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Abstract—An increasing number of open-source libraries
promise to bring differential privacy to practice, even for
non-experts. This paper studies five libraries that offer differ-
entially private analytics: Google DP, SmartNoise, diffprivlib,
diffpriv, and Chorus. We compare these libraries qualita-
tively (capabilities, features, and maturity) and quantitatively
(utility and scalability) across four analytics queries (count,
sum, mean, and variance) executed on synthetic and real-
world datasets. We conclude that these libraries provide
similar utility (except in some notable scenarios). However,
there are significant differences in the features provided, and
we find that no single library excels in all areas. Based on
our results, we provide guidance for practitioners to help in
choosing a suitable library, guidance for library designers
to enhance their software, and guidance for researchers on
open challenges in differential privacy tools for non-experts.

Index Terms—Differential privacy, privacy-enhancing tech-
nology, scalability, recommendations.

1. Introduction

In recent years, a confluence of trends drives aca-
demics and industry practitioners to research and invest
in more powerful privacy-enhancing measures to protect
people’s privacy while leveraging their data. One of the
drivers is the increase in costs for the institutions due
to more frequent data breaches [1], e.g. loss of brand
equity, customer turnover, or legal expenditure. Further-
more, white-hat academics have performed demonstra-
tion attacks on “de-identified” public data in different
domains, effectively deprecating legacy privacy-enhancing
methodologies. Notable examples of re-identification have
taken place in genome sequencing [2], in the automotive,
telecommunications, and entertainment industry [3, 4, 5],
and in e-commerce [6]. Moreover, the promise of privacy-
enhancing products and services can also bring benefits,
such as avoiding price discrimination, allow the utilization
of data across organizations, new business models, and
develop less pervasive forms of social media that can
prevent malicious social engineering [7], among others.
In this context, differential privacy (DP) has received
increasing attention because of its mathematical guaran-
tees of privacy unique among anonymization techniques.
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Moreover, DP’s inherent implementation complexity [8]
has driven organizations and researchers to create libraries
for practitioners to include DP in their stack.

In this paper, we examine a set of mainstream li-
braries through the lens of a benchmark. We consider
open-source libraries that provide support for analytics
queries, come from prominent institutions or researchers,
and offer DP functionality that eases integration and us-
age. Thus, we consider the following libraries: Microsoft’s
SmartNoise [9], IBM’s diffprivlib [10], Google-DP [11],
Chorus [12, 13], and diffpriv [14, 15]. There exist other
libraries that comply with the targeted qualities, e.g, the
pioneering PINQ [16] and GUPT [17]; however, they are
not maintained anymore.

At the core, these libraries aim to abstract DP to a
level where non-experts can implement DP applications.
As interest in differential privacy grows, research, govern-
mental, and private institutions will gravitate towards these
open-source libraries. Our work aims to help guide prac-
titioners, library designers, and researchers in navigating
the coming adoption of tools for DP.
Our Contributions. Specifically, this paper makes the
following contributions:
• We conduct a comprehensive comparison and evalua-

tion of five mainstream open-source DP libraries
• We provide guidance for practitioners to aid in select-

ing a specific library (§ 9)
• We provide guidance for library designers on how to

make their software more useful (§ 10)
• We provide guidance for researchers on important

open research challenges remaining in differential pri-
vacy tools for non-experts (§ 11)

We provide the source code [18] to reproduce our study
and for practitioners to quickly implement further bench-
marks.
Methodology. Our guidance is based on the answers to
three research questions (RQ), described in Section 4.
To answer these RQs, we compare these libraries both
qualitatively (in terms of capabilities, features, and matu-
rity) and quantitatively (in terms of scalability and utility
through a set of principled experiments). Our benchmarks
include both synthetic data (to explore the differences
between libraries systematically) and real-world data (to
confirm these results in a realistic setting). We compare
the libraries across four query types: count, sum, mean,
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and var.

Results & Key Findings. Our qualitative comparison
(§ 6) demonstrates clear feature differences between li-
braries (see Table 2). First, libraries offer different capa-
bilities: e.g. some target only analytics queries, while oth-
ers provide machine learning capabilities as well. Second,
libraries differ in analyst support: e.g. some calculate
sensitivity automatically, while others require the analyst
to provide it. Third, some libraries are designed for direct
use by analysts, while others provide frameworks for
building applications. In addition, libraries differ in their
protections against side channels (such as floating-point
vulnerabilities [19]) and support for privacy budgeting
over multiple queries.

All of the libraries in our study provided similar
utility for corresponding queries in our benchmarks, with
some important exceptions (§ 7). We find that all five
libraries offer similar performance characteristics, but that
none of the libraries scales to truly massive datasets (§ 8).

Guidance for Practitioners. Our results suggest that
the largest differences between libraries come in their
support for analysts and protections against side-channels.
We therefore advise practitioners to prioritize these factors
when choosing a library. Libraries like diffprivlib provide
the best support for data scientists, while Google-DP is de-
signed for building new applications and provides strong
protection against side-channels. Our complete guidance
appears in Section 9.

Guidance for Library Designers. The results of our
study indicate that library designers have generally done
a good job implementing basic mechanisms and provid-
ing sufficient performance for small-scale analytics. We
suggest that library designers prioritize support for the
analyst, protections against side-channels, and the addition
of “simple” mechanisms that can provide good real-world
performance (like the Geometric mechanism). We also
note the danger of implementation bugs in these libraries,
and support the use of tools like Google-DP’s stochastic
tester to ensure correctness. Our complete guidance ap-
pears in Section 10.

Guidance for Researchers. Research in differential pri-
vacy has historically focused on developing mechanisms
that improve utility. Our study suggests that the increas-
ing adoption of differential privacy opens important new
avenues for researchers in this area. In particular, prac-
titioners need better tools for understanding how much
utility to expect and how to improve utility. They also
need help understanding the non-privacy implications
of each mechanism, such as output consistency. Finally,
as differential privacy sees increasing adoption, tools for
privacy budgeting become even more important. Our
complete guidance appears in Section 11.

The rest of this paper is organized as follows. We
discuss related work in Section 2 and give background
on differential privacy in Section 3. We describe our
research questions and methodology in Section 4 and the
datasets used in our study in Section 5. The results of our
study appear in Section 6–8 and our guidance appears
in Sections 9–11. Finally, we discuss our conclusion in
Section 12.

2. Related work

DP is a powerful concept that causes ever-increasing
interest among privacy experts and is currently an active
field of research in academia and industry. Ever since
the introduction of DP by Dwork [20], there has been
abundant research conducted on the theoretical aspects
of DP, addressing questions such as choosing the correct
amount of noise and the appropriate values for DP param-
eters [21, 22, 23], as well as on the practical application
of DP, for instance, in data mining [24], data publication
and analysis [25], and deep learning [26].

Consequently, the expansion of the research and ap-
plication of DP in recent years prompted researchers to
perform systematic reviews and comparative studies of
the work conducted in the field. Xiong et al. [27] and
Yang et al. [28] present comprehensive surveys on local
DP algorithms and their applications, providing a source
of reference for different privacy-related scenarios, as well
as identifying research gaps and possible directions for
future research. Hassan et al. [29] conducted a detailed
survey on the implementation of various DP techniques
in cyber-physical systems, such as energy, transportation,
healthcare, and industrial Internet of things. The authors
covered all dimensions and aspects of implementing DP
in these domains and discussed related issues and chal-
lenges. Furthermore, motivated by the argument that even
aggregated data such as histograms can result in privacy
leakage, Nelson and Reuben [30] conducted a systematic
literature review, a qualitative analysis of 27 papers that
address the application of DP for histogram and syn-
thetic data. The authors identified trends in the field and
explained a crucial issue in adopting DP to tackle the
privacy-utility trade-off.

Aside from these qualitative surveys, there exist quan-
titative comparisons in the use of DP in range queries [31],
geo-spatial data [32], spatial decomposition [33], data
mining [24], and a test framework of DP [34]. However,
the work most closely related to ours was conducted by
Hay et al. [35] in 2016. In their paper, the authors propose
a principled framework called DPBench to evaluate 1-
and 2-dimensional range queries. However, none of the
extant literature benchmarks the mainstream open-source
DP libraries towards which non-experts gravitate; with this
study, we fill this research gap.

3. Differential Privacy

Traditional privacy protection methods are vulnerable
to auxiliary information attacks against sensitive data anal-
ysis public releases [2, 3, 4, 5, 6]. On the other hand,
DP, introduced in 2006 by Dwork et al. [20], addresses
the traditional techniques’ limitations by mathematically
formalizing a differential guarantee of privacy agnostic
to auxiliary information. DP maintains this promise by
ensuring that an informed adversary analyzing a query
output cannot determine whether an individual’s data was
used to compute such output.

DP ensures that outcomes are similarly likely, with or
without the data contributed by a particular individual. The
similarity of outcomes is parameterized by the parameter
ε, which tunes the strength of the privacy guarantee (a
lower ε leads to better privacy). We define a state of
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privacy as the prevention of the re-identification of an
individual [36], whose protection is adjusted by ε. DP is
formally described in Definition 1, which is based on [37]:

Definition 1 ((ε,δ)-Differential Privacy). A random-
ized algorithm M is (ε,δ)-differentially private if for any
two datasets D and D′ differing on at most one element,
and any set of possible outputs S ∈ Range(M):

Pr[M(D) ∈ S] ≤ eε × Pr[M(D′) ∈ S] + δ.

For δ = 0, Definition 1 is considered pure DP. The
weaker guarantee when δ > 0 is called approximate
DP. This relaxed form of DP lowers the privacy of the
individuals in exchange for utility [38]. Additionally, one
may choose how D and D′ differ in one individual, leading
to two possibilities: bounded or unbounded DP [39].

Mechanisms ensure DP by adding carefully-chosen
random noise, typically to the output of a deterministic
function. The functions used in this study are based on
the analytics queries: count, sum, mean, and var. The scale
of the noise used is based on the deterministic function’s
`1-sensitivity (global sensitivity) [38]:

Definition 2 (`1-sensitivity). The `1-sensitivity of an
algorithm W : Rm → Rn, executed over datasets D, D′
∈ Rk at a Hamming distance of dh (D,D′) = 1, is:

∆f = max D,D′∈Rk

dh(D,D′)=1

‖W (D)−W (D′) ‖1.

There are multiple implementations of mechanisms
complying with Definition 1 and 2. The most commonly
known are the Laplace mechanism [40] and the Gaussian
mechanism [38] for numerical data, and the Exponential
mechanism [41] for categorical and numerical data. The
Laplace and exponential mechanisms ensure pure DP,
while the Gaussian mechanism requires approximate DP.
In this paper, we benchmark algorithms derived from the
Laplace mechanism [40]:

Definition 3 (Laplace mechanism). For an algorithm
W executed over a dataset D, its differentially pri-
vate version M adds Laplace noise: M(D) = W(D) +
Lap(x|µ, b), with center µ = 0 and scale b = ∆f

ε .
One may observe that the lower the ε, the larger the

standard deviation (std) of the noise, improving privacy
(but reducing utility). The noise magnitude is independent
of the number of records in a dataset (dataset size), so
analyzing more data yields better relative utility.

DP algorithms obey sequential composition [38], i.e.
if a randomized query M is executed n times over D
with εi, the total ε employed is equal to

∑
εi, which is

the consumed privacy budget. Because an adversary can
use the n outputs to average out the noise because it is
centered around 0, some libraries implement privacy bud-
get trackers to help practitioners preventing these attacks.
These trackers monitor the consumed budget and block
further queries once the budget is consumed.

A function’s sensitivity (∆f ) depends on the function
itself, and is sometimes difficult to calculate. Counting
queries are easy: they have a sensitivity of 1. Other
queries are more difficult: for example, the sensitivity of a
summation query depends on the minimum and maximum
possible values being summed (which themselves need to
be kept private!). Thus, practitioners either set estimates
without looking at the data, or employ libraries offering

private sensitivity estimation, which consumes privacy
budget.

Another practical consideration of DP algorithms is
their output consistency, e.g., a var query should not
output values ≤ 0, counts should not be decimal values, or
the outputs of a DP count and sum from a library should
yield similar values to the library’s DP mean. Lastly,
it is important to consider side-channels that may leak
more information than the mathematical definition of the
mechanism (like the floating-point vulnerabilities [19]).

Additional challenges of deploying DP include choos-
ing ε and tracking budgets across different systems [42].
Despite its flaws, DP holds a set of advantages. Primarily,
DP allows to mathematically limit the privacy loss of
an analysis on sensitive data [38], and practitioners can
adapt DP to different use cases, e.g., deep learning [43].
Moreover, the community of researchers continuously
tackles the flaws of DP, such as solving its floating-
point vulnerability with the Snapping mechanism [19] and
improving this mechanism’s utility (SmartNoise, Google
DP). Overall, because of its unique features, DP may
become the de facto standard of privacy in the near future.

4. Methodology

4.1. Research questions

To provide practitioners, library designers, and re-
searchers with a comprehensive picture of the qualities
and performance of the five selected open-source libraries,
we aim to answer the following research questions (RQ):

RQ1 How do available open-source libraries compare
in terms of functionality? To answer this RQ, we conduct
a qualitative comparison in Section 6.

RQ2 How do available open-source libraries compare
regarding utility in the count, sum, mean, and var queries?
In answer to this RQ, we perform a utility benchmark of
the analytics queries in Section 7.

RQ3 Which libraries perform best regarding execu-
tion time and memory consumption as the dataset size
increases? Section 8 tackles this RQ by executing a
scalability benchmark.

After answering these RQs, we extracted a set of rec-
ommendations for practitioners (§ 9) and library designers
(§ 10), and guidance for researchers (§ 11).

4.2. Principles for evaluation

Our evaluation focuses on four commonly-used an-
alytics queries: count, sum, mean, and var. We base
our evaluation principles on DPBench, developed by
Hay et al. [35]; most of the other literature focuses
on comparing algorithms without formalizing the pro-
cess [24, 31, 32, 33]. We formulate our comparison Prin-
ciples in Table 1.

Principles from I to V are necessary to lay the basis
for a holistic comparison of the libraries. Specifically, we
employed real datasets and created synthetic datasets (I)
to make our comparisons comprehensive and reproducible.
We employed the skew-normal distribution to add diver-
sity to our synthetic data and to provide a reasonable
model of realistic data distributions; consequently, we
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TABLE 1: Principles of comparison adopted from or inspired by DPBench [35].

Principle Description Implementation
(I) Datasets of

synthetic and
real nature

The algorithms inputs should
comprise synthetic and real data.

We employ synthetic data to surface differences
between algorithms and real data to confirm these
results.

(II) Dataset size
diversity

Execute algorithms on datasets of
varying numbers of records.

The synthetic datasets contain 1000, 10000, or
100000 records.

(III) Shape
diversity

Execute algorithms on datasets of
varying record distribution over the
domain.

To make synthetic datasets more diverse, we set the
skew parameter of Scipy’s skew-normal noise
generator [44, 45] to the values 0, 5, 50 (The
location parameter was set to 0).

(IV) Spread
diversity

Execute algorithms on datasets of
varying spread.

Likewise, aiming to produce more diverse datasets,
we tuned the synthetic datasets spread with the
scale parameter of Scipy’s skew-normal noise
generator [44, 45] with the values 50, 250, and 500.

(V) ε diversity Execute algorithms under different ε
values.

We perform experiments for 73 ε values from 0.01
to 100.

(VI) Measurement
of expectation,
variability, and
bias

The benchmarks results should
register accuracy, precision, and bias
to measure utility.

The output of our benchmark measures the outputs’
sample mean of the relative error (accuracy) and
sample std of the absolute scaled error (precision).
Measuring accuracy at values of ε up to 100 can
reveal an algorithm’s bias.

(VII) Comparable
results

The results should be comparable to
other algorithms beyond the ones
compared in the benchmark.

We measure the relative error so that other
practitioners can compare their algorithms.

(VIII)Avoid extreme
input settings

The algorithms inputs should not
lead to edge-case comparisons.

We do not input extreme values such as scales of a
handful of records.

varied the number of records (II), how these records
are distributed over the domain by adjusting the skew
parameter (III), and the spread of the datasets by changing
the scale parameter (IV). Our synthetic datasets contain
continuous data, since the benchmarked algorithms work
equally well for continuous and discrete data (and are
not impacted by domain size). Consecutively, to ensure ε
diversity (V), we ran experiments for 73 ε values from
0.01 to 100 at logarithmic steps, except for ε values
between 0.01 to 0.5, for which we employed steps of
0.01. We chose this fine granularity to reveal the behavior
at small ε values because practitioners mainly adhere to
this range [8], as privacy is conserved most.

Principle VI deals with the fact that the outputs of
the algorithms are r.v.’s. Thus, to measure the results’
utility, we perform 500 experiments for each ε (500 x
73 = 36500 experiments) to have a large enough sample
for each library and input dataset. Moreover, we set the
outputs of our benchmark to be the relative error and the
absolute scaled error w.r.t the dataset scale. Consequently,
the values we compare between libraries are the sample
std of the absolute scaled error (SASE), and the sample
mean of the relative error (MRE), providing two summary
values per ε. The baselines for the error calculations are
the deterministic outputs of the analytics queries. We
choose the MRE because it is familiar to practitioners
and widely used in utility comparisons in the extant
literature [35], and allows to compare datasets of different
scales; it is a measure of the accuracy of the random query.
In contrast, the SASE serves to understand the variability
of the outputs across datasets of different scales, i.e.,
it measures the precision of the random query. Without
scaling the error, the SASE would remain the same across

scales; however, in practicality, an error spread of equal
magnitude imbues more uncertainty in small datasets than
in large ones. Scaling makes the comparison across dataset
scales fair.

The MRE is informative for ”risk-neutral” practition-
ers, while the SASE is for the ”risk-averse” because
the metric indicates the presence of outliers in the out-
puts [35]. For each ε, we consider the libraries with
smaller SASE and MRE to perform better. Furthermore,
measuring the MRE for large values of ε (up to 100) will
reveal the presence of an algorithm’s bias. Because the
MRE’s underlying value is the relative error, we enable
practitioners to use our results as a baseline for comparing
other DP algorithms (VII). Finally, we did not employ
outlier values for the generation of the synthetic datasets
to avoid comparisons that may not be equivalent to reality
(VIII).

For the scalability benchmark, we measure execution
time (t) and memory consumption (m). We perform this
benchmark by obtaining t and m from running an analyt-
ics query at varying dataset scales from 10 to 10 million
data points with a fixed skewness and scale. We limit
the measurements to the query execution itself, not con-
sidering: pre-processing steps, dispatching, and receiving
the query result. This experimental setting is preferred
because these three steps may vary between practitioners’
system architectures.
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5. Datasets overview

5.1. Synthetic datasets

We chose three values for each of the characteris-
tics proposed by principles II (dataset size diversity),
III (shape diversity), and IV (spread diversity) following
our implementation guidelines of Table 1, obtaining 27
datasets1 (see Fig. 1).

Some queries require knowledge about the range of
possible values in the dataset. Sometimes, domain knowl-
edge can be used to define this range (e.g. human ages are
typically between 0 and 100), but in other cases (like our
synthetic data), this process is more challenging. Google
DP provides a DP mechanism for estimating the range of a
dataset, but the other libraries require the analyst to specify
the range (including Google DP’s Python wrapper). To
ensure consistency in our synthetic data experiments, we
use the actual maximum and minimum values of the
dataset when such a range is required.
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Figure 1: 9 of the 27 normally distributed synthetic dataset
histograms.

More formally, we represent each Di as a data vector
x, which contains a list of float values (within the set
of real numbers), that varies in size, shape, and scale
(based on Principles II to IV) across different datasets Di,
for i ∈ [1, 27]. For example, dataset D1 was generated
with a skewness of 0, a scale of 50, and 1000 data
points. The workload, W, is a set of four one-dimensional
functions (analytics queries, W ∈ W) executed over x.
Applying the W to x yields the vector of deterministic
results y = W (x). The libraries transform an analytics
query W from the workload W into a DP algorithm M
by adding noise to the result of W (·), i.e., the noise
generates randomized analytics queries. The noisy result is
ŷ =M (x) =W (x)+Noise, and we use the L1 norm as
the error ofM, ‖W (x)− ŷ‖1, scaled by the deterministic
valueW (x) for the relative error, and by the cardinality of
the dataset |Di| for the absolute scaled error. The libraries’
goal is to report the approximate results of the queries in
W on the private datasets in D while incurring minimal
error.

1. The 27 datasets were generated using skew-normal noise with the
Python package Scipy [44, 45].
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Figure 2: 1984 USA Census dataset attributes of age and
worked hours per week containing 48842 individuals.
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Figure 3: Portuguese education dataset attributes of ab-
sence days and final grade containing 649 students.

Lastly, to test memory consumption and execution
time, we carried out experiments on datasets of fixed
shape and spread (generated with a skewness of 5 and
a scale of 250) but of varying dataset size from 10 to 10
million data points.

5.2. Real-World datasets

Benchmarking analytics queries solely on synthetic
data is not enough, as practitioners will ultimately execute
the queries over real-world datasets. Therefore, we must
also select publicly available datasets for the benchmark.
Consequently, we have chosen two publicly available de-
mographic datasets from different sources and contexts:
the 1994 USA census [46, 47] with 48842 individuals, and
a Portuguese education dataset [48, 49] with 649 students.
To increase the diversity of inputs of the benchmark, we
select two sensitive numeric attributes from each of the
two datasets: age and hours worked per week from the
census dataset, and absence days and final exam grade
from the education dataset; histograms of these attributes
may be observed in Fig. 2 and Fig. 3. Unlike for the
synthetic datasets, to set the range bounds for the sensi-
tivity calculation, we selected values based on the domain
knowledge of the real-world datasets’ attributes, e.g., for
the age attribute, we selected a lower bound and an upper
bound of 0 and a 100 years, respectively. Lastly, we
formally define the real-world datasets and the workload
equally to the synthetic datasets.

6. Qualitative comparison (RQ1)

Table 2 provides an overview of the main charac-
teristics of the benchmarked libraries. We detail these
characteristics below.

diffprivlib. Developed in Python under MIT license,
IBM’s diffprivlib [10] is a general-purpose library for data
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TABLE 2: Qualitative overview of the selected five open-source libraries.

Features diffprivlib SmartNoise Google-DP
(PyDP) diffpriv Chorus

Contributor IBM Microsoft Google
(OpenMined) B. Rubinstein et al. J. P. Near et al.

Programming
Language Python Python wrapper

over Rust runtime

Google-DP: C++,
Java, Go

(PyDP: Python
wrapper over C++)

R Scala

Primary use
Data science

facing operations
(notebooks)

Data science
facing operations
(notebooks), and

large-scale systems

Google-DP:
Production-ready

applications
(PyDP:

Data science)

Data science Large-scale
systems

Unique value
proposition

Numerous
machine learning

algorithms, and DP
mechanisms for
experimentation

Blend of data
science and
operations

Google-DP:
Deployment of

applications, e.g.,
in mobile phones

(PyDP: Data
science)

Flexibility for data
scientists:

User-defined
functions and

empirical
calculation of

sensitivity

Scalability via
cooperation

with existing
databases;

extensibility

License MIT MIT Apache-2.0 MIT MIT
Benchmarked

version 0.4.0 0.2.2 1.0.1 0.4.2 0.1.3

Functional features

Mechanisms

Laplace, Gaussian,
Exponential,
Geometric,

Staircase, Binary,
Bingham, Vector,

and Uniform

Laplace, Gaussian,
Exponential,

Geometric, and
Snapping

Google-DP:
Laplace, Gaussian,
Exponential, and

Snapping
(PyDP: Laplace)

Laplace, Gaussian,
and Exponential

Laplace,
Gaussian,

Noisy Max,
FLEX, SVT,

Sample &
Aggregate

Analytics queries
Count, Sum,

Mean, Var, Std,
and Histogram

Count, Sum,
Mean, Var, Covar,

Histogram,
Quantile,

Maximum,
Minimum, Median,
and Raw Moment

Count, Sum,
Mean, Var, Std,

Maximum,
Minimum, and

Median

Any, provided the
sensitivity sampler.
However, none are

built-in

Count, Sum,
Mean,

Histogram

DP definition for
analytics queries Bounded User defined Unbounded User defined

Unbounded
(Most

mechanisms);
bounded
(FLEX

mechanism)
Privacy budget

accounting Available Available Available N/A Available

Sensitivity
calculation (private

sensitivity
calculation)

Available
(N/A)

Available
(N/A)

Available
(Available)

Only with the
sampler

(N/A)

Available
(N/A)

Floating-point
vulnerability

protection
N/A

Snapping
mechanism for the

Laplacian
distribution

Snapping
mechanism for the
Laplacian and the

Gaussian
distributions

N/A N/A

Differentially
private machine

learning algorithms

K-means, Linear
and Logistic

Regression, Naive
Bayes, and PCA
(tools: Standard

scaler)

Linear Regression N/A

Bernstein
(built-in).

Provided the
sensitivity sampler,

user-defined:
SVMs, Bayesian
inference, feature
selection, among

others [15]

N/A
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scientists. diffprivlib differentiates itself by including a
plethora of DP mechanisms that go beyond the Laplacian,
the Gaussian, and the Exponential, by additionally includ-
ing the Geometric [50], the Vector [51], the Staircase [52],
among others (see Table 5). Additionally, diffprivlib offers
some of these mechanisms in various forms, namely their
truncated and the bounded form [53]. However, not having
floating-point safety for a differentially private mechanism
is a vulnerability. Altogether, the unique value proposition
of diffprivlib is the comprehensive catalog of mechanisms,
analytics queries, and DP machine learning algorithms,
which run like Sklearn classifiers with the option to track
the privacy budget.

SmartNoise. Implemented under MIT license in Rust
(runtime) and bound to a Python wrapper, Microsoft in
collaboration with the OpenDP initiative led by Harvard
IQSS and SEAS provide SmartNoise [9] as an open-
source library of DP mechanisms for the release of statis-
tics, APIs for defining DP analysis, a validator to per-
form privacy budget accounting, and metadata concerning
the utility of the outputs. Furthermore, SmartNoise of-
fers floating-point safety, allows the user to choose from
bounded and unbounded DP definitions, and offers the
most extensive set of analytics queries. However, Smart-
Noise lacks DP machine learning implementations, and
it is not easy to work with SmartNoise when there are
multiple datasets involved, as one must follow a specific
design pattern instead of a more familiar one using, e.g.,
Sklearn. Despite its data science limitations, SmartNoise
compensates by offering an architecture designed towards
large-scale systems.

Google DP. Google’s library [11] under Apache-2.0
license offers a suite of DP analytics queries. The Python
wrapper (PyDP) around C++ built by OpenMined makes
Google DP accessible to data scientists. Furthermore,
this library provides a layer for non-experts based on
Apache Beam, while an expert may use the DP building
blocks directly. Google DP can automatically approximate
bounds for the analytical sensitivity formulas if none
were input, enables privacy budget tracking, and checks
whether any DP guarantee has been broken in the analysis
through a stochastic tester. Moreover, developers may
deploy operations-ready applications with the underlying
C++ codebase. However, Google DP does not contain any
machine learning algorithms.

diffpriv. diffpriv [14, 15] is a package developed in R,
under MIT license, that enables data scientists to execute
user-defined functions in a DP manner, such as analytics
queries or model fit. Furthermore, diffpriv’s sampler can
empirically calculate the sensitivity of a user-defined func-
tion under the bounded definition of DP [15, 54], so that
non-experts do not need to calculate sensitivity analyti-
cally, which may be arduous for machine learning algo-
rithms. Rubinstein et al.’s sensitivity sampler ensures that
DP holds with high probability [15], i.e., one assures ran-
dom DP, but not pure DP. We, however, decided to use the
sensitivity sampler for the analytics queries because we
target non-experts. Additionally, we also ran another set of
the experiments providing the same analytical sensitivity
formulas for bounded DP that SmartNoise (Microsoft) has
used from Harvard’s Privacy Tools Project [55] (coinci-
dentally the same as in diffprivlib). However, there are
also shortcomings: the empirical calculation of sensitivity

is computationally expensive even for simple queries, and
diffpriv does not offer floating-point safety or a privacy
budget accountant.

Chorus. Chorus [12, 13] distributed as a Scala library
is a research system developed specifically to explore the
use of DP at scale—for example, in production datasets at
tech companies, which often contain billions or trillions
of records and do not fit in memory. To query data at this
scale, organizations often build and deploy extensive in-
frastructure. Chorus aims to work in cooperation with the
existing infrastructure by using an existing SQL database
to perform the “heavy lifting” of executing queries on
large-scale datasets. Chorus provides three components:
a query analysis framework (e.g., determining the sen-
sitivity of an analyst-specified query), a query rewriting
framework (e.g., modifying a query to perform clipping
before executing it), and a privacy budget accountant.
The resulting DP mechanisms aim to maintain roughly
the same scalability properties as the underlying database
infrastructure. Note that Chorus is a research framework
and does not provide an out-of-the-box system ready for
deployment; moreover, it has fewer built-in mechanisms
and is less ready for production use. However, Chorus is
unique in its ability to scale to large datasets by cooper-
ating with an existing high-performance database.

7. Utility benchmark (RQ2)

7.1. Setup

We conducted the experiments running Ubuntu
20.04.1 LTS [57] on one server (Intel Xeon E5-2650
v2 16-core CPU, 32 GiB of memory). We used Python
3.8.5, R 4.0.3, and Scala in version 2.10, to run the latest
stable versions of each considered library at the time of
the benchmark. Using the available cores in parallel, we
independently conducted each experiment 500 times per ε
for the utility experiments, and 5 times per dataset size in
the scalability benchmark of Section 8. To improve plot
readability, in the body of this paper we depict the plots
for ε ≤ 10 because utility for ε > 10 was predominantly
equal among libraries (see Appendix). Algorithm 1 of
the Appendix depicts the workflow of the experiments
concerning analytics queries executed on the 27 synthetic
datasets and the two real-world datasets, jointly repre-
sented by D.

7.2. Benchmarked algorithms

We benchmarked the default mechanisms because we
target practitioners without in-depth knowledge of DP.
All the default mechanisms from Table 3 are derived
from the Laplace mechanism, including the Snapping
mechanism [19] and the Geometric mechanism [50]. The
Snapping mechanism protects against the floating-point
vulnerability by executing a succession of steps such
as sampling from a uniform distribution, clamping, and
rounding to the closest multiple of a power of 2 [19]. Fur-
thermore, the Snapping implementations from SmartNoise
and Google DP differ, and add less noise than the original
work of Mironov [19]. On the other hand, the Geometric
mechanism is a discrete variant of the Laplace mechanism
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TABLE 3: Default mechanisms and DP definitions (Bounded or unbounded) of the libraries used for each query in our
benchmark. For more details, see Appendix Table 5.

Library Count Sum Mean Var Floating-point
safety

diffprivlib
(IBM)

Uses the sum
query to add the
count (ints) of

non-zero values:
Geometric
Truncated

Laplace Truncated
for floats and

Geometric
Truncated for ints

Laplace Truncated Laplace Bounded
Domain N/A

Unbounded DP Bounded DP Bounded DP Bounded DP

SmartNoise
(Microsoft) Pure Geometric

Snapping Laplace
for floats, and Pure
Geometric for ints

Uses the sum and
count query
mechanisms:

Snapping Laplace,
and Pure

Geometric,
respectively

Uses the mean
query to compute:

V ar(X) =
E[X2]− E[X]2.

Therefore, in turn,
uses Snapping
Laplace for the
sum and Pure

Geometric for the
count

Default

Unbounded DP Bounded DP Bounded DP Bounded DP

Google-DP Snapping Laplace Snapping Laplace

Noisy average with
normalization [56]:
Uses the sum and
the count query
mechanisms, i.e.

Snapping Laplace

Uses the mean
query to compute:

V ar(X) =
E[X2]− E[X]2.
Means computed
according to [56],
therefore, in turn,
var uses the count
and sum queries:
Snapping Laplace

Only option

Unbounded DP Unounded DP Unbounded DP Unbounded DP
diffpriv

(Rubinstein et al.) Pure Laplace Pure Laplace Pure Laplace Pure Laplace N/A

Unbounded DP Bounded DP Bounded DP Bounded DP

Chorus
(Johnson et al.) Pure Laplace Pure Laplace

Uses the sum and
count query

mechanisms, i.e.,
Pure Laplace

N/A N/A

Unbounded DP Unbounded DP Unbounded DP Unbounded DP

that satisfies DP with equality and, therefore, produces
tighter guarantees for integer-value outputs, resulting in
higher accuracy. Note that the Geometric mechanism is
inherently invulnerable to a floating-point attack because
its distribution is supported on the integers. Aside from
these variants, library developers (namely diffprivlib’s)
have truncated or bounded the domain of the Laplace
distribution to preserve output consistency while holding
under DP, e.g., preventing counts < 0 or vars ≤ 0.

Aside from the mechanisms, there are different ways
to implement a query (see Table 3). diffprivlib implements
specific DP algorithms for each query except for the
count, which reuses the sum query. Google, Microsoft,
and Chorus use the count and the sum queries as building
blocks for the mean and var queries (with V ar(X) =
E[X2] − E[X]2); however, Chorus does not implement
the var query. Lastly, diffpriv enables all queries with the
Laplace mechanism.

7.3. Experiments on synthetic datasets

In this Section, we introduce the experiments’ results,
namely the behaviour of the dependent variables presented
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Figure 4: SASE and MRE of the count query for experi-
ments with synthetic datasets.

in Section 4, i.e., the sample mean of the relative error
(MRE—accuracy) and the sample std of the absolute
scaled error (SASE—precision), w.r.t. the independent
variables (dataset size, skewness, and scale), from which
we derive the recommendations of Sections 9 and 10.

Count. The count of records in a dataset is only
affected by the dataset size; thus, we dismiss the other
independent variables, i.e., skewness and scale. The most
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Figure 5: SASE and MRE of the mean query for experi-
ments with synthetic datasets.

characteristic behavior in the left plot of Fig. 4, which
measures the SASE, is the drops at around ε = 10 due
to rounding. The noise added at such values of ε by
diffprivlib, SmartNoise, and Google DP is small enough
for the output rounding to the nearest integer to produce
the same value consistently. However, diffpriv and Chorus
do not round the output, which is why the curves continue
in the same manner beyond ε = 10 (See Appendix).
Overall, because the global sensitivity of the count query
remains constant at the value of 1 for any dataset size, i.e.,
the DP noise distribution remains unchanged, the larger
the dataset size, the lower the impact of the noise relative
to the deterministic result (diminishing MRE), and the
lower the impact of the noise spread on the absolute scaled
error (diminishing SASE).

Mean. We selected the mean query to show the li-
braries’ behavior across the three independent variables:
dataset size, skewness, and scale2. Fig. 5 shows that the in-
dependent variables with the highest impact on the SASE
are dataset size, followed by the scale, and lastly by the
skewness. On the other hand, one can observe significant
MRE values on the outputs for datasets generated with
low skewness and small dataset size for ε ≤ 1.

(i) Regarding dataset size, see Fig. 5 top plot. As
dataset size decreases, the global sensitivity for the mean
increases, which, in turn, increases the spread of the DP

2. Given the similarity in behaviour across queries w.r.t. the indepen-
dent variables, to describe the dependencies between the variables in the
most concise manner, we consider the sensitivity of the mean and not
of the combination of the count and sum.
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Figure 6: SASE and MRE of the sum query for experi-
ments with synthetic datasets.

noise, resulting in higher SASE and MRE. (ii) Concerning
the datasets’ scale, see Fig. 5 middle plot. Larger scales
lead to higher dataset spreads and global sensitivity, and
therefore also higher SASE and MRE. (iii) Regarding
skewness, see Fig. 5 bottom plot. While not as much
as the scale parameter, the skewness parameter of the
skew-normal also affects the spread of the distribution,
from which we sampled the datasets. Thus, we observe
diminishing MRE as skew increases with a fixed scale,
and the underlying reason is the decrease of the datasets’
spread. However, the impact in the SASE is not as notable.

Sum. Overall, the behavior induced by variations
of the three independent variables in the sum query is
roughly equivalent to the behavior noted in the mean query
(see Fig. 6). This similarity is the result of some libraries
using the sum and count queries as building blocks for
the mean query algorithm (Google DP, Smartnoise, and
Chorus) or the same underlying mechanism (diffprivlib,
diffpriv) (see Table 3). Aside from the behavior covered
discussing the mean, these commonalities make the sum
and mean queries display a corner-case behavior when
the scale is large while the skewness is low. In these
scenarios, the effect of the dataset’s scale on the sensitivity
could be significant enough to counter the effect of a
larger dataset size, which would lower the relative error.
Consequently, in such a context, the SASE results from a
larger dataset are not necessarily better than with a smaller
dataset; this is because there is room for more outliers in
the larger dataset that increase the difference between the
range clipped bounds, which, in turn, increases the global
sensitivity (see the top plots in Table 6 of the Appendix).
In these cases, the tool that provides better utility for the
sum query for ε values less than 1 is Google DP’s Snap-
ping Laplace mechanism; this makes Google DP’s sum
query relatively better in terms of privacy protection and
utility. Outside of these conditions, however, the libraries
perform similarly.

Var. Equivalently to the mean, most of these libraries
utilize the sum and the count as building blocks for the
variance algorithm or the same mechanism (see Table 3).
Thus, the overall behavior is also similar to the sum across
the three independent variables (see Fig. 7), except in the
case of diffprivlib, which uses a distinct algorithm for the
var. Furthermore, note that some libraries offer the std
query as a built-in function (see Table 2); nonetheless,
their algorithms calculate the std by the square root of the
var query output, leveraging the post-processing properties
of DP. Prominently, the var is the query where diffpriv’s
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Figure 7: SASE and MRE of the var query for experiments
with synthetic datasets.
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Figure 8: SASE and MRE of the mean of Age in the USA
census dataset with 48842 data points.

sensitivity sampler has significantly outperformed the rest
of the libraries. Lastly, note that Chorus has no var query
functionality.

7.4. Experiments on real-world datasets

The utility results obtained with the real-world datasets
show the same patterns across queries, e.g., in the var
query of Fig. 8. Notably, from the results, we observe
that for the USA census dataset with 48842 data points,
the libraries provide similar values of SASE and MRE for
the mean and the sum, except for Chorus. Moreover, the
utility results of the Portuguese Education dataset with 649
data points suffer due to the sparsity over the domain of
values in both attributes and the small size of the dataset,
especially for the var query (see Tables 14 and 15 in
the Appendix). Moreover, Fig. 9 depicts significant MRE
values produced by diffprivlib in the count query.
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Figure 9: SASE and MRE of the count of Absences in
the Portuguese Education Dataset with 649 data points.
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Figure 10: Libraries’ execution time and memory con-
sumption for experiments with synthetic datasets of vary-
ing dataset size.

8. Scalability Benchmark (RQ3)

We selected the mean query to discuss scalability;
however, the behaviour remains uniform across queries
(see Tables 10 and 11 of the Appendix). Note that we used
different ε values as sanity check for the implementation,
as the scalability should be independent to the sampled
noise.

Based on the execution time analysis in Fig. 10, we
conclude that Chorus scales several orders of magnitude
worse than the rest of the libraries across all dataset
sizes. Furthermore, while the rest of the libraries perform
similar up to 10000 data points, all libraries tend to
perform slower on larger datasets, specially the ones with
a Python wrapper (Google DP and SmartNoise). Lastly,
diffpriv scales best at the largest dataset size, followed
by diffprivlib. Nonetheless, SmartNoise and Google DP
might be faster without the wrappers; however, we have
not conducted experiments in this direction. On the other
hand, analyzing the memory consumption of Fig. 10, we
conclude that Chorus outperforms the rest of the libraries
for datasets of less than 10 million data points. Moreover,
despite the low-level implementations in C++ of Google
DP and Rust of SmartNoise under their Python wrappers,
their overall memory consumption is equal to or worse
than the rest of libraries.

9. Guidance for Practitioners

Do I get the privacy I need? Yes—our results suggest
that the libraries we studied contain robust implementa-
tions of well-studied mechanisms, and they can generally
be used to provide differential privacy. We see different
noise levels across different libraries in our experiments,
but not to an extent to suggest that some libraries would
fail the DP criteria. Depending on the threat model of a
particular deployment, however, it may be vital to consider
side channels like floating-point protection (discussed in
detail later in this section).
Which library should I choose? Based on our results,
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Which library should I choose?

Should I require privacy 
budget accounting?
Should I require the 

Snapping mechanism?
Should I require private 
sensitivity calculation?

Yes

Yes

Yes No

Google-DP 
SmartNoise 

Yes No

No

No

Yes

Yes No Yes No

No

Google-DP Google-DP Google-DP 
SmartNoise 
diffprivlib* 
Chorus

Google-DP Google-DP 
SmartNoise 

Google-DP Google-DP 
SmartNoise 
diffprivlib* 
diffpriv* 
Chorus

*Provide DP machine learning functionalityFigure 11: Decision tree for choosing DP libraries based on side channels.*Provide DP machine learning functionality

the libraries share enough similarities for practitioners to
feel comfortable choosing any of the libraries. However, if
the practitioner is an analyst or data scientist, we recom-
mend diffprivlib primarily due to its output consistency,
ease of use, and a wide variety of DP mechanisms and
machine learning models. On the other hand, if the practi-
tioner is a developer whose applications will expose data
to a broader audience, we recommend using Google DP
chiefly because it tackles more side-channel attacks than
the rest of libraries. For practitioners concerned with side
channels, we have compiled a decision tree presented in
Fig. 11. For practitioners primarily concerned with utility
and scalability, we recommend referencing Table 4. We
detail additional considerations below.
RQ1. From our qualitative comparison, we extracted the
following recommendations:
Integration. (i) For endeavors concerning exposing data
to the public or in a world-facing application, we rec-
ommend the libraries that offer privacy budget tracking
and protection against the floating-point vulnerability with
the Snapping mechanism (Google DP and SmartNoise).
(ii) Practitioners needing to integrate with existing large-
scale query infrastructure can employ Chorus, Google
DP, or SmartNoise; however, Chorus needs added code
for deployment. (iii) On the other hand, in development,
research, or data science, we recommend the mechanisms
with the best utility for the desired level of privacy while
being mindful about side channels that can influence
privacy in ways not captured by ε.
Ease of use and available mechanisms. Notably, diff-
privlib offers easy-to-use syntax, many mechanisms, and
some machine learning features. Moreover, diffprivlib and
diffpriv are designed for data scientists: the features of
these libraries are integrated into existing Python and
R syntax, e.g., diffprivlib can run DP classifiers with
SKlearn, unlike the C++ (and its Python wrapper PyDP)
or Scala implementations of Google DP and Chorus,
respectively. On the other hand, Google DP, Chorus, and
SmartNoise are more fitting for developing new applica-
tions due to their architectural components.
Side channels. (i) To address floating-point vulnerabil-
ities, practitioners can employ the Snapping mechanism
from SmartNoise or GoogleDP, and the Geometric mech-
anism from diffprivlib for counts or sums of integers.
(ii) Additionally, budget tracking is necessary to avoid
reverse-engineering the outputs; the only library that does
not include budget tracking is diffpriv. (iii) Lastly, libraries
should include features to help practitioners find the clip-
ping bounds of a dataset’s value range without looking at

TABLE 4: Library recommendations based on the quanti-
tative benchmark of the selected five open-source libraries.

Utility benchmark
Count diffprivlib
Sum Google-DP
Mean Not Chorus
Var diffprivlib
Scalability benchmark
Execution time diffpriv
Memory consumption Chorus

the data for the sensitivity calculation. However, Google
DP is the only library that includes private sensitivity
calculation for unbounded datasets.
RQ2. Based on the utility benchmark, we provide the
library recommendations of Table 4 and highlight the
following points:

Count. Based on the experiments of fig. 4, (i) for
small and medium-sized datasets (1000 to 10000 records),
diffprivlib performs notably better in terms of accuracy.
(ii) The Geometric mechanism (SmartNoise) performs
similar to the Laplace mechanism in accuracy, while
the Geometric Truncated (diffprivlib) brings a substantial
improvement. (iii) However, diffprivlib’s implementation
of the count is a conditional sum of non-zero values.
The drawbacks of this implementation is noticeable in
the experiments of Fig. 9, where 156 records have zero
values, which are omitted and make the true count from
diffprivlib’s perspective equal to 493 instead of 649, gen-
erating significant MRE values. (iv) Lastly, diffpriv and
Chorus do not round the querys output.

Mean. Looking at Fig. 5 as a whole, (i) Chorus per-
forms slightly worse regarding precision and significantly
worse regarding accuracy. (ii) There exists similarities
among the libraries’ mean algorithms, for instance, the
Laplace Truncated mechanism used by diffprivlib is sim-
ilar to the one used by Google DP (Algorithm 2.4 of
Li et al. [56]) in that they both clamp-down outlier outputs.
The similarity is reflected in the uniformity of the mean
outputs across libraries and, therefore, shows no indication
to choose one library over another (excluding Chorus).
(iii) The use of diffpriv’s sensitivity sampler3 improves
utility substantially. The sensitivity sampler constitutes
part of diffpriv’s unique selling value proposition, as it

3. For the sensitivity sampler: γ = 0.1; as per the example provided
by the diffpriv team [14]
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can calculate the local sensitivity of any query, including
machine learning algorithms. However, a query using
the sensitivity sampler took roughly 2208 times more to
execute than without the sampler for a dataset sizes of
100000 [58].

Sum. Fig. 6 depicts a similar behavior to the mean
query. Nonetheless, for higher dataset spreads, Google
DP outputs higher and Chorus lower accuracy than in the
mean query. This difference in accuracy among libraries
disappears as the datasets’ spread become smaller.

Var. According to Fig. 7, (i) diffprivlib performs sig-
nificantly worse in terms of accuracy; however, it is the
only library whose outputs are consistent with the var, i.e.,
its outputs are > 0. diffprivlib achieves output consistency
with the Laplace Bounded Domain for the var query
at the expense of more noise, i.e., bounding the output
domain consumes privacy budget. One may detect diff-
privlib’s under-performance in the results of MRE, which
is lower than Google DP’s and SmartNoise’s, even when
these libraries double the noise executing the mean query
twice to calculate the var (V ar(X) = E[X2] − E[X]2).
(ii) Furthermore, the difference in SASE (and in MRE)
between the two seemingly matching algorithms of Smart-
Noise and Google DP comes from the different low-level
implementations of the Snapping Laplace mechanism and
the use of the Pure Geometric mechanism by SmartNoise.
The results show that the combination of their algorithm
choice for the var query makes Google DP more accu-
rate for datasets of large spreads and for ε ≤ 1, while
with lower spreads, SmartNoise provides more utility.
(iii) Additionally, Google DP and SmartNoise at least
ensure var outputs not to be lower than 0; however, their
use of clamping algorithms makes 0 too frequent. (iv)
Moreover, SmartNoise and Google DP perform slightly
worse regarding precision than the rest of the libraries.

Across all queries. The libraries show similar perfor-
mance in utility. However, while this is mostly consistent
regarding precision, there are notable differences in ac-
curacy in scenarios with datasets of 10000 data points
or less and with ε ≤ 1 (range recommended by the
inventors of DP Dwork et al. [8]). Table 4 shows our
library recommendations per query based on their utility
performance and other factors such as output consistency.
Lastly, except for diffprivlib’s count query in the presence
of zero-value input data, the MRE results (accuracy) do
not show the presence of algorithm bias across libraries.
RQ3. Chorus outperforms the other libraries in memory
consumption and diffpriv in execution time, but all li-
braries are only ready for small-scale deployment.

10. Guidance for Library Designers

We extracted the following actionable advice for li-
brary designers, who may also use Tables 2, 3, 4, and 5
for guidance.
Differences in utility. No single library excels at every
task (see Table 4), suggesting that library designers can
learn from one another. For settings with datasets of 10000
data points or less and with ε ≤ 1, we recommend: (i)
diffprivlibs Geometric Truncated mechanism for counts
(as long as the practitioner does not expect zero values
in the dataset). (ii) Google DPs Snapping Laplace mech-

anism for sums, as it fares better with datasets of a large
dataset spread. (iii) Avoid Chorus for the mean, and (iv)
employ diffprivlib for the var as it avoids values ≤ 0.
Maturity. As differential privacy becomes more popu-
lar, available tools are beginning to demonstrate increas-
ing maturity. diffprivlib, Google DP, and SmartNoise are
more advanced tools than Chorus and diffpriv regarding
functionality and onboarding practitioners with a basic
DP understanding. Moreover, the teams behind diffprivlib
(IBM), SmartNoise (Microsoft), and Google DP are re-
sponsive to reported bugs and answer questions swiftly in
our experience.
Implementation bugs. We call for caution in using any
implementation of differential privacy, as existing libraries
are relatively young tools. There might still be bugs, such
as the one we found in SmartNoise when it was still
called WhiteNoise (see Fig. 12), and the one we fixed
in Chorus [59]. Additionally, using diffprivs sensitivity
sampler on a count query yields an error [60].
Floating point and side channels. diffprivlib, diffpriv,
and Chorus and other future library designers should
consider implementing the Snapping mechanism. Library
designers should also consider addressing other side chan-
nels such as privacy accounting and private sensitivity
calculation.
Practical value of the Geometric mechanism. Geomet-
ric mechanisms are not often used in the differential pri-
vacy literature; however, for integer-valued queries, they
show considerably better utility (when truncated) than the
rest of mechanisms (notably in the count), and it does not
have a floating-point vulnerability because its domain is
the set of integer numbers.
Output consistency. Except for output rounding in the
count query, diffprivlib is the only library that introduces
mechanisms such as Laplace Truncated or Bounded Do-
main for the sum, mean, and var that prevent output
inconsistency (e.g., var ≤ 0). All libraries would benefit
from the development of improved mechanisms concern-
ing output consistency similar to diffprivlib’s.
Operational performance. All libraries offer sufficient
performance for small-scale analysis. On the other hand,
none of the available libraries appears to be ready for
immediate large-scale deployment.

11. Guidance for Researchers

Understanding and communicating theoretical privacy
bounds for mechanisms. A practitioner might see that
most libraries use a variation of the Laplace mechanism
and, consequently, may expect the libraries to agree on
how much noise to add; however, our experiments con-
clude otherwise in specific scenarios (see experiments
with ε < 1). This is because a privacy guarantee is an
upper bound on ε, not always an exact bound, e.g., a
library that adds enough noise for ε = 1 also satisfies
DP for ε = 2; practitioners should have in mind that
the algorithms’ input is an upper bound on ε. In our
benchmark, some implementations have proven better than
others at achieving tighter upper bounds for ε, resulting
in more utility. Our results suggest small but important
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differences between libraries in terms of the utility ob-
tained for a given ε. Furthermore, features like floating-
point protection may yield lower utility for the same
input ε, leading to additional confusion for practitioners.
Likewise, ensuring var values > 0 may generate more
noise than others for the same input ε, yet the added utility
is not tangible in the error curves. While these mechanism
variations are detailed in their respective literature, the
effects on utility may be surprising for a practitioner who
is only familiar with the basics of DP. We suggest that
additional research is needed on the concrete application
of DP mechanisms in practice, to understand the gap
between theoretical bounds and actual utility and develop
ways to communicate that information to practitioners.

Understanding the utility gain and implications of
post-processing. The mechanisms benchmarked here are
simple, but deployments of differential privacy increas-
ingly make use of more complex mechanisms [31]. These
mechanisms increase utility, but this gain is sometimes
hard to bound analytically. Moreover, these mechanisms
may introduce bias or other artifacts in unpredictable
ways, as demonstrated by the results in the 2020 US
Census [42]. As more advanced mechanisms make their
way to deployments, it is important to understand both
the utility gain they provide and their other implications
on analysis results.

Understanding how much utility to expect. Based on
our benchmark, depending on the dataset and the query,
the utility may vary, sometimes significantly. More specif-
ically, this dependency is observed for datasets containing
at least 10000 data points, and for values of ε lower than
1; Figures 4 and 8 are examples of these conditions,
among others in the Appendix. Clearly, utility depends
not just on ε, but also on the scale of the data. This
situation stands in contrast to the way we usually com-
municate about differential privacy—we typically focus
heavily on the setting of ε. This focus is appropriate when
communicating with data subjects, whose privacy is of
primary concern. However, for analysts attempting to learn
from the data, additional guidance is needed about how
to obtain better utility. In many cases, the answer may
be simple—collect more data—but other strategies (like
considering alternative mechanisms) may be helpful too.
We suggest that additional research is needed to under-
stand how to maximize utility in practice, and to develop
effective communication strategies to inform practitioners.
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Figure 12: Anomaly caused by a bug encountered in
WhiteNoise version 0.1.3 in 2020.

12. Conclusion

To help guide practitioners, library designers, and
researchers in navigating the adoption of tools for DP,
we performed a qualitative comparison and a bench-
mark to validate the utility and the scalability of the
five libraries towards which we believe a large body
of practitioners will gravitate. Based on our results, we
recommend practitioners facing a choice among libraries
to prioritize protection against side-channels and analyst
support; however, there exist enough similarities to feel
comfortable choosing any. No single library excels in all
aspects, indicating that library designers can learn from
one another. In particular, we suggest increasing efforts
in output consistency and towards large-scale deployment.
We conclude that, as long as practitioners account for
potential side-channels, these libraries provide the privacy
they need.
Limitations. Our benchmark is a snapshot, and our con-
clusions may become out of date in the future—in fact, we
hope they soon will be, due to continued rapid develop-
ment of the tools! We hope that our findings help library
designers (with whom we were in contact throughout our
study) improve their products and drive tool support for
differential privacy. We also hope that this work highlights
potential pitfalls for future library designers. Finally, by
releasing the code for our benchmark, we hope this work
will form the basis for future evaluations.
Future work. Researchers should consider studying the
gap between theoretical bounds and actual utility, re-
searching the practical implications of increasing utility
with more complex mechanisms, and discovering other
ways to attain more utility. Regarding our benchmark,
in particular, researchers may compare SmartNoise and
Google DP in their native libraries (Rust and C++, respec-
tively) with our studies’ datasets. Moreover, practitioners
may benchmark the DP machine learning algorithms pro-
posed by diffprivlib and diffpriv, and others offered by Py-
Torch and TensorFlow. Furthermore, benchmarking other
queries like quantile and mechanisms outside the default
set, like the Gaussian and the exponential mechanism,
may reveal other obscure differences among libraries.
Additionally, other libraries and platforms exist, which,
while they did not comply with our inclusion criteria or
were recently released, propose DP functionalities that
are worth clustering and benchmarking. We have found
the following tools: Google’s Rappor [61], DJoin [62],
ARX [63], PSI [64], Arivat [65], a DP violation detec-
tor [66], and Google’s ZetaSQL [67]. We do not recom-
mend benchmarking PINQ [16] or GUPT [17] as they
are deprecated. Finally, we encourage researchers to select
one of the five benchmarked libraries (or a combination)
based on this publication and test them in real-world use
cases.

References

[1] IBM Security and P. Institue LLC, “2020 cost of a
data breach study,” p. 82, 2020. [Online]. Available:
https://www.ibm.com/security/data-breach

[2] L. Sweeney, A. Abu, and J. Winn, “Identifying
Participants in the Personal Genome Project by

13

https://www.ibm.com/security/data-breach


Name,” SSRN Electronic Journal, 2013. [Online].
Available: http://www.ssrn.com/abstract=2257732

[3] X. Gao, B. Firner, S. Sugrim, V. Kaiser-Pendergrast,
Y. Yang, and J. Lindqvist, “Elastic pathing: your
speed is enough to track you,” in Proceedings of
the 2014 ACM International Joint Conference on
Pervasive and Ubiquitous Computing - UbiComp
’14 Adjunct. Seattle, Washington: ACM Press,
2014, pp. 975–986. [Online]. Available: http:
//dl.acm.org/citation.cfm?doid=2632048.2632077

[4] D. Kondor, B. Hashemian, Y.-A. de Montjoye,
and C. Ratti, “Towards Matching User Mobility
Traces in Large-Scale Datasets,” IEEE Transactions
on Big Data, vol. 6, no. 4, pp. 714–726, Dec.
2020. [Online]. Available: https://ieeexplore.ieee.
org/document/8470173/

[5] A. Narayanan and V. Shmatikov, “Robust De-
anonymization of Large Sparse Datasets,” in 2008
IEEE Symposium on Security and Privacy (sp
2008). Oakland, CA, USA: IEEE, May 2008,
pp. 111–125, iSSN: 1081-6011. [Online]. Available:
http://ieeexplore.ieee.org/document/4531148/

[6] M. Archie, S. Gershon, A. Katcoff, and A. Zeng,
“De-anonymization of Netix Reviews using Amazon
Reviews,” p. 5, 2018.

[7] J. H. Ziegeldorf, O. G. Morchon, and K. Wehrle,
“Privacy in the internet of things: Threats and
challenges,” Security and Communication Networks,
vol. 7, no. 12, pp. 2728–2742, 2014.

[8] C. Dwork, A. Smith, T. Steinke, and J. Ullman,
“Exposed! A Survey of Attacks on Private
Data,” Annual Review of Statistics and Its
Application, vol. 4, no. 1, pp. 61–84, Mar. 2017.
[Online]. Available: http://www.annualreviews.org/
doi/10.1146/annurev-statistics-060116-054123

[9] Microsoft, “SmartNoise repository,” https://github.
com/opendp/smartnoise-core, online; accessed 21
September 2021.

[10] IBM, “diffprivlib repository,” https://github.com/
IBM/differential-privacy-library, online; accessed 21
September 2021.

[11] Google, “Google DP repository,” https://github.
com/google/differential-privacy, online; accessed 21
September 2021.

[12] Joseph P. Near, “Chorus repository,” https://github.
com/uvm-plaid/chorus, online; accessed 21 Septem-
ber 2021.

[13] N. Johnson, J. P. Near, J. M. Hellerstein, and
D. Song, “Chorus: Differential Privacy via Query
Rewriting,” arXiv:1809.07750 [cs], Sep. 2018,
arXiv: 1809.07750. [Online]. Available: http://arxiv.
org/abs/1809.07750

[14] Rubinstein, Benjamin, “diffpriv repository,” https://
github.com/brubinstein/diffpriv, online; accessed 21
September 2021.

[15] B. I. P. Rubinstein and F. Ald, “Pain-Free Random
Differential Privacy with Sensitivity Sampling,”
arXiv:1706.02562 [cs, stat], Jun. 2017, arXiv:
1706.02562. [Online]. Available: http://arxiv.org/
abs/1706.02562

[16] F. D. McSherry, “Privacy integrated queries: An
extensible platform for privacy-preserving data
analysis,” in Proceedings of the 2009 ACM

SIGMOD International Conference on Management
of Data, ser. SIGMOD ’09. New York, NY, USA:
Association for Computing Machinery, 2009, p.
1930. [Online]. Available: https://doi.org/10.1145/
1559845.1559850

[17] P. Mohan, A. Thakurta, E. Shi, D. Song, and
D. Culler, “GUPT: privacy preserving data analysis
made easy,” in Proceedings of the 2012 international
conference on Management of Data - SIGMOD ’12.
Scottsdale, Arizona, USA: ACM Press, 2012, p.
349. [Online]. Available: http://dl.acm.org/citation.
cfm?doid=2213836.2213876

[18] Munilla, Gonzalo and Muhammad, Aitsam,
“Benchmark repository,” https://github.com/
gonzalo-munillag/Benchmarking Differential
Privacy Analytics Libraries, online; accessed 21
September 2021.

[19] I. Mironov, “On significance of the least significant
bits for differential privacy,” in Proceedings of
the 2012 ACM conference on Computer and
communications security - CCS ’12. Raleigh,
North Carolina, USA: ACM Press, 2012, p. 650.
[Online]. Available: http://dl.acm.org/citation.cfm?
doid=2382196.2382264

[20] C. Dwork, “Differential Privacy,” 2006, in: Bugliesi
M., Preneel B., Sassone V., Wegener I. (eds) Au-
tomata, Languages and Programming. Lecture Notes
in Computer Science, vol 4052. Springer, Berlin,
Heidelberg.

[21] M. Hardt and K. Talwar, “On the geometry of dif-
ferential privacy,” in Proceedings of the forty-second
ACM symposium on Theory of computing, 2010, pp.
705–714.

[22] J. Lee and C. Clifton, “How much is enough?
Choosing ε for differential privacy,” in Lecture Notes
in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 7001 LNCS, 2011, pp. 325–
340.

[23] A. De, “Lower bounds in differential privacy,” in
Theory of cryptography conference. Springer, 2012,
pp. 321–338.

[24] A. Friedman and A. Schuster, “Data mining with
differential privacy.” Washington, DC, USA: ACM
Press, 2010, p. 493, proceedings of the 16th ACM
SIGKDD international conference on Knowledge
discovery and data mining - KDD ’10.

[25] Y. Yang, Z. Zhang, G. Miklau, M. Winslett, and
X. Xiao, “Differential privacy in data publication
and analysis,” in Proceedings of the 2012 ACM
SIGMOD International Conference on Management
of Data, ser. SIGMOD ’12. New York, NY, USA:
Association for Computing Machinery, 2012, p.
601606. [Online]. Available: https://doi.org/10.1145/
2213836.2213910

[26] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan,
I. Mironov, K. Talwar, and L. Zhang, “Deep
learning with differential privacy,” in Proceedings
of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’16.
New York, NY, USA: Association for Computing
Machinery, 2016, p. 308318. [Online]. Available:
https://doi.org/10.1145/2976749.2978318

14

http://www.ssrn.com/abstract=2257732
http://dl.acm.org/citation.cfm?doid=2632048.2632077
http://dl.acm.org/citation.cfm?doid=2632048.2632077
https://ieeexplore.ieee.org/document/8470173/
https://ieeexplore.ieee.org/document/8470173/
http://ieeexplore.ieee.org/document/4531148/
http://www.annualreviews.org/doi/10.1146/annurev-statistics-060116-054123
http://www.annualreviews.org/doi/10.1146/annurev-statistics-060116-054123
https://github.com/opendp/smartnoise-core
https://github.com/opendp/smartnoise-core
https://github.com/IBM/differential-privacy-library
https://github.com/IBM/differential-privacy-library
https://github.com/google/differential-privacy
https://github.com/google/differential-privacy
https://github.com/uvm-plaid/chorus
https://github.com/uvm-plaid/chorus
http://arxiv.org/abs/1809.07750
http://arxiv.org/abs/1809.07750
https://github.com/brubinstein/diffpriv
https://github.com/brubinstein/diffpriv
http://arxiv.org/abs/1706.02562
http://arxiv.org/abs/1706.02562
https://doi.org/10.1145/1559845.1559850
https://doi.org/10.1145/1559845.1559850
http://dl.acm.org/citation.cfm?doid=2213836.2213876
http://dl.acm.org/citation.cfm?doid=2213836.2213876
https://github.com/gonzalo-munillag/Benchmarking_Differential_Privacy_Analytics_Libraries
https://github.com/gonzalo-munillag/Benchmarking_Differential_Privacy_Analytics_Libraries
https://github.com/gonzalo-munillag/Benchmarking_Differential_Privacy_Analytics_Libraries
http://dl.acm.org/citation.cfm?doid=2382196.2382264
http://dl.acm.org/citation.cfm?doid=2382196.2382264
https://doi.org/10.1145/2213836.2213910
https://doi.org/10.1145/2213836.2213910
https://doi.org/10.1145/2976749.2978318


[27] X. Xiong, S. Liu, D. Li, Z. Cai, and X. Niu, “A
comprehensive survey on local differential privacy,”
Security and Communication Networks, vol. 2020,
2020.

[28] M. Yang, L. Lyu, J. Zhao, T. Zhu, and K.-Y. Lam,
“Local differential privacy and its applications: A
comprehensive survey,” 2020.

[29] M. U. Hassan, M. H. Rehmani, and J. Chen, “Differ-
ential privacy techniques for cyber physical systems:
a survey,” IEEE Communications Surveys & Tutori-
als, vol. 22, no. 1, pp. 746–789, 2019.

[30] B. Nelson and J. Reuben, “Sok: Chasing accuracy
and privacy, and catching both in differentially pri-
vate histogram publication,” 2020.

[31] C. Li, M. Hay, G. Miklau, and Y. Wang, “A
data- and workload-aware algorithm for range
queries under differential privacy,” Proc. VLDB
Endow., vol. 7, no. 5, p. 341352, Jan. 2014.
[Online]. Available: https://doi-org.eaccess.ub.tum.
de/10.14778/2732269.2732271

[32] W. Qardaji, W. Yang, and N. Li, “Differentially
private grids for geospatial data,” in 2013 IEEE
29th International Conference on Data Engineering
(ICDE), 2013, pp. 757–768.

[33] W. Qardaji, W. Yang, and N. Li, “Understanding
hierarchical methods for differentially private
histograms,” Proc. VLDB Endow., vol. 6,
no. 14, p. 19541965, Sep. 2013. [On-
line]. Available: https://doi-org.eaccess.ub.tum.de/
10.14778/2556549.2556576

[34] H. Zhang, E. Roth, A. Haeberlen, B. C. Pierce,
and A. Roth, “Testing differential privacy with
dual interpreters,” Proceedings of the ACM on
Programming Languages, vol. 4, no. OOPSLA,
pp. 1–26, Nov. 2020. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3428233

[35] M. Hay, A. Machanavajjhala, G. Miklau,
Y. Chen, and D. Zhang, “Principled Evaluation of
Differentially Private Algorithms using DPBench,”
in Proceedings of the 2016 International Conference
on Management of Data - SIGMOD ’16.
San Francisco, California, USA: ACM Press,
2016, pp. 139–154. [Online]. Available: http:
//dl.acm.org/citation.cfm?doid=2882903.2882931

[36] F. T. Wu, “Defining privacy and utility in data sets,”
84 University of Colorado Law Review 1117 (2013);
2012 TRPC, pp. 1117–1177, 2012.

[37] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov,
and M. Naor, “Our data, ourselves: Privacy via dis-
tributed noise generation,” in Advances in Cryptol-
ogy - EUROCRYPT 2006, S. Vaudenay, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp.
486–503.

[38] C. Dwork and A. Roth, “The Algorithmic
Foundations of Differential Privacy,” Foundations
and Trends in Theoretical Computer Science,
vol. 9, no. 3-4, pp. 211–407, 2013. [Online].
Available: http://www.nowpublishers.com/articles/
foundations-and-trends-in-theoretical-computer-science/
TCS-042

[39] D. Kifer and A. Machanavajjhala, “No free lunch
in data privacy,” in Proceedings of the 2011 ACM
SIGMOD International Conference on Management

of data, 2011, pp. 193–204.
[40] C. Dwork, “Differential Privacy: A Survey

of Results,” in Theory and Applications of
Models of Computation, M. Agrawal, D. Du,
Z. Duan, and A. Li, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, vol. 4978,
pp. 1–19, series Title: Lecture Notes in
Computer Science. [Online]. Available: http:
//link.springer.com/10.1007/978-3-540-79228-4 1

[41] F. McSherry and K. Talwar, “Mechanism design
via differential privacy,” in 48th Annual IEEE
Symposium on Foundations of Computer Science
(FOCS’07), 2007, pp. 94–103.

[42] S. L. Garfinkel, J. M. Abowd, and S. Powazek,
“Issues encountered deploying differential privacy,”
in Proceedings of the 2018 Workshop on Privacy in
the Electronic Society, ser. WPES’18. New York,
NY, USA: Association for Computing Machinery,
2018, p. 133137. [Online]. Available: https://doi-org.
eaccess.ub.tum.de/10.1145/3267323.3268949

[43] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan,
I. Mironov, K. Talwar, and L. Zhang, “Deep
learning with differential privacy,” in Proceedings
of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’16.
New York, NY, USA: Association for Computing
Machinery, 2016, p. 308318. [Online]. Available:
https://doi.org/10.1145/2976749.2978318

[44] Scipy community, “Skew-normal distribution
documentation,” https://docs.scipy.org/doc/scipy/
reference/generated/scipy.stats.skewnorm.html,
online; accessed 21 September 2021.

[45] A. Azzalini and A. Capitanio, “Statistical
applications of the multivariate skew normal
distribution,” Journal of the Royal Statistical
Society: Series B (Statistical Methodology), vol. 61,
no. 3, p. 579602, Aug 1999. [Online]. Available:
http://dx.doi.org/10.1111/1467-9868.00194

[46] Kaggle, “Census dataset repository,”
https://www.kaggle.com/muonneutrino/
us-census-demographic-data, online; accessed
21 September 2021.

[47] D. Dua and C. Graff, “UCI machine learning
repository,” 2017. [Online]. Available: http://archive.
ics.uci.edu/ml

[48] UCI machine learning repository, “Education
dataset repository,” https://archive.ics.uci.edu/ml/
datasets/Student+Performance, online; accessed 21
September 2021.

[49] P. Cortez, A. Silva, and D. Andrade, “Predicting
academic achievement of high-school students using
machine learning.” 2014, psychology, 5, 2046-2057.

[50] A. Ghosh, T. Roughgarden, and M. Sun-
dararajan, “Universally Utility-Maximizing Pri-
vacy Mechanisms,” arXiv:0811.2841 [cs], Mar.
2009, arXiv: 0811.2841. [Online]. Available:
http://arxiv.org/abs/0811.2841

[51] R. Bassily, A. Smith, and A. Thakurta, “Differen-
tially private empirical risk minimization: Efficient
algorithms and tight error bounds,” 2014.

[52] Q. Geng and P. Viswanath, “The Optimal Mechanism
in Differential Privacy,” arXiv:1212.1186 [cs],
Oct. 2013, arXiv: 1212.1186. [Online]. Available:

15

https://doi-org.eaccess.ub.tum.de/10.14778/2732269.2732271
https://doi-org.eaccess.ub.tum.de/10.14778/2732269.2732271
https://doi-org.eaccess.ub.tum.de/10.14778/2556549.2556576
https://doi-org.eaccess.ub.tum.de/10.14778/2556549.2556576
https://dl.acm.org/doi/10.1145/3428233
https://dl.acm.org/doi/10.1145/3428233
http://dl.acm.org/citation.cfm?doid=2882903.2882931
http://dl.acm.org/citation.cfm?doid=2882903.2882931
http://www.nowpublishers.com/articles/foundations-and-trends-in-theoretical-computer-science/TCS-042
http://www.nowpublishers.com/articles/foundations-and-trends-in-theoretical-computer-science/TCS-042
http://www.nowpublishers.com/articles/foundations-and-trends-in-theoretical-computer-science/TCS-042
http://link.springer.com/10.1007/978-3-540-79228-4_1
http://link.springer.com/10.1007/978-3-540-79228-4_1
https://doi-org.eaccess.ub.tum.de/10.1145/3267323.3268949
https://doi-org.eaccess.ub.tum.de/10.1145/3267323.3268949
https://doi.org/10.1145/2976749.2978318
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skewnorm.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skewnorm.html
http://dx.doi.org/10.1111/1467-9868.00194
https://www.kaggle.com/muonneutrino/us-census-demographic-data
https://www.kaggle.com/muonneutrino/us-census-demographic-data
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://archive.ics.uci.edu/ml/datasets/Student+Performance
https://archive.ics.uci.edu/ml/datasets/Student+Performance
http://arxiv.org/abs/0811.2841


http://arxiv.org/abs/1212.1186
[53] N. Holohan, S. Antonatos, S. Braghin, and

P. Mac Aonghusa, “The Bounded Laplace Mecha-
nism in Differential Privacy,” Journal of Privacy and
Confidentiality, vol. 10, no. 1, Dec. 2019.

[54] B. Rubinstein and F. Alda, “diffpriv: An R
Package for Easy Differential Privacy,” p. 5, 2017.
[Online]. Available: https://cran.r-project.org/web/
packages/diffpriv/vignettes/diffpriv.pdf

[55] Microsoft and Harvard, “SmartNoise’
sensitivity analytical proofs,” https://github.com/
opendifferentialprivacy/SmartNoise-core/tree/
develop/whitepapers/sensitivities, online; accessed
21 September 2021.

[56] N. Li, M. Lyu, D. Su, and W. Yang,
Differential Privacy: From Theory to Practice,
2016. [Online]. Available: https://ieeexplore.ieee.
org/document/7731575

[57] Intel, “Xeon processor,” https://ark.intel.
com/content/www/de/de/ark/products/75269/
intel-xeon-processor-e5-2650-v2-20m-cache-2-60-ghz.
html, online; accessed 21 September 2021.

[58] Munilla, Gonzalo and Muhammad, Aitsam,
“diffpriv’s sensitivity sampler excessive execution
time,” https://github.com/gonzalo-munillag/
Benchmarking Differential Privacy Analytics
Libraries/tree/main/Time and Memory calculation/
Code/R/sensitivity sampler execution time, online;
accessed 21 September 2021.

[59] Muhammad, Aitsam, “Chorus bug fix,”
https://github.com/uvm-plaid/chorus/pull/1/commits/
b20da14849bb889647418653afc6090a4f2a9c85,
online; accessed 21 September 2021.

[60] Munilla, Gonzalo and Muhammad, Ait-
sam, “diffpriv’s sensitivity sampler count
error,” https://github.com/gonzalo-munillag/
Benchmarking Differential Privacy Analytics
Libraries/tree/main/Bugs/diffpriv, online; accessed
21 September 2021.

[61] . Erlingsson, V. Pihur, and A. Korolova, “RAPPOR:
Randomized Aggregatable Privacy-Preserving Ordi-
nal Response,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communi-
cations Security. Scottsdale Arizona USA: ACM,
Nov. 2014, pp. 1054–1067. [Online]. Available:
https://dl.acm.org/doi/10.1145/2660267.2660348

[62] A. Narayan and A. Haeberlen, “DJoin: Differentially
Private Join Queries over Distributed Databases,”
p. 14, 2012.

[63] R. Bild, K. A. Kuhn, and F. Prasser, “Safepub:
A truthful data anonymization algorithm with
strong privacy guarantees,” Proceedings on Privacy
Enhancing Technologies, vol. 2018, no. 1, pp.
67–87, 2018. [Online]. Available: https://doi.org/10.
1515/popets-2018-0004

[64] B. Kacsmar, B. Khurram, N. Lukas, A. Nor-
ton, M. Shafieinejad, Z. Shang, Y. Baseri,
M. Sepehri, S. Oya, and F. Kerschbaum,
“Differentially Private Two-Party Set Operations,”
in 2020 IEEE European Symposium on Security
and Privacy (EuroS&P). Genoa, Italy: IEEE,
Sep. 2020, pp. 390–404. [Online]. Available:
https://ieeexplore.ieee.org/document/9230399/

[65] I. Roy, S. T. V. Setty, A. Kilzer, V. Shmatikov,
and E. Witchel, “Airavat: Security and Privacy for
MapReduce,” p. 16, 2010.

[66] Z. Ding, Y. Wang, G. Wang, D. Zhang, and D. Kifer,
“Detecting Violations of Differential Privacy,” p. 15,
2019.

[67] Google, “ZetaSQL repository,” https://github.com/
google/zetasql, online; accessed 21 September 2021.

[68] Q. Geng, W. Ding, R. Guo, and S. Kumar,
“Privacy and Utility Tradeoff in Approximate
Differential Privacy,” arXiv:1810.00877 [cs], Feb.
2019, arXiv: 1810.00877. [Online]. Available: http:
//arxiv.org/abs/1810.00877

[69] B. Balle and Y.-X. Wang, “Improving the Gaussian
Mechanism for Differential Privacy: Analytical Cal-
ibration and Optimal Denoising,” arXiv:1805.06530
[cs, stat], Jun. 2018, arXiv: 1805.06530. [Online].
Available: http://arxiv.org/abs/1805.06530

[70] C. L. Canonne, G. Kamath, and T. Steinke,
“The Discrete Gaussian for Differential Privacy,”
arXiv:2004.00010 [cs, stat], Jan. 2021, arXiv:
2004.00010. [Online]. Available: http://arxiv.org/
abs/2004.00010

[71] R. McKenna and D. Sheldon, “Permute-and-
Flip: A new mechanism for differentially private
selection,” arXiv:2010.12603 [cs], Oct. 2020, arXiv:
2010.12603. [Online]. Available: http://arxiv.org/abs/
2010.12603

[72] C. Ilvento, “Implementing the Exponential
Mechanism with Base-2 Differential Privacy,”
arXiv:1912.04222 [cs], Aug. 2020, arXiv:
1912.04222. [Online]. Available: http://arxiv.org/
abs/1912.04222

[73] N. Holohan, D. J. Leith, and O. Mason, “Optimal
Differentially Private Mechanisms for Randomised
Response,” IEEE Transactions on Information
Forensics and Security, vol. 12, no. 11, pp. 2726–
2735, Nov. 2017, arXiv: 1612.05568. [Online].
Available: http://arxiv.org/abs/1612.05568

[74] J. T. Kent, A. M. Ganeiber, and K. V. Mardia,
“A New Unified Approach for the Simulation
of a Wide Class of Directional Distributions,”
Journal of Computational and Graphical Statistics,
vol. 27, no. 2, pp. 291–301, Apr. 2018. [Online].
Available: https://www.tandfonline.com/doi/full/10.
1080/10618600.2017.1390468

16

http://arxiv.org/abs/1212.1186
https://cran.r-project.org/web/packages/diffpriv/vignettes/diffpriv.pdf
https://cran.r-project.org/web/packages/diffpriv/vignettes/diffpriv.pdf
https://github.com/opendifferentialprivacy/SmartNoise-core/tree/develop/whitepapers/sensitivities
https://github.com/opendifferentialprivacy/SmartNoise-core/tree/develop/whitepapers/sensitivities
https://github.com/opendifferentialprivacy/SmartNoise-core/tree/develop/whitepapers/sensitivities
https://ieeexplore.ieee.org/document/7731575
https://ieeexplore.ieee.org/document/7731575
https://ark.intel.com/content/www/de/de/ark/products/75269/intel-xeon-processor-e5-2650-v2-20m-cache-2-60-ghz.html
https://ark.intel.com/content/www/de/de/ark/products/75269/intel-xeon-processor-e5-2650-v2-20m-cache-2-60-ghz.html
https://ark.intel.com/content/www/de/de/ark/products/75269/intel-xeon-processor-e5-2650-v2-20m-cache-2-60-ghz.html
https://ark.intel.com/content/www/de/de/ark/products/75269/intel-xeon-processor-e5-2650-v2-20m-cache-2-60-ghz.html
https://github.com/gonzalo-munillag/Benchmarking_Differential_Privacy_Analytics_Libraries/tree/main/Time_and_Memory_calculation/Code/R/sensitivity_sampler_execution_time
https://github.com/gonzalo-munillag/Benchmarking_Differential_Privacy_Analytics_Libraries/tree/main/Time_and_Memory_calculation/Code/R/sensitivity_sampler_execution_time
https://github.com/gonzalo-munillag/Benchmarking_Differential_Privacy_Analytics_Libraries/tree/main/Time_and_Memory_calculation/Code/R/sensitivity_sampler_execution_time
https://github.com/gonzalo-munillag/Benchmarking_Differential_Privacy_Analytics_Libraries/tree/main/Time_and_Memory_calculation/Code/R/sensitivity_sampler_execution_time
https://github.com/uvm-plaid/chorus/pull/1/commits/b20da14849bb889647418653afc6090a4f2a9c85
https://github.com/uvm-plaid/chorus/pull/1/commits/b20da14849bb889647418653afc6090a4f2a9c85
https://github.com/gonzalo-munillag/Benchmarking_Differential_Privacy_Analytics_Libraries/tree/main/Bugs/diffpriv
https://github.com/gonzalo-munillag/Benchmarking_Differential_Privacy_Analytics_Libraries/tree/main/Bugs/diffpriv
https://github.com/gonzalo-munillag/Benchmarking_Differential_Privacy_Analytics_Libraries/tree/main/Bugs/diffpriv
https://dl.acm.org/doi/10.1145/2660267.2660348
https://doi.org/10.1515/popets-2018-0004
https://doi.org/10.1515/popets-2018-0004
https://ieeexplore.ieee.org/document/9230399/
https://github.com/google/zetasql
https://github.com/google/zetasql
http://arxiv.org/abs/1810.00877
http://arxiv.org/abs/1810.00877
http://arxiv.org/abs/1805.06530
http://arxiv.org/abs/2004.00010
http://arxiv.org/abs/2004.00010
http://arxiv.org/abs/2010.12603
http://arxiv.org/abs/2010.12603
http://arxiv.org/abs/1912.04222
http://arxiv.org/abs/1912.04222
http://arxiv.org/abs/1612.05568
https://www.tandfonline.com/doi/full/10.1080/10618600.2017.1390468
https://www.tandfonline.com/doi/full/10.1080/10618600.2017.1390468


Appendix

1. Experiments workflow

Algorithm 1 Logic of the experiments to measure utility
from the outputs of the analytics queries.

Input: P , set of libraries to benchmark; MP , set of
randomized analytics queries to benchmark within a
library; D, set of datasets; E , set of ε; N , number of
experiments for a single ε; WMP , set of baseline
truthful analytics queries mapped to a given MP .

Output: ŷ, noisy query result; y, truthful query
result; E, set of size N of L1 errors; RE, set of size N
of L1 relative errors; RE

∧
, set of cardinality |E| of

sample means of each RE; S, set of cardinality |E| of
sample std of each scaled E.

1: for each: p ∈ P
2: for each: Mp ∈MP
3: for each: I ∈ D
4: RE

∧
= {}; S = {};

5: for each: ε ∈ E
6: RE = {}; E = {}
7: y =WMp

(I, ε)
8: for i = 1 to N do
9: ŷ = Mp(I, ε)

10: E = E ∪ ‖ŷ − y‖1
11: RE = RE ∪

‖ŷ − y‖1
‖y‖1

12: RE
∧

= RE
∧

∪ mean(RE)

13: S = S ∪ SampleStd
(
E

|I|

)
14: plot(RE

∧
, E)

15: plot(S, E)

2. Differential privacy mechanisms

3. Experiment Results
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TABLE 5: Overview of all the mechanisms implemented by the benchmarked libraries, among others.

Mechanism Implementation Libraries Description

Laplace Pure All Noise is sampled from a Laplace distribution of domain (− inf, inf). This noise is
added to the true value without post-processing. [38]

Truncated diffprivlib

If after adding noise to the true value this output falls outside a pre-defined range,
then the output is mapped to the closest bound of the output range, e.g. a count
output of less than zero could be mapped to the lower bound 0. If the domain

bounds coincide with e.g. changes in behavior because the probability of returning
values at the domain bounds is non-zero, it is recommended to use the Bounded

Domain mechanism instead [53].

Bounded
Domain diffprivlib

Samples outputs until one falls within the pre-defined range. While this mechanism
is suitable to prevent not desired values, e.g. a negative var value, or implemented

in classifiers, it requires more tailoring so that it satisfies DP [53].
Bounded Noise diffprivlib Samples from a truncated domain of a Laplacian distribution [68].

Folded diffprivlib

Similar to Truncated, but instead of outputting the closest bound, the output outside
a pre-defined range is folded around this range until the output falls within, e.g.
with a pre-described range of [l, u], a count output of c < l could be folded by

recursively computing n ∗ l − (c) until the count falls within [l, u], where n ∈ N.

Gaussian Pure

All
including

Google-DP,
but except

PyDP

Noise is sampled from a Gaussian distribution of domain (− inf, inf). This noise is
added to the true value without post-processing. [38]

Analytic
Gaussian diffprivlib It removes at least a third of the variance of the Pure Gaussian mechanism by a

novel noise calibration strategy and a post-processing technique [69].
Discrete
Gaussian diffprivlib Modifies the Gaussian mechanism so that discrete noise may be sampled without

losing privacy or accuracy guarantees [70].

Exponential Pure

All
including

Google-DP,
but except

PyDP

Achieves differential privacy for categorical query outputs by randomly choosing a
category proportionally to its utility value [41], i.e. a category with a higher utility

score than another is as much more likely to be picked. the utility values decay
exponentially, making the true results more likely to be picked while maintaining

DP.
Permute and

Flip diffprivlib It randomly selects a value, then, the algorithm flips a biased coin based on the
utility of the selected value [71], and releases the output if the results it heads.

Hierarchical diffprivlib Adapts the Pure exponential mechanism to hierarchical data, so that the utility
calculation is less complex due to the intrinsic hierarchy of the data.

With Base-2
DP

SmartNoise

(In
progress)

By switching the DP definition from base e to base 2, one is able to perform
precise base 2 arithmetic, and, thus, avoid floating-point vulnerability. [72].

Geometric Pure diffprivlib,
SmartNoise

Employs a discrete variant of the Laplace mechanism by satisfying DP with
equality, and thus, producing tighter guarantees for integer-value outputs, and, in

turn, higher accuracy [50].

Truncated diffprivlib Uses the same technique as Laplace Truncated but the underlying mechanism is the
Geometric.

Folded diffprivlib Uses the same technique as Laplace Folded but the underlying mechanism is the
Geometric.

Staircase Pure diffprivlib
Optimizes the Laplace Mechanism, obtaining more accuracy for moderate-low ε

values. The shape of the noise distribution is a staircase, technically considered as a
geometric mixture of uniform probability distributions. [52]

Binary Pure diffprivlib
Specifically designed for binary inputs, this mechanism adapts randomized response
to (ε, δ)-differential privacy. In effect, the logic flips a biased coin to output the true

input or its complementary [73].

Bingham Pure diffprivlib A differentially-private mechanism built upon the Bingham distribution, exclusively
used for estimating the first eigenvector of a covariance matrix. [74]

Vector Pure diffprivlib Employed for perturbing convex objective functions of a machine learning classifier
before optimization [51].

Uniform Pure diffprivlib Derived from the edge case where the Laplace Bounded Noise has an ε = 0 [68].

Snapping Laplace SmartNoise,
Google-DP

A modification of the Laplace mechanism to protect against the floating-point
vulnerability of the theoretical Laplace continuous distribution. Among other steps,

the key of the mechanism is rounding to the closest multiple of a power of 2.
Furthermore, note that the Snapping mechanism implementation from SmartNoise

and Google-DP differ, and in turn, both differ from the original work from [19], as
they achieve floating-point safety while adding less noise.

Gaussian Google-DP
Similar to the Snapping mechanism for the Laplace distribution, this variation

modifies the Gaussian mechanism to protect against the floating-point vulnerability
of the theoretical Gaussian continuous distribution.[19]
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TABLE 6: Set of detailed experiments’ outputs for all three independent variables (dataset size, scale, and skewness)
of the sum query (500 experiments per ε).
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diffprivlib, IBM (Python)
PyDP (Python wrapper over Google DP C++)
SmartNoise, Microsoft (Python wrapper over Rust)

diffpriv, B. Rubinstein, et al. (R)
diffpriv (Sensitivity Sampler)
Chorus, J. Near et al (Scala)

size = 1000 size = 10000 size = 100000
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TABLE 7: Set of detailed experiments’ outputs for all three independent variables (dataset size, scale, and skewness)
of the mean query (500 experiments per ε).
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TABLE 8: Set of detailed experiments’ outputs for all three independent variables (dataset size, scale, and skewness)
of the var query (500 experiments per ε).
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TABLE 9: Sample std of the absolute scaled error across varying dataset scales (5 experiments per ε and dataset scale).
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TABLE 10: Execution time for a range of an increasing number of data points for all queries: count, sum, mean, and
var (5 experiments per ε and dataset size).
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TABLE 11: Memory consumption for a range of an increasing number of data points for all queries: count, sum, mean,
and var (5 experiments per ε and dataset size).
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TABLE 12: Experiments of the queries count, sum, mean, and var on the attribute Age of the U.S.A census dataset
containing 48842 individuals (500 experiments per ε).
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TABLE 13: Experiments of the queries count, sum, mean, and var on the attribute Hours of the U.S.A census dataset
containing 48842 individuals (500 experiments per ε).
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TABLE 14: Experiments of the queries count, sum, mean, and var on the attribute Absences of the Portuguese education
dataset containing 649 individuals (500 experiments per ε).
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TABLE 15: Experiments of the queries count, sum, mean, and var on the attribute Grades of the Portuguese education
dataset containing 649 individuals (500 experiments per ε).
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