become necessary for richer COIN functionality. In this view,
the notion of a “flow” may provide guidance for where to sep-

arate “message” handling from overall resource management.
Affinity. As discussed in Sec. IV-A, affinity must be ensured

for an application-level transaction, executed at one of possibly
many possible endpoint instances. Here, the notion of a flow
may be utilized to make the necessary routing decision for
packets belonging to the same flow, while a new flow may
be routed to another network location providing the same
(service) functionality as the previously chosen one. Flow
information could potentially be used to delineate and, thus,
signal such affinity of one packet to a previous one but the
question on how to encode such flow information across dif-
ferent types of transport protocols is critical to ensure that such
affinity treatment is not limited to specific applications. While
such affinity questions are also relevant in other contexts, the
unique challenge introduced by COIN is that affinity might
now be required for the entire path instead of ensuring affinity
to endpoints only.

C. Collective Communication

In extending basic unicast and multicast semantics, collec-
tive communication refers to messages being exchanged be-
tween one and more computational endpoints, e.g., illustrated
in [7], where unicast and multicast transmissions become
almost equal forms of communication, as is also observed in
work on Information-Centric Networking (ICN) [11].

As a particular characteristic, these many-point relations
may be ephemeral down to the granularity of individual
requests between endpoints, which questions the viability of
stateful routing and transport approaches used for multicast
scenarios such as live TV transmissions, where receiver groups
are often long-lived and rather stable.

Dynamic receiver sets. Instead, collective communication
may see receiver set changes at every request, posing chal-
lenges to congestion but also error control. COIN elements
may allow for separating those parts with more stable relations,
e.g., in the core of the network, from those with more
fluctuating receiver sets, e.g., at the network edge, applying
different mechanisms for both error and congestion control
in the separate parts. This is not a new approach per se,
as PEPs and their usage, e.g., in satellite networking, show.
However, the realization in COIN elements may make their
deployment more suitable, where performance variances stem
from the nature of the communication, not from the network.
Furthermore, the ability to divide receiver groups with the
support of COIN elements may also support solutions that
use random linear network coding [12] as an ACK-free
mechanism for error control.

V. RELATED CONCEPTS AND EFFORTS

The fundamental challenges underlying the areas described
in Sec. IV have not just emerged with COIN, but are a
constant focus of work in different domains. Consequently,
there already exist several concepts and efforts that address
the described challenges and might be applicable solutions,
even for COIN. In this section, we discuss selected concepts
for each area in more detail.



A. Addressing
As defined through the IP-based addressing, hosts specify

the intended destination of outgoing packets, while the net-
work takes care of delivering them accordingly.
Existing Solutions. Source Routing aims at providing more
control to end-hosts over the path that packets should take
by allowing senders to (partially) define the route through
the network. This mechanism can, e.g., be leveraged to steer
traffic along a chosen COIN-enabled path and, thus, trigger
any desired COIN functionality. Segment Routing [13] is a
modern, IETF-standardized variant of Source Routing for IPv6
and MPLS. While Source Routing provides full transparency
to endpoints (cf. Sec. III), it merely defines through which
devices a packet should go, not which functionality to execute.

Service Function Chaining (SFC) describes a process to
provide the latter aspect, i.e., steer traffic through a pre-
defined list of service functions, e.g., firewalls [14], as defined
through its SFC architecture [15] and the next service header
(NSH) [16] mechanism. Interpreting COIN functionality as
service functions could make SFC applicable to COIN at Layer
2 and Layer 3, but also at name level [17].
Shaping future solutions. While the above concepts build
upon existing communication principles, other efforts re-
evaluate or even rethink addressing schemes. Jia et al. [18]
provide a gap analysis of existing solutions (including the
ones mentioned above), identifying a number of issues that
arise from the specific point solutions to extending addressing.
The authors argue for both flexibility and extensibility of
addressing which are key aspects that any solution to the
research questions outlined in Sec. IV would benefit from.

King and Farrel [19] provide an overview of efforts on
addressing and routing that incorporate semantics beyond the
one defined by IPv6, covering both existing IETF solutions
and ongoing research; efforts they collectively term ‘semantic
routing’. In a companion document [20], King et al. out-
line several challenges that exist for such extensions of the
addressing semantic, some of which align with the issues
identified in this document. More importantly, they discuss
the possible deployment of semantic routing solutions, e.g.,
as an overlay or limited to a single Limited Domain [21].
They further analyze corresponding challenges, some of which
also apply to a COIN environment, while not being limited
to it. Examples include the intended scope of any enhanced
addressing (e.g., identifying on-path COIN elements) or the
description of path characteristics that COIN traffic would
need to adhere to, which is especially interesting considering
our first design principle.

Work on ICN, e.g., in the IRTF ICN Research Group (ICN
RG) [11], studies the addressing of information rather than
endpoints, opening up the possibility of providing information
from different sources, including COIN elements.

Khandaker et al. [8] address services directly as a named
entity to support concepts like virtualization of service end-
points and provisioning within edge and in-network locations.
Packets can be forwarded either through a shim layer (atop
IPv6) routing capability or via ingress-based traffic steering.

Takeaway. Overall, there seems to be wide-spread consensus
that the existing addressing concepts are non-sufficient for the
diverse use cases existing today. The introduction of COIN
adds another view on this topic as COIN elements as well
as different functionality residing on the same COIN element
might have to be addressed as well. One of the main challenges
will be how these different approaches might be brought
together architecturally, as also argued by Jia et al. [18].

B. Flow Granularity

Flow granularities are defined in transport protocols through
their semantic for the unit of transfer. Upper layer protocols
in turn map their application data with their own semantic
into the transport semantic. Careful consideration of flow
granularities is thus essential for sensible E2E functionality.

Shifting granularities. The initial HTTP, e.g., only allowed
one request/response per TCP connection. With persistent con-
nections, HTTP/1.1 enabled several consecutive interactions
while HTTP/2 even allows for multiple parallel interactions
using an additional stream abstraction, although still multi-
plexed over a single TCP connection. In HTTP/3, the different
streams are even mapped to dedicated QUIC streams within
the overall QUIC connection. While this growing complexity
allows for higher efficiency at the end-hosts, COIN elements
might be challenged by multiplexed information, especially
in the fully-encrypted settings introduced by QUIC. In these
instances, it is not possible to clearly distinguish the contained
information into their individual streams, e.g., complicating
congestion and error control. Since those mechanisms explic-
itly operate at the endpoint level, work is required that would
allow for inserting functionality on-path but explicitly located
at selected COIN elements.

Effect on affinity. The notion of flow granularity is used
by Liu et al. [22] to link the relation of application level
interactions to a specific service instance in scenarios where
more than one service instance may serve requests for a given
service. Here, the problem of instance affinity arises when
needing to send one or more interactions to the same instance
before being able to choose another instance (e.g., based on
computing or network metrics). Khandaker et al. [8] propose
the realization of instance affinity through an interplay of on-
path name discovery and IPv6-based affinity relations, requir-
ing changes to existing transport implementations, particularly
in supporting multi-path relations where the initial discovery
may traverse a different path from the IPv6-based packets.

Chain granularity. SFC allows to form a service chain,
expressed through the NSH as entries into a next hop table
maintained at each Service Function Forwarder (SFF) [15].
Packet classification takes place at the entry point of the chain,
therefore providing a notion of flow granularity where the
chain is treated as the ‘unit of transfer’. Chaining can take
place at Layer 2 or Layer 3, but also at a name-based layer
(such as HTTP), as proposed by Trossen et al. [17].

New approaches. A recent proposal for a new transport pro-
tocol proposes a message-oriented flow granularity to achieve
a better fit to COIN [23]. In particular, the authors argue that



TCP’s stream abstraction is incompatible with many of the
envisioned benefits of COIN, such as on-path data mutation
and in-network caching. This consideration is supported by
the fact that many COIN approaches leveraging PNDs choose
UDP, i.e., a packet-based granularity, for easier handling [24].
Takeaway. TCP’s stream abstraction has long been used in
many applications. Yet, recent works suggest that it might not
be the best fit considering COIN, instead proposing alterna-
tives which need better understanding as to their benefits.

C. Collective Communication
The existing TCP/IP networking stack is generally designed

for unicast delivery, while IP multicast provides network
support for group-based delivery of packets to many recipients.
With COIN, however, collective communication, i.e., com-
munication to several albeit often changing communication
endpoints, is gaining importance, e.g., for distributed AI.

Work in the ICN RG considers multicast and unicast
delivery as communication models realized by the same
communication method, e.g., utilizing an interest-data model.
Trossen [25] formalizes this approach by defining an ad-
hoc multicast semantic labelled forward request return mul-
ticast, where the return path multicast is achieved through
utilizing information from incoming service requests. The
utilized transport network technology may be that of SDN
or BIER [26], where the former uses an OpenFlow-compatible
approach to path-based forwarding with constant state require-
ments for the in-network forwarders.

As an impact to the transport layer, Trossen proposes to
separate longer-lived resource management from shorter-lived
transaction handling to increase efficiency of the ephemeral
return path communication at the transport level.
Takeaway. While IP multicast has long established multicast
operations at the network level, new forms of supporting col-
lective communication are still in their infancy. Nonetheless,
they are of great importance to provide network level support
for some of the foreseen COIN use cases [7].

VI. ROAD AHEAD

There is a continued innovation in packet processing tech-
nologies, e.g., evidenced by the introduction of SDN and
P4. This continuous evolution pushes the boundaries of what
future PNDs may evolve into. More specifically, we foresee
capabilities of today’s edge gradually transitioning into future
PNDs, therefore pushing the limits of what can be achieved
on-path closer to those of existing edge computing approaches.

These evolving capabilities of COIN, however, also pose the
challenge of programming distributed capabilities, adhering to
our two COIN design principles (cf. Sec. III). Future protocols
will need to integrate with suitable programming environments
to place, migrate, and terminate those ‘incomplete versions of
the function’ foreseen by the E2E argument.

With this and in contrast to Saltzer et al. [1], we see these
environments as evolving from the design time to runtime,
where the rather static capability placement of today’s orches-
tration frameworks shifts to one that allows for doing so under

changing conditions, both of network and communication
endpoints. As a consequence, we envision the road ahead for
COIN as one of distributing protocols and computations as sets
of functions across endpoints and networking devices alike,
doing so automatically, intelligently, and transparently.

REFERENCES

[1] J. Saltzer, D. Reed, and D. Clark, “End-To-End Arguments in System
Design,” ACM TOCS, vol. 2, no. 4, 1984.

[2] B. Carpenter, “Architectural Principles of the Internet,” IETF, RFC 1958,
1996.

[3] ——, “Internet Transparency,” IETF, RFC 2775, 2000.
[4] J. Quarterman and S. Carl-Mitchell, “What is the Internet, Anyway?”

IETF, RFC 1935, 1996.
[5] R. Bush and D. Meyer, “Some Internet Architectural Guidelines and

Philosophy,” IETF, RFC 3439, 2002.
[6] G. Fairhurst, A. Sathiaseelan, H. Cruickshank, and C. Baudoin, “Trans-

port challenges facing a next-generation hybrid satellite Internet,” Int. J.
Satell. Commun. Network., vol. 29, no. 3, 2011.

[7] I. Kunze, K. Wehrle, D. Trossen, M. Montpetit, X. de Foy, D. Griffin,
and M. Rio, “Use Cases for In-Network Computing,” IRTF, Internet-
Draft, 2022, work in Progress.

[8] K. Khandaker, D. Trossen, R. Khalili, Z. Despotovic, A. Hecker, and
G. Carle, “CArDS: Dealing a New Hand in Reducing Service Request
Completion Times,” in IFIP Networking ’22, 2022.

[9] R. Glebke, D. Trossen, I. Kunze, D. Lou, J. Rüth, M. Stoffers, and
K. Wehrle, “Service-based Forwarding via Programmable Dataplanes,”
in HSPR ’21, 2021.

[10] J. Sobrinho and M. Ferreira, “Routing on Multiple Optimality Criteria,”
in ACM SIGCOMM ’20, 2020.

[11] “Information-Centric Networking, IRTF Research Group,” 2022.
[Online]. Available: https://datatracker.ietf.org/rg/icnrg/about/

[12] S. Li, R. Yeung, and N. Cai, “Linear Network Coding,” IEEE Trans.
Inf. Theory, vol. 49, no. 2, 2003.

[13] C. Filsfils, S. Previdi, L. Ginsberg, B. Decraene, S. Litkowski, and
R. Shakir, “Segment Routing Architecture,” IETF, RFC 8402, 2018.

[14] P. Quinn and T. Nadeau, “Problem Statement for Service Function
Chaining,” IETF, RFC 7498, 2015.

[15] J. Halpern and C. Pignataro, “Service Function Chaining (SFC) Archi-
tecture,” IETF, RFC 7665, 2015.

[16] P. Quinn, U. Elzur, and C. Pignataro, “Network Service Header (NSH),”
IETF, RFC 8300, 2018.

[17] D. Trossen, D. Purkayastha, and A. Rahman, “Name-Based Service
Function Forwarder (nSFF) Component within a Service Function
Chaining (SFC) Framework,” IETF, RFC 8677, 2019.

[18] Y. Jia, D. Trossen, L. Iannone, P. Mendes, N. Shenoy, L. Toutain,
A. Chen, and D. Farinacci, “Gap Analysis in Internet Addressing,” IETF,
Internet-Draft, 2022, work in Progress.

[19] D. King and A. Farrel, “A Survey of Semantic Internet Routing Tech-
niques,” IETF, Internet-Draft, 2021, work in Progress.

[20] D. King, A. Farrel, and C. Jacquenet, “Challenges for the Internet
Routing Infrastructure Introduced by Semantic Routing,” IETF, Internet-
Draft, 2022, work in Progress.

[21] B. Carpenter and B. Liu, “Limited Domains and Internet Protocols,”
IETF, RFC 8799, 2020.

[22] P. Liu, P. Eardley, D. Trossen, M. Boucadair, L. Contreras, and C. Li,
“Dynamic-Anycast (Dyncast) Use Cases and Problem Statement,” IETF,
Internet-Draft, 2022, work in Progress.

[23] B. Stephens, D. Grassi, H. Almasi, T. Ji, B. Vamanan, and A. Akella,
“TCP is Harmful to In-Network Computing: Designing a Message
Transport Protocol (MTP),” in HotNets ’21, 2021.

[24] F. Hauser, M. Häberle, D. Merling, S. Lindner, V. Gurevich, F. Zeiger,
R. Frank, and M. Menth, “A Survey on Data Plane Programming with
P4: Fundamentals, Advances, and Applied Research,” 2021. [Online].
Available: http://arxiv.org/abs/2101.10632

[25] D. Trossen, “Realizing Forward Requests Return Multicast Semantic
with BIER,” IETF, Internet-Draft, 2022, work in Progress.

[26] “Bit Indexed Binary Replication, IETF Working Group,” 2022. [Online].
Available: https://datatracker.ietf.org/wg/bier/about/

https://datatracker.ietf.org/rg/icnrg/about/
http://arxiv.org/abs/2101.10632
https://datatracker.ietf.org/wg/bier/about/

	Introduction
	What is COIN, Anyway?
	Design Principles for COIN
	Considerations for Transport
	Addressing
	Flow Granularity
	Collective Communication

	Related Concepts and Efforts
	Addressing
	Flow Granularity
	Collective Communication

	Road Ahead
	References

