
HENZE et al.: COMPLYING WITH DATA HANDLING REQUIREMENTS IN CLOUD STORAGE SYSTEMS 1

Complying with Data Handling Requirements
in Cloud Storage Systems
Martin Henze, Roman Matzutt, Jens Hiller, Erik Mühmer,

Jan Henrik Ziegeldorf, Johannes van der Giet, and Klaus Wehrle

Abstract—In past years, cloud storage systems saw an enormous rise in usage. However, despite their popularity and importance as
underlying infrastructure for more complex cloud services, today’s cloud storage systems do not account for compliance with regulatory,
organizational, or contractual data handling requirements by design. Since legislation increasingly responds to rising data protection
and privacy concerns, complying with data handling requirements becomes a crucial property for cloud storage systems. We present
PRADA, a practical approach to account for compliance with data handling requirements in key-value based cloud storage systems. To
achieve this goal, PRADA introduces a transparent data handling layer, which empowers clients to request specific data handling
requirements and enables operators of cloud storage systems to comply with them. We implement PRADA on top of the distributed
database Cassandra and show in our evaluation that complying with data handling requirements in cloud storage systems is practical
in real-world cloud deployments as used for microblogging, data sharing in the Internet of Things, and distributed email storage.
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1 INTRODUCTION

NOWADAYS, many web services outsource the storage
of data to cloud storage systems. While this offers

multiple benefits, clients and lawmakers frequently insist
that storage providers comply with different data handling
requirements (DHRs), ranging from restricted storage lo-
cations or durations [1], [2] to properties of the storage
medium such as full disk encryption [3], [4]. However, cloud
storage systems do not support compliance with DHRs
today. Instead, the selection of storage nodes is primarily
optimized towards reliability, availability, and performance,
and thus mostly ignores the demand for DHRs. Even worse,
DHRs are becoming increasingly diverse, detailed, and dif-
ficult to check and enforce [5], while cloud storage systems
are becoming more versatile, spanning different continents
[6] or infrastructures [7], and even second-level providers
[8]. Hence, clients cannot ensure compliance with DHRs
when their data is outsourced to cloud storage systems.

This apparent lack of control is not merely an academic
problem. Since customers have no influence on the treat-
ment of their data in today’s cloud storage systems, a large
set of customers cannot benefit from the advantages offered
by the cloud. The Intel IT Center surveys [9] among 800
IT professionals, that 78% of organizations have to comply
with regulatory mandates. Again, 78% of organizations
are concerned that cloud offers are unable to meet their
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requirements. In consequence, 57% of organizations actually
refrain from outsourcing regulated data to the cloud. The
lack of control over the treatment of data in cloud storage
hence scares away many clients. This especially holds for
the healthcare, financial, and government sectors [9].

Supporting DHRs enables these clients to dictate ade-
quate treatment of their data and thus allows cloud storage
operators to enter new markets. Additionally, it empowers
operators to efficiently handle differences in regulations
[10] (e.g., data protection). Although the demand for DHRs
is widely acknowledged, practical support is still severely
limited [9], [11], [12]. Related work primarily focuses on
DHRs while processing data [13], [14], [15], limits itself to
location requirements [16], [17], or treats the storage system
as a black box and tries to coarsely enforce DHRs from
the outside [12], [18], [19]. Practical solutions for supporting
arbitrary DHRs when storing data in cloud storage systems
are still missing – a situation that is disadvantageous to
clients and operators of cloud storage systems.
Our contributions. In this paper, we present PRADA, a
general key-value based cloud storage system that offers
rich and practical support for DHRs to overcome current
compliance limitations. Our core idea is to add one layer
of indirection, which flexibly and efficiently routes data to
storage nodes according to the imposed DHRs. We demon-
strate this approach along classical key-value stores, while
our approach also generalizes to more advanced storage
systems. Specifically, we make the following contributions:

1) We comprehensively analyze DHRs and the challenges
they impose on cloud storage systems. Our analysis
shows that a wide range of DHRs exist, which clients
and operators of cloud storage systems have to address.

2) We present PRADA, our approach for supporting DHRs
in cloud storage systems. PRADA adds an indirection
layer on top of the cloud storage system to store data
tagged with DHRs only on nodes that fulfill these
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requirements. Our design of PRADA is incremental, i.e.,
it does not impair data without DHRs. PRADA supports
all DHRs that can be expressed as properties of storage
nodes as well as any combination thereof. As we show,
this covers a wide range of actual use cases.

3) We prove the feasibility of PRADA by implementing it
for the distributed database Cassandra (we make our
implementation available [20]) and by quantifying the
costs of supporting DHRs in cloud storage systems.
Additionally, we show PRADA’s applicability in a cloud
deployment along three real-world use cases: a Twitter
clone storing two million authentic tweets, a distributed
email store handling half a million emails, and an IoT
platform persisting 1.8 million IoT messages.

A preliminary version of this paper appears in the pro-
ceedings of IEEE IC2E 2017 [21]. We extend and improve on
our previous work in the following ways: First, we provide
a detailed analysis and definition of the challenge of DHR
compliance in cloud storage systems. Second, we extend
PRADA with mechanisms for failure recovery. Third, we
provide details on our implementation of PRADA. Fourth,
we show the applicability of PRADA by realizing compliance
with DHRs in three real-world use cases: a microblogging
system, a distributed email system, and an IoT platform. Fi-
nally, we cover a broader range of related work and provide
more detail on design, implementation, and evaluation.
Paper structure. In Section 2, we analyze DHRs and derive
goals for supporting DHRs in cloud storage systems. We
provide an overview of our design in Section 3, before we
provide details on individual storage operations (Section 4),
replication (Section 5), load balancing (Section 6), and fail-
ure recovery (Section 7). Subsequently, we describe our
implementation in Section 8 and evaluate its performance
and applicability in Section 9. We present related work in
Section 10 and conclude with a discussion in Section 11.

2 DATA COMPLIANCE IN CLOUD STORAGE

With the increasing demand for sharing data and storing
it at external parties [22], obeying with DHRs becomes a
crucial challenge for cloud storage systems [11], [12], [23].
To substantiate this claim, we outline our setting and rigor-
ously analyze existing and potentially future DHRs. Based
on this, we derive goals that must be reached to adequately
support DHRs in cloud storage systems.

2.1 Setting

We tackle the challenge of supporting DHR compliance in
cloud storage systems which are realized over a set of nodes
in different data centers [24]. To explain our approach in a
simple yet general setting, we assume that data is addressed
by a distinct key, i.e., a unique identifier for each data
item. Key-value based cloud storage systems [25], [26], [27]
provide a general, good starting point, since they are widely
used and their underlying principles have been adopted in
more advanced cloud storage systems [28], [29], [30]. We
discuss how our approach can be applied to other types of
cloud storage systems in Section 11.

As a basis for our discussion, we illustrate our setting in
Figure 1. Clients (end users and companies) insert data into

Fig. 1. Setting. When clients insert data with DHRs, the operator has to
store it only on nodes of the storage system complying with the DHRs.

the cloud storage system and annotate it with DHRs. These
requirements are in textual form and can be interpreted by
the operator of the cloud storage system. The process of
annotating data with DHRs is also known as sticky policies
[31], [32] or data handling annotations [11], [23]. Each client
of the storage system might impose individual and varying
DHRs for each single inserted data item.

Compliance with DHRs has to be realized by the oper-
ator of the cloud storage system. Only the operator knows
about the characteristics of the storage nodes and can thus
make the ultimate decision on which node to store a specific
data item. Different works exist that propose cryptographic
guarantees [14], accountability mechanisms [33], informa-
tion flow control [5], [34], or virtual proofs of physical reality
[35] to relax trust assumptions on the operator, i.e., provid-
ing the client with assurance that DHRs are (strictly) adhered
to. Our goals are different: Our main aim is for functional
improvements of the status quo. Thus, these works are
orthogonal to our approach and can possibly be combined
if the operator is not sufficiently trusted.

2.2 Data Handling Requirements

We analyze DHRs from client and operator perspective and
identify common classes, as well as the need to support also
future and unforeseen requirements.
Client perspective. DHRs involve constraints on the stor-
age, processing, distribution, and deletion of data in cloud
storage. These constraints follow from legal (laws and regu-
lations) [36], [37], contractual (standards and specifications)
[38], or intrinsic requirements (user’s or company’s indi-
vidual privacy requirements) [39], [40]. Especially for busi-
nesses, compliance with legal and contractual obligations is
important to avoid serious (financial) consequences [41].
Location requirements relate to the storage location of data. On
one hand, these requirements address concerns raised when
data is stored outside of specified legislative boundaries [2],
[11]. The EU’s General Data Protection Regulation [37], e.g.,
forbids the storage of personal data in jurisdictions with an
insufficient level of privacy protection. Also other legisla-
tion, besides data protection law, can impose restrictions on
the storage location. German tax legislation, e.g., forbids the
storage of tax data outside of the EU [23]. On the other hand,
clients, especially corporations, can impose location require-
ments. To increase robustness against outages, a company
might demand to store replicas of their data on different
continents [39]. Furthermore, an enterprise could require
that sensitive data is not stored at a competitor for fear of
accidental leaks or deliberate breaches [40].
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Duration requirements impose restrictions on the storage
duration of data. The Sarbanes-Oxley Act (SOX) [42], e.g.,
requires accounting firms to retain records relevant to audits
and reviews for seven years. Contrary, the Payment Card
Industry Data Security Standard (PCI DSS) [38] limits the
storage duration of cardholder data to the time necessary
for business, legal, or regulatory purposes after which it
has to be deleted. A similar approach, coined “the right to
be forgotten”, is actively being discussed and turned into
legislation in the EU and Argentina [37], [43].
Traits requirements further define how data should be stored.
For example, the US Health Insurance Portability and
Accountability Act (HIPAA) [36] requires health data to
be securely deleted before disposing or reusing a storage
medium. Likewise, for the banking and financial services
industry, the Gramm-Leach-Bliley Act (GLBA) [3] requires
the proper encryption of customer data. Additionally, to
protect against theft or seizure, clients may choose to store
their data only on volatile [44] or fully encrypted [4] storage.
Operator perspective. The support of DHRs presents clear
business incentives to cloud storage operators as it opens
new markets and eases compliance with regulation.
Business incentives are given by the unique selling point that
DHRs present to the untapped market of clients unable to
outsource their data to cloud storage systems nowadays due
to unfulfillable DHRs [9]. Indeed, cloud providers already
adapted to some carefully selected requirements. To be able
to sell its services to the US government, e.g., Google created
the segregated “Google Apps for Government” and had it
certified at the FISMA-Moderate level, which enables use by
US federal agencies [41]. Furthermore, cloud providers open
data centers around the world to address location require-
ments of clients [7]. From a different perspective, regional
clouds, e.g., the envisioned “Europe-only” cloud [45], aim at
increasing governance and control over data. Additionally,
offering clients more control over their data reduces risks
for loss of reputation and credibility [46].
Compliance with legislation is important for operators inde-
pendent of specific business goals and incentives. As an
example, the business associate agreement of HIPAA [36]
requires the operator to comply with the same requirements
as its clients when transmitting electronic health records [1].
Furthermore, the EU’s General Data Protection Regula-
tion [37] requires data controllers from outside the EU that
process data originating from the EU to follow DHRs.
Future requirements. DHRs are likely to change and evolve
just as legislation and technology are changing and evolv-
ing over time. Location requirements developed, e.g., since
cloud storage systems began to span multiple geographic
regions. As anticipating all possible future changes in DHRs
is impossible, it is crucial that support for DHRs in cloud
storage systems can easily adapt to new requirements.
Formalizing data handling requirements. To also support
future requirements and storage architectures, we base our
approach on a formalized understanding of DHRs that also
covers yet unforeseen DHRs. To this end, we distinguish
between different types of DHRs and consider different
possible properties which storage nodes (can) support for a
given type of DHRs. This makes it possible to compute the
set of eligible nodes for a specified type of DHRs, i.e., those
nodes that offer the properties requested by the client.

A simple example for a type of DHRs is storage location.
In this example, the properties consist of all possible storage
locations, and nodes whose storage location is equal to the
one requested by the clients are considered eligible. In a
more complicated example, we consider as DHR type the
security level of full-disk encryption. Here, the properties range
from 0 bits (no encryption) to different bits of security (e.g.,
192 bits or 256 bits), with more bits of security offering a
higher security level [47]. In this case, all storage nodes that
provide at least the security level requested by the client are
considered eligible to store the data.

By allowing clients to combine different types of DHRs
and to specify a set of required properties (e.g., different
storage locations) for each type, we provide them with
powerful means to express DHRs. We detail how clients can
combine different types in Section 4 and how we integrate
DHRs into Cassandra’s query language in Section 8.

2.3 Goals

Our analysis of real-world demands for DHRs based on
legislation, business interests, and future trends emphasizes
the importance to support DHRs in distributed cloud stor-
age. We now derive a set of goals that any approach that
addresses this challenging situation should fulfill:
Comprehensiveness: To address a wide range of DHRs, the
approach should work with any DHRs that can be expressed
as properties of storage nodes and support the combination
of different DHRs. In particular, it should support the re-
quirements in Section 2.2 and be able to adapt to new DHRs.
Minimal performance effort: Cloud storage systems are
highly optimized and trimmed for performance. Thus, the
impact of DHR support on the performance of a cloud
storage system should be minimized.
Cluster balance: In existing cloud storage systems, the
storage load of nodes can easily be balanced to increase
performance. Despite having to respect DHRs (and thus
limiting the set of possible storage nodes), the storage load
of individual storage nodes should be kept balanced.
Coexistence: Not all data will be accompanied by DHRs.
Hence, data without DHRs should not be impaired by
supporting DHRs, i.e., it should be stored in the same way
as in a traditional cloud storage system.

3 SYSTEM OVERVIEW

The problem that has prevented support for DHRs so far
stems from the common pattern used to address data in
key-value based cloud storage systems: Data is addressed,
and hence also partitioned (i.e., distributed to the nodes in
the cluster), using a designated key. Yet, the responsible node
(according to the key) for storing a data item will often not
fulfill the client’s DHRs. Thus, the challenge addressed in
this paper is how to realize compliance with DHRs and still
allow for key-based data access.

To tackle this challenge, the core idea of PRADA is to
add an indirection layer on top of a cloud storage system.
We illustrate how we integrate this layer into existing cloud
storage systems in Figure 2. If a responsible node cannot
comply with stated DHRs, we store the data at a different
node, called target node. To enable the lookup of data, the
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responsible node stores a reference to the target for specific
data. As shown in Figure 2, we introduce three new compo-
nents (capability, relay, and target store) to realize PRADA.
Capability store: The global capability store is used to look
up nodes that can comply with a specific DHR. Here, the
operator of the cloud storage systems specifies for each node
in the cluster which DHR properties this node can fulfill. To
speed up lookups in the capability store, each node keeps a
local copy of the complete capability store. This approach is
feasible, as information on DHRs is comparably small and
consists of rather static information. Depending on the in-
dividual cloud storage system, distributing this information
can be realized by preconfiguring the capability store for a
storage cluster or by utilizing the storage system itself for
creating a globally replicated view of node capabilities. We
consider all DHRs that describe static properties of a storage
node and range from rather simplistic properties such as
storage location to more advanced capabilities such as the
support for deleting data at a specific date.
Relay store: Each node operates a local relay store containing
references to data stored at other nodes. More precisely, it
contains references to data the node itself is responsible for
but does not comply with the DHRs. For each data item, the
relay store contains the key of the data, a reference to the
node at which the data is stored, and a copy of the DHRs.
Target store: Each node stores data that is redirected to it in
a target store. The target store operates exactly as a traditional
data store, but allows a node to distinguish data that falls
under DHRs from data that does not.

Alternatives to adding an indirection layer are likely not
viable for scalable key-value based cloud storage systems:
Although it is possible to encode very short DHRs in the
key used for data access [23], this requires knowledge about
DHRs of a data item to compute the key for accessing it and
disturbs load balancing. Alternatively, replication of all relay
information on all nodes of a cluster allows nodes to derive
relay information locally. This, however, severely impacts
scalability of the cloud storage system and reduces the total
storage amount to the limited storage space of single nodes.

Integrating PRADA into a cloud storage system requires
us to adapt storage operations (e.g., creating and updating
data) and to reconsider replication, load balancing, and
failure recovery strategies in the presence of DHRs. In the
following, we describe how we address these issues.

4 CLOUD STORAGE OPERATIONS

The most important modifications of PRADA involve the
CRUD (create, read, update, delete) operations. In the fol-
lowing, we describe how we integrate PRADA into the
CRUD operations of our cloud storage model (cf. Sec-
tion 2.1). We assume that queries are processed on behalf of
the client by one of the nodes in the cluster, the coordinator
node (as common in cloud storage systems [26]). Each node
of the cluster can act as coordinator for a query and clients
use the capability store to select a coordinator that complies
with the requested DHRs. If no DHRs need to be considered,
clients select a coordinator based on performance metrics
such as proximity. For reasons of clarity, we postpone the
discussion of the impact of different replication factors and
load balancing decisions to Section 5 and 6, respectively.

Fig. 2. System overview. PRADA adds an indirection layer to support
DHRs. The capability store records which nodes support which DHR,
the relay store contains references to indirected data, and the target
store saves indirected data.

Fig. 3. Creating data. The coordinator derives nodes that comply with
the DHRs from the capability store. It then stores the data at the target
node and a reference to the data at the responsible node.

Create. The coordinator first checks whether a create request
is accompanied by DHRs. If no requirements are specified,
the coordinator uses the standard method of the cloud stor-
age system to create data so that the performance of native
create requests is not impaired. For all data with DHRs,
a create request proceeds in three steps as illustrated in
Figure 3. In Step 1, the coordinator derives the set of eligible
nodes from the received DHRs, relying on the capability
store (as introduced in Section 3) to identify nodes that fulfill
all requested DHRs. Clients can combine different types of
DHRs (e.g., location and support for deletion). Nodes are
considered eligible if they support at least one of the speci-
fied properties for each requested type (e.g., one out of mul-
tiple permissible locations). Now, the coordinator knows
which nodes of the cluster can comply with all requirements
specified by the user and has to choose from the set of
eligible nodes the target node on whom to store the data. It
is important to select the target such that the overall storage
load in the cluster remains balanced (we defer the discussion
of this issue to Section 6). In Step 2, the coordinator forwards
the data to the target, who stores it in its target store. Finally,
in Step 3, the coordinator instructs the responsible node to
store a reference to the actual storage location of the data to
enable locating data upon read, update, and delete requests.
The coordinator acknowledges the successful insertion after
all three steps have been completed successfully. To speed
up create operations, the second and third step—although
logically separated—are performed in parallel.
Read. Processing read requests in PRADA is performed
in three steps as illustrated in Figure 4. In Step 1, the
coordinator uses the key supplied in the request to initi-
ate a standard read query at the responsible node. If the
responsible node does not store the data locally, it checks its
local relay store for a reference to a different node. Should
it hold such a reference, the responsible node forwards the
read request (including information on how to reach the



HENZE et al.: COMPLYING WITH DATA HANDLING REQUIREMENTS IN CLOUD STORAGE SYSTEMS 5

coordinator node for this request) to the target listed in
the reference in Step 2. In Step 3, the target looks up the
requested data in its target store and directly returns the
query result to the coordinator. Upon receiving the result
from the target, the coordinator processes the results in the
same way as any other query result. If the responsible node
stores the requested data locally (e.g., because it was stored
without DHRs), it directly answers the request using the
default method of the cloud storage system. In contrast, if
the responsible node neither stores the data directly nor a
reference to it, PRADA will report that no data was found
using the standard mechanism of the cloud storage system.
Update. The update of already stored data involves the
(potentially partial) update of stored data as well as the
possible update of associated DHRs. In the scope of this
paper, we define that DHRs of the update request supersede
DHRs supplied with the create request and earlier updates.
Other semantics, e.g., combining old and new DHRs, can
be realized by slightly adapting the update procedure of
PRADA. Consequently, we process update requests the same
way as create requests (as it is often done in cloud storage
systems). Whenever an update request needs to change the
target node of stored data (due to changes in supplied
DHRs), the responsible node has to update its relay store.
Furthermore, the update request needs to be applied to
the data (currently stored at the old target node). To this
end, the responsible node instructs the old target node to
move the data to the new target node. The new target node
applies the update to the data, locally stores the result,
and acknowledges the successful update to coordinator and
responsible node and the responsible node updates the relay
information. As updates for data without DHRs are directly
sent to the responsible node, the performance of native
requests is not impaired compared to an unmodified system.
Delete. Delete requests are processed analogously to read
requests: The delete request is sent to the responsible node
for the key that should be deleted. If the responsible node
itself stores the data, it deletes the data as in an unmodified
system. In contrast, if it only stores a reference to the data, it
deletes the reference and forwards the delete request to the
target. The target deletes the data and informs the coordina-
tor about the successful deletion. We defer a discussion of
recovering from delete failures to Section 7.

5 REPLICATION

Cloud storage systems employ replication to realize high
availability and data durability [26]: Instead of storing a data
item only on one node, it is stored on r nodes (typically, with
a replication factor 1 ≤ r ≤ 3). In key-value based storage
systems, the r nodes are chosen based on the key of data (see
Section 3). When complying with DHRs, we cannot use the
same replication strategy. In the following, we thus detail
how PRADA realizes replication instead.
Creating data. Instead of selecting only one target, the
coordinator picks r targets out of the eligible nodes. The
coordinator sends the data to all r targets and the list of all
r targets to the r responsible nodes (according to the repli-
cation strategy of the cloud storage system). Consequently,
each of the r responsible nodes knows about all r targets
and can update its relay store accordingly.

Fig. 4. Reading data. The coordinator contacts the responsible node to
fetch the data. As the data was created with DHRs, the responsible node
forwards the query to the target, which directly sends the response back
to the coordinator.

Reading data. To process a read request, the coordinator
forwards the read request to all responsible nodes. A re-
sponsible node that receives a read request for data it does
not store locally looks up the targets in its relay store and
forwards the read request to one of the r target nodes.
To ensure that each target node receives a request, each
responsible node uses the same consistent mapping between
responsible and target nodes which is computed based on
node identifiers. Each target that receives a read request
sends the requested data to the coordinator for this request.
If a read query is reissued due to a failure (cf. Section 7),
each responsible node will forward the request to all r target
nodes to increase reliability.
Impact on reliability. To successfully process a query in
PRADA, it suffices if one responsible node and one target
node are reachable. Thus, PRADA can tolerate the failure of
up to r − 1 responsible nodes and up to r − 1 target nodes.

6 LOAD BALANCING

In cloud storage systems, load balancing aims to minimize
(long term) load disparities in the storage cluster by dis-
tributing stored data and read requests equally among the
nodes. Since PRADA drastically changes how data is as-
signed to and retrieved from nodes, existing load balancing
schemes must be rethought. In the following, we describe
a formal metric to measure load balance and then explain
how PRADA builds a load-balanced storage cluster.
Load balance metric. Intuitively, a good load balancing aims
at all nodes being (nearly) equally loaded, i.e., the imbalance
between the load of nodes should be minimized. While un-
derloaded nodes constitute a waste of resources, overloaded
nodes drastically decrease the overall performance of the
cloud storage system. We measure the load balance of a
cloud storage system by normalizing the global standard
deviation of the load with the mean load µ of all nodes [48]:

L :=
1

µ

√∑|N |
i=1(Li − µ)2
|N |

with Li being the load of node i ∈ N . To achieve load
balance, we need to minimize L. This metric especially pe-
nalizes outliers with extremely low or high loads, following
the intuition of a good load balance.
Load balancing in PRADA. Key-value based cloud storage
systems achieve a reasonably balanced load in two steps:
(i) Equal distribution of data at insert time, e.g., by applying
a hash function to identifier keys, and (ii) re-balancing the
cluster if absolutely necessary by moving data between
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nodes. More advanced systems support additional mech-
anisms, e.g., load balancing over geographical regions [28].
Since our focus in this paper lies on proving the general
feasibility of supporting data compliance in cloud storage,
we focus on the properties of key-value based storage.

Re-balancing a cluster by moving data between nodes
can be handled by PRADA similarly to moving data in case
of node failures (Section 7). In the following, we thus focus
on the challenge of load balancing in PRADA at insert time.
Here, we focus on equal distribution of data with DHRs to
target nodes as load balancing for indirection information is
achieved with the standard mechanisms of key-value based
cloud storage systems, e.g., by hashing identifier keys.

In contrast to key-value based cloud storage systems,
load balancing in PRADA is more challenging: When pro-
cessing a create request, the eligible target nodes are not
necessarily equal as they might be able to comply with
different DHRs. Hence, some eligible nodes might offer
rarely supported but often requested requirements. Fore-
seeing future demands is notoriously difficult [49], thus we
suggest to make the load balancing decision based on the
current load of the nodes. This requires all nodes to be
aware of the load of the other nodes in the cluster. Cloud
storage systems typically already exchange this information
or can be extended to do so, e.g., using efficient gossiping
protocols [50]. We utilize this load information in PRADA as
follows. To select the target nodes from the set of eligible
nodes, PRADA first checks if any of the responsible nodes
are also eligible to become a target node and selects those as
target nodes first. This allows us to increase the performance
of CRUD requests as we avoid the indirection layer in
this case. For the remaining target nodes, PRADA selects
those with the lowest load. To have access to more timely
load information, each node in PRADA keeps track of all
create requests it is involved with. Whenever a node itself
stores new data or sends data for storage to other nodes,
it increments temporary load information for the respective
node. This temporary node information is used to bridge
the time between two updates of the load information. As
we will show in Section 9.2, this approach enables PRADA
to adapt to different usage scenarios and quickly achieve a
(nearly) equally balanced storage cluster.

7 FAILURE RECOVERY

When introducing support for DHRs to cloud storage sys-
tems, we must ensure not to break their failure recovery
mechanisms. With PRADA, we specifically need to take
care of dangling references, i.e., a reference pointing to
a node that does not store the corresponding data, and
unreferenced data, i.e., data stored on a target node without
an existing corresponding reference. These inconsistencies
could stem from failures during the (modified) CRUD oper-
ations as well as from actions that are triggered by DHRs,
e.g., deletions forced by DHRs require propagation of meta
information to corresponding responsible nodes.
Create. Create requests require to transmit data to the target
node and inform the responsible node to store the reference.
Failures during these operations can be recognized by the
coordinator by missing acknowledgments. Resolving these
errors requires a rollback and/or reissuing actions, e.g.,

selecting a new target node and updating the reference. Still,
also the coordinator itself can fail during the process, which
may lead to unreachable data. As such failures happen only
rarely, we suggest refraining from including corresponding
consistency checks directly into create operations [51]. In-
stead, the client detects failures of the coordinator due to
absent acknowledgments. In this case, the client informs all
eligible nodes to remove the unreferenced data and reissues
the create operation through another coordinator.
Read. In contrast to the other operations, a read request
does not change any state in the cloud storage system.
Therefore, read requests are simply reissued in case of a
failure (identified by a missing acknowledgment) and no
further error handling is required.
Update. Although update operations are more complex than
create operations, failure handling can happen analogously.
As the responsible node updates its reference only upon
reception of the acknowledgment from the new target node,
the storage state is guaranteed to remain consistent. Hence,
the coordinator can reissue the process using the same or
a new target node and perform corresponding cleanups if
errors occur. Contrary, if the coordinator fails, information
on the potentially new target node is lost. Similar to create
operations, the client resolves this error by informing all eli-
gible nodes about the failure. Subsequently, the responsible
nodes trigger a cleanup to ensure a consistent storage state.
Delete. When deleting data, a responsible node may delete
a reference but fail in informing the target node to carry out
the delete. Coordinator and client easily detect this error
through the absence of the corresponding acknowledgment.
Again, the coordinator or client then issue a broadcast
message to delete the corresponding data item from the
target node. This approach is more reasonable than directly
incorporating consistency checks for all delete operations as
such failures occur only rarely [51].
Propagating target node actions. CRUD operations are
triggered by clients. However, data deletion or relocation,
which may result in dangling references or unreferenced
data, can also be triggered by the storage cluster or by
DHRs that, e.g., specify a maximum lifetime for data. To
keep the state of the cloud storage system consistent, stor-
age nodes perform data deletion and relocation through a
coordinator as well, i.e., they select one of the other nodes
to perform update and delete operations on their behalf.
Thus, the correct execution of deletion and relocation tasks
can be monitored and repair operations can be triggered.
In case either the initiating storage node or the coordinator
fails while processing a query, the same mitigations as for
CRUD operations (triggered by clients) apply. To protect
against rare cases in which both, initiating storage node
and coordinator, fail while processing an operation, storage
system operators can optionally employ commit logs, e.g.,
based on Cassandra’s atomic batch log [52].

8 IMPLEMENTATION

For the practical evaluation of our approach, we fully imple-
mented PRADA on top of Cassandra [26] (our implementa-
tion is available under the Apache License [20]). Cassandra
is a distributed database that is actively employed as a
key-value based cloud storage system by more than 1500
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companies with deployments of up to 75 000 nodes [53]
and offers high scalability even over multiple data centers
[54], which makes it especially suitable for our scenario.
Cassandra also implements advanced features that go be-
yond simple key-value storage such as column-orientation
and queries over ranges of keys, which allows us to show-
case the flexibility and adaptability of our design. Data in
Cassandra is divided into multiple logical databases, called
key spaces. A key space consists of tables which are called
column families and contain rows and columns. Each node
knows about all other nodes and their ranges of the hash
table. Cassandra uses the gossiping protocol Scuttlebutt [50]
to efficiently distribute this knowledge as well as to detect
node failure and exchange node state, e.g., load information.
Our implementation is based on Cassandra 2.0.5, but our
design conceptually also works with newer versions.
Information stores. PRADA relies on three information
stores: the global capability store as well as relay and target
stores (cf. Section 3). We implement these as individual key
spaces in Cassandra as detailed in the following. First, we
realize the global capability store as a key space that is globally
replicated among all nodes (i.e., each node stores a full copy
of the capability store to improve performance of create
operations) initialized at the same time as the cluster. On this
key space, we create a column family for each DHR type (as
introduced in Section 2.2). When a node joins the cluster, it
inserts all DHR properties it supports for each DHR type (as
locally configured by operator of the cloud storage system)
into the corresponding column family. This information is
then automatically replicated to all other nodes in the cluster
by the replication strategy of the corresponding key space.
For each regular key space of the database, we additionally
create a corresponding relay store and target store as key
spaces. Here, the relay store inherits the replication factor
and replication strategy from the corresponding regular key
space to achieve replication for PRADA as detailed in Section
5, i.e., the relay store will be replicated in exactly the same
way as the regular key store. Hence, for each column family
in the corresponding key space, we create a column family
in the relay key space that acts as the relay store. We follow
a similar approach for realizing the target store, i.e., we create
for each key space a corresponding key space to store actual
data. For each column family in the original key space, we
create an exact copy in the target key space to act as the
target store. However, to ensure that DHRs are adhered to,
we implement a DHR-agnostic replication mechanism for
the target store and use the relay store to address data.

While the global capability store is created when the
cluster is initiated, relay and target stores have to be cre-
ated whenever a new key space and column family is
created, respectively. To this end, we hook into Cassandra’s
CreateKeyspaceStatement class for detecting requests
for creating key spaces and column families and subse-
quently initialize the corresponding relay and target stores.
Creating data and load balancing. To allow clients to
specify their DHRs when inserting or updating data, we
support the specification of arbitrary DHRs in textual
form for INSERT requests (cf. Section 2.1). To this end, we
add an optional postfix WITH REQUIREMENTS to INSERT
statements by extending the grammar from which parser
and lexer for CQL3 [55], the SQL-like query language of

Cassandra, are generated using ANTLR [56]. Using the
WITH REQUIREMENTS statement, arbitrary DHRs can be
specified separated by the keyword AND, e.g., INSERT ...
WITH REQUIREMENTS location = { ’DE’, ’FR’,
’UK’ } AND encryption = { ’AES-256’ }. In this
example, any node located in Germany, France, or the
United Kingdom that supports AES-256 encryption is
eligible to store the inserted data. This approach enables
users to specify any DHRs covered by our formalized
model of DHRs (cf. Section 2.2).

To detect and process DHRs in create requests (cf. Section
4), we extend Cassandra’s QueryProcessor, specifically
its getStatement method for processing INSERT requests.
When processing requests with DHRs (specified using the
WITH REQUIREMENTS statement), we base our selection of
eligible nodes on the global capability store. Nodes are eligi-
ble to store data with a given set of DHRs if they provide at
least one of the specified properties for each requested type
(e.g., one out of multiple permitted locations). We prioritize
nodes that Cassandra would pick without DHRs, as this
speeds up reads for the corresponding key later on, and
otherwise choose nodes according to our load balancer (cf.
Section 6). Our load balancing implementation relies on Cas-
sandra’s gossiping mechanism [26], which maintains a map
of all nodes together with their corresponding loads. We
access this information using Cassandra’s getLoadInfo
method and extend the load information with local estima-
tors for load changes. Whenever a node sends a create re-
quest or stores data itself, we update the corresponding local
estimator with the size of the inserted data. To this end, we
hook into the methods that are called when data is modified
locally or forwarded to other nodes, i.e., the correspond-
ing methods in Cassandra’s ModificationStatement,
RowMutationVerbHandler, and StorageProxy classes
as well as our methods for processing requests with DHRs.
Reading data. To allow reading redirected data as described
in Section 4, we modify Cassandra’s ReadVerbHandler
class for processing read requests at the responsible node.
This handler is called whenever a node receives a read
request from the coordinator and allows us to check whether
the current node holds a reference to another target node
for the requested key by locally checking the corresponding
column family within the relay store. If no reference exists,
the node continues with a standard read operation. Oth-
erwise, the node forwards a modified read request to one
deterministically selected target node (cf. Section 5) using
Cassandra’s sendOneWay method, in which it requests the
data from the respective target on behalf of the coordina-
tor. Subsequently, the target nodes send the data directly
to the coordinator node (whose identifier is included in
the request). To correctly resolve references to data for
which the coordinator of a query is also the responsible
node, we additionally add corresponding checks to the
LocalReadRunnable subclass of StorageProxy.

9 EVALUATION

We perform benchmarks to quantify query completion
times, storage space, and consumed traffic. Furthermore, we
study PRADA’s load behavior through simulation and show
PRADA’s applicability in three real-world use cases.
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9.1 Benchmarks

First, we benchmark query completion time, consumed stor-
age space, and bandwidth consumption. In all settings, we
compare the performance of PRADA with the performance
of an unmodified Cassandra installation as well as PRADA*,
a system running PRADA but receiving only data without
DHRs. This enables us to verify that data without DHRs is
indeed not impaired by PRADA.

We set up a cluster of 10 nodes interconnected via a
gigabit Ethernet switch. All nodes are equipped with an
Intel Core 2 Q9400 and 4 GB RAM as well as either 160 GB
or 500 GB storage and run either Ubuntu 14.04 or 16.04. We
assign each node a distinct artificial DHR property to avoid
potential bias resulting from using only one specific DHR
type (such as storage location). When inserting or updating
data, clients request a set of exactly three of the available
properties uniformly randomly. Each row of data consists of
200 B of uniformly random data (+ 20 B for the key), spread
over 10 columns. These are rather conservative numbers as
the relative overhead of PRADA decreases with increasing
storage size. For each result, we performed 5 runs, each
with 1000 operations which were performed in one burst,
i.e., as quickly as could be handled by the coordinator. In
the following, we depict the mean value for performing one
operation with 99% confidence intervals. We provide further
instructions on how to perform these measurements as part
of the release of our implementation [20].
Query completion time. The query completion time (QCT)
denotes the time the coordinator takes for processing a
query, i.e., from receiving it until sending the result back
to the client. It is influenced by the round-trip time (RTT)
between nodes in the cluster and the replication factor.

We first study the influence of RTTs on QCT for a repli-
cation factor r = 1. To this end, we artificially add latency
to outgoing packets for inter-cluster communication using
netem [57] to emulate RTTs of 100 to 250 ms. Our choice
covers RTTs observed in communication between cloud
data centers around the world [58] and verified through
measurements in the Microsoft Azure cloud. In Figure 5,
we depict the QCTs for the different CRUD operations and
RTTs. We make two observations. First, QCTs of PRADA* are
indistinguishable from those of Cassandra, which implies
that data without DHRs is not impaired by PRADA. Second,
the additional overhead of PRADA lies between 15.4 to 16.2%
for create, 40.5 to 42.1% for read, 48.9 to 50.5% for update,
and 44.3 to 44.8% for delete. The overheads for read, update,
and delete correspond to the additional 0.5 RTT introduced
by the indirection layer and is slightly worse for updates
as data stored at potentially old target nodes needs to be
deleted. QCTs below the RTT result from corner cases where
the coordinator is also responsible for storing data.

From now on, we fix RTTs at 100 ms and study the
impact of replication factors r = 1, 2, and 3 on QCTs as
shown in Figure 6. Again, we observe that the QCTs of
PRADA* and Cassandra are indistinguishable. For increas-
ing replication factors, the QCTs for PRADA* and Cassandra
reduce as it becomes more likely that the coordinator also
stores the data. In this case, Cassandra optimizes queries.
When considering the overhead of PRADA, we witness that
the QCTs for creates (overhead increasing from 14 to 46 ms),
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Fig. 7. Storage vs. replication. PRADA constitutes only constant over-
head per DHR affected replica, while not affecting data without DHRs.

reads (overhead increasing from 38 to 61 ms), and updates
(overhead increasing from 46 to 80 ms) cannot benefit from
these optimizations, as this would require the coordinator
to be responsible and target node at the same time, which
happens only rarely. Furthermore, the increase in QCTs for
creates and updates results from the overhead of handling
r references at r nodes, while the increase for reads corre-
sponds to the additional 0.5 RTT for the indirection layer.
For deletes, the overhead decreases from 41 to 12 ms for an
increasing replication factor, which results from an increased
likelihood that the coordinator node is at least either respon-
sible or target node, avoiding additional communication.
Consumed storage space. To quantify the additional storage
space required by PRADA, we measure the consumed stor-
age space after data has been inserted, using the cfstats
option of Cassandra’s nodetool utility. To this end, we
conduct insertions for payload sizes of 200 and 400 B (plus
20 B for the key), i.e., we fill 10 columns with 20 respec-
tive 40 B payload in each query, with replication factors of
r = 1, 2, and 3. In real-world use cases, we observe, e.g.,
a mean payload size of 312 B for an IoT data platform (cf.
Section 9.3). We divide the total consumed storage space
per run by the number of insertions and show the mean
consumed storage space per inserted row over all runs in
Figure 7. Cassandra requires 383 B to store 200 B of payload
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and 585 B for a payload of 400 B. Each additional replica
increases the required storage space by roughly 90%. PRADA
adds a constant overhead of roughly 110 B per replica. While
the precise overhead of PRADA depends on the encoding of
relay information, the important observation here is that it
does not depend on the size of the stored data. Even for
extremely small payload sizes, e.g., a mean payload size of
133 B in a microblogging use case (cf. Section 9.3), PRADA
adds only an additional relative storage overhead of roughly
38% on top of an overhead of more than 136% already added
by Cassandra. When considering larger payload sizes, the
storage overhead of PRADA becomes negligible, e.g., when
storing emails with a mean size of 3626 B (cf. Section 9.3)
where the overhead for indirection information amounts to
only 3% of the data size.
Bandwidth consumption. We measure the traffic consumed
by the individual CRUD operations by hooking into the
writeConnected method to be able to filter out back-
ground traffic such as gossiping. Figure 8 depicts the mean
total generated message payload per single operation aver-
aged over 5 runs with 2000 operations each for an RTT of
100 ms. Our results show that using PRADA comes at the
cost of an overhead that scales with the replication factor.
When considering Cassandra and PRADA*, we observe that
the consumed traffic for read operations does only slightly
increase when raising the replication factor. This results
from an optimization in Cassandra that requests the data
only from one replica and probabilistically compares only
digests of the data held by the other replicas to perform
post-request consistency checks. Furthermore, with increas-
ing replication factors, it becomes more likely that the co-
ordinator also stores the data and thus no communication
is necessary, while PRADA requires the coordinator to be
responsible and target node at the same time, which hap-
pens only rarely. For the other operations, the overhead
introduced by our indirection layer ranges from 0.7 to
0.9 kB for a replication factor of 3. For a replication factor
of 1, the highest overhead introduced by PRADA peaks at
0.2 kB. Thus, we conclude that the traffic overhead of PRADA
allows for a practical operation in cloud storage systems.

9.2 Load Distribution

To quantify the impact of PRADA on the load distribution
of the overall cloud storage system, we rely on a simulation
approach as this enables a thorough analysis of the load
distribution and considering a wide range of scenarios.
Simulation setup. As we are solely interested in the load
behavior, we implemented a custom simulator in Python,
which models the characteristics of Cassandra with respect
to network topology, data placement, and gossip behavior.
Using the simulator, we realize a cluster of n nodes, which
are equally distributed among the key space [52] and insert
m data items with uniformly random keys. For simplicity,
we assume that all data items are of the same size. The nodes
operate Cassandra’s gossip protocol [50], i.e., synchronize
with one random node every second and update its own
load information every 60 s. We randomize the initial offset
before the first gossip message for each node individually,
as in reality not all nodes perform the gossip at the same
point in time. We repeat each measurement 10 times with
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Fig. 9. Load balance vs. throughput. Load balance in PRADA depends
on throughput of inserts. Even for high throughput it stays below 0.5%.

different random seeds [59] and show the mean of the load
balance L (cf. Section 6) with 99% confidence intervals.
Influence of throughput. We expect the load distribution
to be influenced by the freshness of the load information as
gossiped by other nodes, which correlates with the through-
put of create requests. A lower throughput results in less
data inserted between two load information updates and
hence the load information remains relatively fresher. To
study this effect, we simulate different insertion through-
puts to vary the gossiping delay. We simulate a cluster with
100 nodes and 107 create requests, each accompanied by a
DHR. Even for high throughput, this produces enough data
to guarantee at least one gossip round. To challenge the load
balancer, we synthetically create two types of DHRs with
two properties, each supported by half of the nodes such
that each combination of the properties of the two types
of DHRs is supported by 25 nodes. For each create request
we randomly select one of the resulting possible DHRs, i.e.,
demanding one property for one or two of the DHRs types.

Figure 9 shows the deviation from an even load for in-
creasing throughput compared with a traditional Cassandra
cluster. Additionally, we calculate the optimal solution un-
der a posteriori knowledge by formulating the correspond-
ing quadratic program for minimizing the load balance L
and solving it using CPLEX [60]. In all cases, we observe
that the resulting optimal load balance is 0, i.e., all nodes
are loaded exactly equal, and hence omit these results in the
plot. Seemingly large confidence intervals result from the
high resolution of our plot (PRADA deviates less than 0.5%
from even load). The results show that PRADA even outper-
forms Cassandra for smaller throughputs (load imbalance
of Cassandra results from hashing) and the introduced load
imbalance stays well below 0.5% in all scenarios, even for a
high throughput of 100 000 insertions/s (Dropbox processed
less than 20 000 insertions/s on average in June 2015 [61]).
These results indicate that frequent updates of node state
improve load balance for PRADA.
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Influence of DHR fit. In PRADA, one of the core influence
factors on the load distribution is the accordance of clients’
DHRs with the properties provided by storage nodes. If the
distribution of DHRs heavily deviates from the distribution
of DHRs supported by the storage nodes, it is impossible
to achieve an even load distribution. To study this aspect,
we consider a scenario where each node has a storage
location and clients request exactly one of the available
storage locations. We simulate a cluster of 1000 nodes that
are geographically distributed according to the IP address
ranges of Amazon Web Services [62] (North America: 64%,
Europe: 17%, Asia-Pacific: 16%, South America: 2%, China:
1%). First, we insert data with DHRs whose distribution
exactly matches the distribution of nodes. Subsequently, we
worsen the accuracy of fit by subtracting 10 to 100% from
the location with the most nodes (i.e., North America) and
proportionally distribute this demand to the other locations
(in the extreme setting, North America: 0%, Europe: 47.61%,
Asia-Pacific: 44.73%, South America: 5.74%, and China:
1.91%). We simulate 107 insertions at a throughput of 20 000
insertions/s. For comparison, we calculate the optimal load
using a posteriori knowledge by equally distributing the
data on the nodes of each location. Our results are depicted
in Figure 10. We derive two insights from this experiment:
i) the deviation from an even cluster load scales linearly
with decreasing accordance of clients’ DHRs with node ca-
pabilities and ii) in all considered settings PRADA manages
to achieve a cluster load that is close to the theoretical
optimum. Hence, PRADA’s approach of load balancing can
indeed adapt to the challenges imposed by complying with
DHRs in cloud storage systems.

9.3 Applicability

We show the applicability of PRADA by realizing three
real-world use cases: a microblogging system, a distributed
email management system, and an IoT platform. To cre-
ate a realistic evaluation environment, we use a globally
distributed cloud storage consisting of 10 nodes on top of
the Microsoft Azure cloud platform [63]. More specifically,
we utilize virtual machine instances of type D2s v3, each
equipped with 2 virtual CPUs, 8 GB RAM, 30 GB storage,
and Ubuntu 16.04 as operating system. The virtual machines
are globally distributed among 10 distinct regions: asia-
east, asia-southeast, canada-central, europe-north, europe-
west, japan-east, us-central, us-east, us-southcentral, and
us-west2. In case of read timeouts, e.g., due to temporary
connection problems, we resubmit the corresponding query.
The release of our implementation contains further informa-
tion on how to perform these measurements [20].
Microblogging. Microblogging services such as Twitter fre-
quently utilize cloud storage systems to store messages.
To evaluate the impact of PRADA on such services, we
use the database layout of Twissandra [64], an exemplary
implementation of a microblogging service for Cassandra,
and real tweets from the twitter7 dataset [65]. For each user,
we uniformly at random select one of the storage locations
and attach it as DHR to all their tweets. We perform our
measurements using a replication factor of r = 1 and
measure the QCTs for randomly chosen users for retrieving
their userline (most recent messages of a user) and their
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Fig. 11. Usecase evaluation. Adding DHRs to tweets delays query
completion by 11 to 15%. Also for email storage and IoT data, account-
ing for compliance with DHRs results in acceptable overheads.

timeline (most recent messages of all users a user follows).
To this end, we insert 2 million tweets from the twitter7
dataset [65] and randomly select 1000 users among those
users who have at least 50 tweets in our dataset. For the
userline measurement, we request 50 consecutive tweets of
each selected user. As the twitter7 dataset does not contain
follower relationships between users, we request 50 random
tweets for the timeline measurements of each selected user.

Our results in Figure 11 (left) show that the runtime over-
head of supporting DHRs for microblogging in a globally
distributed cluster corresponds to a 11% (15%) increase in
query completion time for fetching the timeline (userline).
Here, PRADA especially benefits from the fact that identi-
fiers are spread along the cluster and thus the unmodified
Cassandra also has to contact a large number of nodes. Our
results show that PRADA can be applied to offer support
for DHRs in microblogging at reasonable costs with respect
to query completion time. Especially when considering that
not each tweet will likely be accompanied by DHRs, this
modest overhead is well worth the additional functionality.
Email storage. Email providers increasingly move storage
of emails to the cloud [66]. To study the impact of support-
ing DHRs on emails, we analyzed Cassandra-backed email
systems such as Apache James [67] and ElasticInbox [68]
and derived a common database layout consisting of one
table for meta data (overview of a complete mailbox) and
one table for full emails. To create a realistic scenario, we
utilize the Enron email dataset [69], consisting of about half
a million emails of 150 users. For each user, we uniformly at
random select one of the available storage locations as DHR
for their emails and meta information.

Figure 11 (middle) compares the mean QCTs per op-
eration of Cassandra and PRADA for fetching the overview
of the mailbox for all 150 users and fetching 10 000 ran-
domly selected individual emails. For fetching of mailboxes,
we observe overlapping, rather large confidence intervals
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resulting from the small number of operations (only 150
mailboxes) and huge differences in mailbox sizes , ranging
from 35 to 28 465 messages. While we cannot derive a
definitive statement (at the 99% confidence level) from these
results, the mean QCTs for fetching the overview of a mail-
box seem to suggest a notable yet acceptable overhead for
using PRADA. When considering the fetching of individual
messages, we observe an overhead of 70% for PRADA’s indi-
rection step, increasing QCTs from 97 to 164 ms. Hence, we
can provide compliance with DHRs for email storage with
a reasonable increase of 67 ms for fetching individual emails
and a likely increase in the time required for generating an
overview of all emails in the mailbox in the order of 28%.
IoT platform. The Internet of Things (IoT) leads to a mas-
sive growth of collected data which is often stored in the
cloud [70], [71]. Literature proposes to attach per-data item
DHRs to IoT data to preserve privacy [31], [71], [72]. To
study the applicability of PRADA in this setting, we collected
frequency and size of authentic IoT data from the IoT
data sharing platform dweet.io [73]. Our data set contains
1.84 million IoT messages of size 72 B to 9.73 KB from 2889
devices. To protect the privacy of people monitored by these
devices, we replaced all payload information with random
data. For each device, we uniformly at random assign one
of the storage locations as DHR for the collected data.

In Figure 11 (right), we depict the mean QCTs per op-
eration of Cassandra and PRADA for retrieving the overview
of all IoT data for each of the 2889 devices as well as for
accessing 10 000 randomly selected single IoT messages. The
varying amount of sensor data that different IoT devices of-
fer leads to a slightly varying QCT for fetching of IoT device
data overviews, similar to mailbox fetching (see above). The
overhead for adhering to DHRs with PRADA in the IoT use
case totals to 41% for the fetching of a device’s IoT data
overview and 57% for a single IoT message, corresponding
to the 0.5 RTT added by the indirection layer. We consider
these overheads still appropriate given the inherent private
nature of most IoT data and the accompanying privacy risks
which can be mitigated with DHRs.

10 RELATED WORK

We categorize our discussion of related work by the differ-
ent types of DHRs they address. In addition, we discuss ap-
proaches for providing assurance that DHRs are respected.
Distributing storage of data. To enforce storage location
requirements, a class of related work proposes to split data
between different storage systems. Wüchner et al. [12] and
CloudFilter [18] add proxies between clients and operators
to transparently distribute data to different cloud storage
providers according to DHRs, while NubiSave [19] allows
combining resources of different storage providers to fulfill
individual redundancy or security requirements of clients.
These approaches can treat individual storage systems only
as black boxes. Consequently, they do not support fine-
grained DHRs within the database system itself and are
limited to a small subset of DHRs.
Sticky policies. Similar to our idea of specifying DHRs, the
concept of sticky policies proposes to attach usage and obli-
gation policies to data when it is outsourced to third-parties
[31]. In contrast to our work, sticky policies mainly concern

the purpose of data usage, which is primarily realized using
access control. One interesting aspect of sticky policies is
their ability to make them “stick” to the corresponding
data using cryptographic measures which could also be
applied to PRADA. In the context of cloud computing, sticky
policies have been proposed to express requirements on the
security and geographical location of storage nodes [32].
However, so far it has been unclear how this could be
realized efficiently in a large and distributed storage system.
With PRADA, we present a mechanism to achieve this goal.
Policy enforcement. To enforce privacy policies when ac-
cessing data in the cloud, Betgé-Brezetz et al. [13] monitor
access of virtual machines to shared file systems and only
allow access if a virtual machine is policy compliant. In
contrast, Itani et al. [14] propose to leverage cryptographic
coprocessors to realize trusted and isolated execution en-
vironments and enforce the encryption of data. Espling et
al. [15] aim at allowing service owners to influence the
placement of their virtual machines in the cloud to realize
specific geographical deployments or provide redundancy
through avoiding co-location of critical components. These
approaches are orthogonal to our work, as they primarily
focus on enforcing policies when processing data, while
PRADA addresses the challenge of supporting DHRs when
storing data in cloud storage systems.
Location-based storage. Focusing exclusively on location
requirements, Peterson et al. [16] introduce the concept of
data sovereignty with the goal to provide a guarantee that
a provider stores data at claimed physical locations, e.g.,
based on measurements of network delay. Similarly, LoSt
[17] enables verification of storage locations based on a
challenge-response protocol. In contrast, PRADA focuses on
the more fundamental challenge of realizing the functional-
ity for supporting arbitrary DHRs.
Controlling placement of data. Primarily focusing on dis-
tributed hash tables, SkipNet [74] enables control over
data placement by organizing data mainly based on string
names. Similarly, Zhou et al. [75] utilize location-based node
identifiers to encode physical topology and hence provide
control over data placement at a coarse grain. In contrast to
PRADA, these approaches need to modify the identifier of
data based on the DHRs, i.e., knowledge about the specific
DHRs of data is required to locate it. Targeting distributed
object-based storage systems, CRUSH [76] relies on hierar-
chies and data distribution policies to control placement
of data in a cluster. These data distribution policies are
bound to a predefined hierarchy and hence cannot offer
the same flexibility as PRADA. Similarly, Tenant-Defined
Storage [77] enables clients to store their data according to
DHRs. However and in contrast to PRADA, all data of one
client needs to have the same DHRs. Finally, SwiftAnalytics
[78] proposes to control the placement of data to speed
up big data analytics. Here, data can only be put directly
on specified nodes without the abstraction provided by
PRADA’s approach of supporting DHRs.
Hippocratic databases. Hippocratic databases store data
together with a purpose specification [79]. This allows them
to enforce the purposeful use of data using access control
and to realize data retention after a certain period. Using
Hippocratic databases, it is possible to create an auditing
framework to check if a database is complying with its data
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disclosure policies [33]. However, this concept only consid-
ers a single database and not a distributed setting where
storage nodes have different data handling capabilities.
Assurance. To provide assurance that storage operators ad-
here to DHRs, de Oliveira et al. [80] propose an architecture
to automate the monitoring of compliance to DHRs when
transferring data. Bacon et al. [34] and Pasquier et al. [5]
show that this can also be achieved using information flow
control. Similarly, Massonet et al. [41] propose a monitoring
and audit logging architecture in which the infrastructure
provider and service provider collaborate to ensure data
location compliance. These approaches are orthogonal to
our work and could be used to verify that operators of cloud
storage systems run PRADA in an honest way and error-free.

11 DISCUSSION AND CONCLUSION

Accounting for compliance with data handling require-
ments (DHRs), i.e., offering control over where and how
data is stored in the cloud, becomes increasingly important
due to legislative, organizational, or customer demands.
Despite these incentives, practical solutions to address this
need in existing cloud storage systems are scarce. In this
paper, we proposed PRADA, which allows clients to specify
a comprehensive set of fine-grained DHRs and enables
cloud storage operators to enforce them. Our results show
that we can indeed achieve support for DHRs in cloud
storage systems. Of course, the additional protection and
flexibility offered by DHRs comes at a price: We observe a
moderate increase for query completion times, while achiev-
ing constant storage overhead and upholding a near optimal
storage load balance even in challenging scenarios.

Importantly, however, data without DHRs is not im-
paired by PRADA. When a responsible node receives a
request for data without DHRs, it can locally check that no
DHRs apply to this data: For create requests, the INSERT
statement either contains DHRs or not, which can be
checked efficiently and locally. In contrast, for read, update,
and delete requests, PRADA performs a simple and local
check whether a reference to a target node for this data
exists. The overhead for this step is comparable to executing
an if statement and hence negligible. Only if a reference
exists, which implies that the data was inserted with DHRs,
PRADA induces overhead. Our extensive evaluation con-
firms that, for data without DHRs, PRADA shows the same
query completion times, storage overhead, and bandwidth
consumption as an unmodified Cassandra system in all
considered settings (indistinguishable results for Cassandra
and PRADA* in Figures 5 to 8.) Consequently, clients can
choose (even at a granularity of individual data items), if
DHRs are worth a modest performance decrease.

PRADA’s design is built upon a transparent indirection
layer, which effectively handles compliance with DHRs.
This design decision limits our solution in three ways.
First, the overall achievable load balance depends on how
well the nodes’ capabilities to fulfill certain DHRs matches
the actual DHRs requested by the clients. However, for a
given scenario, PRADA is able to achieve nearly optimal
load balance as shown in Figure 10. Second, indirection
introduces an overhead of 0.5 round-trip times for reads,
updates, and deletes. Further reducing this overhead is

only possible by encoding some DHRs in the key used for
accessing data [23], but this requires everyone accessing the
data to be in possession of the DHRs, which is unlikely. A
fundamental improvement could be achieved by replicating
all relay information to all nodes of the cluster, but this is
viable only for small cloud storage systems and does not
offer scalability. We argue that indirection can likely not be
avoided, but still pose this as an open research question.
Third, the question arises how clients can be assured that an
operator indeed enforces their DHRs and no errors in the
specification of DHRs have occurred. This has been widely
studied [16], [33], [41], [80] and the proposed approaches
such as audit logging, information flow control, and prov-
able data possession can also be applied to PRADA.

While we limit our approach for providing data compli-
ance in cloud storage to key-value based storage systems,
the key-value paradigm is also general enough to provide
a practical starting point for storage systems that are based
on different paradigms. Additionally, the design of PRADA
is flexible enough to extend (with some more work) to other
storage systems. For example, Google’s globally distributed
database Spanner (rather a multi-version database than a
key-value store) allows applications to influence data lo-
cality (to increase performance) by carefully choosing keys
[28]. PRADA could be applied to Spanner by modifying
Spanner’s approach of directory-bucketed key-value map-
pings. Likewise, PRADA could realize data compliance for
distributed main memory databases, e.g., VoltDB, where
tables of data are partitioned horizontally into shards [29].
Here, the decision on how to distribute shards over the
nodes in the cluster could be taken with DHRs in mind.
Similar adaptations could be performed for commercial
products, such as Clustrix [30], that separate data into slices.

To conclude, PRADA resolves a situation, i.e., missing
support for DHRs, that is disadvantageous to both clients
and operators of cloud storage systems. By offering the
enforcement of arbitrary DHRs when storing data in cloud
storage systems, PRADA enables the use of cloud storage
systems for a wide range of clients who previously had to
refrain from outsourcing storage, e.g., due to compliance
with applicable data protection legislation. At the same
time, we empower cloud storage operators with a practical
and efficient solution to handle differences in regulations
and offer their services to new clients.
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